Open Library - открытая библиотека учебной информации. Ракетные двигатели плазменные


Плазменный ракетный двигатель Вики

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы[ | код]

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 498 дней)].

См. также[ | код]

Примечания[ | код]

  1. ↑ Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки[ | код]

Реклама

CC© cookies police  

ru.wikibedia.ru

Плазменный ракетный двигатель - это... Что такое Плазменный ракетный двигатель?

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель (также плазменный инжектор) — ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.[1]

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г.[2] Плазменные двигатели не следует путать с ионными. Они не предназначены для вывода грузов на орбиту, и могут работать только в вакууме.

Принцип работы

Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.[3]

См. также

Примечания

  1. ↑ Большая Советская Энциклопедия, Третье издание БСЭ, 1969—1978 г.
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

xn--httpsdic-56g3h1cya1j.academic.ru

Плазменный ракетный двигатель

плазменный двигательПла́зменный дви́гатель (также плазменный инжектор) — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Содержание

  • 1 Принцип работы
  • 2 См. также
  • 3 Примечания
  • 4 Ссылки

Принцип работы

Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.

См. также

  • Электрический ракетный двигатель
  • Ионный двигатель
  • VASIMR
  • Стационарный плазменный двигатель

Примечания

  1. ↑ Большая Советская Энциклопедия, Третье издание БСЭ, 1969—1978 г.
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

  • Дмитрий Мамонтов. Потомки повелителя ветров: Вместо сердца - плазменный мотор! (рус.). Популярная механика (Декабрь 2005). Проверено 22 июля 2010. Архивировано из первоисточника 21 марта 2012.
  • Lisa Grossman. Плазменный мотор: 40 дней до Марса (рус.). Популярная механика (27.07.09). Проверено 22 июля 2010. Архивировано из первоисточника 21 марта 2012.
п·о·р Двигатели  
Двигатели внутреннего сгорания (кроме турбинных)   Возвратно-поступательные Роторные Комбинированные
Количество тактов Двухтактный двигатель (двигатель Ленуара) • Четырёхтактный двигатель • Шеститактный двигатель
Расположение цилиндров Рядный двигатель (U-образный двигатель) • Оппозитный двигатель • Н-образный двигатель • V-образный двигатель • VR-образный двигатель • W-образный двигатель • Звездообразный двигатель (вращающийся) • X-образный двигатель
Типы поршней Свободно-поршневые • Двигатель со встречным движением поршней (дельтообразный) • Аксиальные
Способ воспламенения Дизельные • Компрессионные карбюраторные • Калильно-компрессионный • Калильные карбюраторные • Батарейное зажигание • Магнето • Дуговые и искровые свечи
Двигатель Ванкеля • Орбитальный двигатель (двигатель Сарича) • Роторно-лопастной двигатель Вигриянова
Гибридные • Двигатель Хессельмана
Воздушно-реактивные   Основные типы Модификациии гибридные системы
Бескомпрессорные Прямоточные • Пульсирующие
Турбореактивные Турбовентиляторные (двухконтурные) • Турбовинтовые • Турбовинтовентиляторные • Турбовальные
Мотокомпрессорный воздушно-реактивный двигатель • Гиперзвуковые прямоточные
См. также: Газотурбинные двигатели
Ракетные двигатели   Химические Ядерные Электрические Другие
Жидкостные Закрытого цикла • Открытого цикла • С фазовым переходом • Двигатель Вальтера
Другие Твердотопливные • Топливно-гибридные
Термоядерные • Газофазно-ядерные • Твёрдофазно-ядерные • Солевые
Плазменные (электромагнитный ускоритель VASIMR) • Ионные • Электротермические • Электростатические
Клиновоздушный • Двигатель Бассарда
Двигатели внешнего сгорания  
Паровая машина • Двигатель Стирлинга • Пневматический двигатель
Турбины и механизмы с турбинами в составе  
По виду рабочего тела
Газовые Газотурбинная установка • Газотурбинная электростанция • Газотурбинные двигатели‎
Паровые Парогазовая установка • Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина • Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина • Центробежная турбина (радиальная • диагональная) • Радиально-осевая турбина (турбина Френсиса) • Поворотно-лопастная турбина (турбина Каплана) • Ковшовая турбина (турбина Пелтона) • Турбина Турго • Ротор Дарье • Турбина Уэльса • Турбина Тесла • Сегнерово колесо
Электродвигатели   Асинхронные Синхронные Другие
Постоянного тока • Переменного тока • Трёхфазные • Двухфазные • Однофазные • Универсальные
Конденсаторный двигатель
Бесколлекторные • Коллекторные • Вентильные реактивные • Шаговые
Линейные • Гистерезисные • Униполярные • Ультразвуковые • Мендосинский мотор
Биологические двигатели   Моторные белки
Актин • Динеин • Кинезин • Миозин • Тропомиозин • Тропонин • Флагеллин
См. также: Вечный двигатель • Мотор-редуктор • Резиномотор

плазменный двигатель

Плазменный ракетный двигатель Информацию О

Плазменный ракетный двигатель Комментарии

Плазменный ракетный двигательПлазменный ракетный двигатель Плазменный ракетный двигатель Вы просматриваете субъект

Плазменный ракетный двигатель что, Плазменный ракетный двигатель кто, Плазменный ракетный двигатель описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Плазменные ракетные двигатели.

Ядерная техника Плазменные ракетные двигатели.

просмотров - 19

Рассмотренные электромагнитные насосы являются своеобразными двигателями постоянного тока. Подобные устройства в принципе пригодны также для разгона, ускорения или перемещения плазмы, т. е. высокотемпературного (2000—4000 °С и больше) ионизированного и в связи с этим электропроводящего газа. В связи с этим производится разработка реактивных плазменных двигателœей для космических ракет, причем ставится задача получения скоростей истечения плазмы до 100 км/сек. Такие двигатели не будут обладать большой силой тяги и в связи с этим будут пригодны только для работы вдали от планет,где поля тяготения слабы; однако они имеют то преимущество, что весовой расход вещества (плазмы) мал. Необходимую для их питания электрическую энергию предполагается получить с помощью ядерных реакторов. Для плазменных дви­гателœей постоянного тока трудную проблему составляет создание надежных электродов для подвода тока к плазме.

Магнитогидродинамические генераторы.

МГД машины, как и всякие элект­рические машины, обратимы. В частности, устройство, изображенное на рис. 11.16, может работать также в режиме генератора, если через него прогонять проводящую жидкость или газ. При этом целœесообразно иметь независимое воз­буждение. Генерируемый ток снимается с электродов.

На таком принципе строятся электромагнитные расходомеры воды, растворов щелочей и кислот, жидких металлов и т. п. Э. д. с. на электродах при этом про­порциональна скорости движения или расходу жидкости.

МГД генераторы представляют интерес с точки зрения создания мощных элек­трических генераторов для непосредственного превращения тепловой энергии в электрическую. Для этого через устройство вида, изображенного на рис. 32, крайне важно пропускать со скоростью порядка 1000 м/сек проводящую плазму. Такую плазму можно получить при сжигании обычного топлива, а также путем нагревания газа в ядерных реакторах. Для увеличения проводимости плазмы в нее можно вводить небольшие присадки легко ионизируемых щелочных ме­таллов.

Электропроводность плазмы при температурах порядка 2000—4000 °С отно­сительно мала (удельное сопротивление около 1 Ом*см= 0,01 Ом*м=Ом-мм2/м, т. е. примерно в 500 000 раз больше, чем у меди). Тем не менее в мощных генера­торах (порядка 1 млн. кВт) возможно получение приемлемых технико-экономических показателœей. Разрабатываются также МГД генераторы с жидкометаллическим рабочим телом.

При создании плазменных МГД генераторов постоянного тока возникают трудности с выбором материалов для электродов и с изготовлением надежных в работе стенок каналов. В промышленных установках также сложную задачу представляет собой преобразование постоянного тока относительно низкого на­пряжения (несколько тысяч вольт) и большой силы (сотни тысяч ампер) в пере­менный ток.

При работе МГД-машин в генераторном режиме (МГД-генератор) через канал чаще всœего непрерывно пропускают электропроводящий газ — плазму. Плазма состоит из продуктов сгорания природного топ­лива (угля, нефти, газа) и небольшой добавки (0,1 — 1 % по массе) щелочных металлов или их солей, обладающих низким потенциалом ионизации. Благодаря этой добавке продукты сгорания приобретают электропроводность, т. е. становятся низкотемпературной плазмой.

Прежде чем попасть в канал МГД-генератора, плазма проходит че­рез сопло и ускоряется до больших скоростей На входе в канал она имеет температуру 2500—3000 К, а на выходе — не менее 2000 К, по­скольку при меньших температурах плазма теряет проводимость. При движении плазмы в магнитном поле на электродах появляется постоян­ная ЭДС, подобная той, которая возникает в проводниках электромеха­нического генератора. Эта ЭДС вызывает ток в подключенной к элек­тродам нагрузки. Для увеличения индуцируемой ЭДС и повышения мощности в МГД-генераторе применяют высокие скорости движения плазмы (1000—2000 м/с) и большие индукции магнитного поля. Важно заметить, что для создания сильных магнитных полей в МГД-генераторе целœесообразно использовать сверхпроводниковые магнитные системы.

Читайте также

  • - Плазменные ракетные двигатели.

    Рассмотренные электромагнитные насосы являются своеобразными двигателями постоянного тока. Подобные устройства в принципе пригодны также для разгона, ускорения или перемещения плазмы, т. е. высокотемпературного (2000—4000 °С и больше) ионизированного и поэтому... [читать подробенее]

  • oplib.ru

    Плазменный ракетный двигатель Википедия

    Схематическое устройство плазменного ускорителя

    Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

    Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

    Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 498 дней)].

    ruwikiorg.ru

    Перспективы создания нового мощного плазменного ракетного двигателя

    Научно-технический совет интегрированной структуры АО «НПО Энергомаш» рассмотрел перспективы создания электрических ракетных двигателей повышенной мощности для решения транспортных задач в ближнем и дальнем космосе.

     Научно-технический совет интегрированной структуры (НТС ИС) АО «НПО Энергомаш» рассмотрел перспективы создания электрических ракетных двигателей (ЭРД) повышенной мощности для решения транспортных задач в ближнем и дальнем космосе. Принято решение о подготовке совместной заявки АО «КБХА» (входит в ИС АО «НПО Энергомаш») и НИЦ «Курчатовский институт» в Фонд перспективных исследований на реализацию проекта безэлектродного плазменного ракетного двигателя (БПРД). Предварительно определены состав работ по созданию лабораторного образца БПРД и кооперация предприятий, необходимая для реализации проекта.Проведенные предприятиями-участниками НТС ИС исследования различных типов ЭРД показали, что наиболее рациональным решением задачи создания электроракетного двигателя мощностью 100 кВт и более является разработка безэлектродного плазменного ракетного двигателя. БПРД обладает высокими характеристиками и позволяет обеспечить требуемый ресурс для освоения дальнего космоса.Многочисленные варианты уже существующих ЭРД доказали свои положительные качества: высокий импульс (скорость истечения рабочего вещества) и малый массовый расход рабочего тела, что позволяет космическим аппаратам совершать полеты на большие расстояния. Однако имеющиеся недостатки ЭРД – малая тяга – накладывают определенные ограничения использования подобных двигательных установок – полеты на большие расстояния длятся очень долго. Сегодня ЭРД используются в качестве двигателей для корректировки орбит и ориентации небольших космических аппаратов. Обычно мощность таких двигателей не превышает нескольких десятков киловатт, обеспечиваемых на околоземных орбитах солнечными батареями.

    Рассматриваемый в настоящее время вариант безэлектродного плазменного ракетного двигателя является новым поколением ЭРД. Это двигатель высокой мощности, рабочее вещество в котором находится в состоянии плазмы. Он обладает высокой энергетической эффективностью, возможностью использовать в качестве рабочего тела практически любое вещество, способен изменять величину удельного импульса, а максимальная мощность двигателя ограничивается практически только мощностью питания высокочастотного генератора. Также двигатель такого типа потенциально может иметь большой ресурс работы, поскольку снимаются все ограничения, связанные с воздействием энергонасыщенного рабочего вещества с элементами конструкции.Реализация идей, заложенных в предлагаемую разработку, стала возможной благодаря прогрессу в исследовании плазменных процессов термоядерного синтеза, в развитии технологии высокотемпературных сверхпроводников и современной элементной базы высокочастотных генераторов. При создании такого двигателя разработчикам придется решить вопросы оптимизации плазменных процессов, разработки высокочастотного генератора, криогенных магнитных систем, а также систем питания и управления БПРД. Обеспечение решения этих задач потребует создания экспериментальной и испытательной стендовой базы.НИЦ «Курчатовский институт» является основоположником работ по ЭРД в нашей стране. В институте имеется более чем полувековой опыт работ с различными типами плазменных ускорителей, включая безэлектродные, и значительный задел по сверхпроводящим магнитным системам. Работы по безэлектродным ускорителям различной мощности и сверхпроводящим магнитным системам активно ведутся в НИЦ «Курчатовский институт» в настоящее время.

    Инициатором начала работ по БПРД в Интегрированной структуре АО «НПО Энергомаш» является АО «КБХА», которое начало заниматься ЭРД с 2010 года. Целью работ являлось создание магнитоплазмодинамического двигателя (МПДД) большой мощности. В качестве первого этапа был изготовлен демонстрационный образец МПДД мощностью до 10 кВт. Также совместно с Научно-исследовательским институтом прикладной механики и электродинамики Московского авиационного института выполнена еще одна работа по ЭРД - создан высокочастотный ионный двигатель мощностью 300 Вт.

    Оригинал: https://defence.ru/article/111...

     Источник: cont.ws.

    cosmos.mirtesen.ru

    Плазменный ракетный двигатель - Вики

    Схематическое устройство плазменного ускорителя

    Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

    Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

    Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 498 дней)].

    ru.wikiredia.com