Расходомер двигателя


Расходомер воздуха. Датчик расходомера воздуха

Для того чтобы двигатель мог уверенно работать в любых режимах, необходимо, чтобы он получал оптимальный состав горючей смеси. Как известно, одного лишь топлива двигателю маловато, ему нужен еще и воздух. В различных режимах работы мотора требуется разного соотношения кислорода и бензина. За это отвечает расходомер воздуха.

Что это такое?

Это датчик массового расхода воздуха. Он определяет количество кислорода, которое необходимо для заполнения цилиндров двигателя автомобиля при различных режимах работы. Установлено это устройство во впускном тракте. Найти его можно после воздушного фильтра, во впускном патрубке, или же на корпусе самого фильтрующего элемента. В работе системы впрыска – это главная система.

Как работает прибор

Этот датчик необходим, как уже было сказано, для измерения идеального количества кислорода, который поступает в двигатель. Так, ДМРВ рассчитывает нужное количество и тут же отсылает эти данные на ЭБУ. Тот проводит расчеты необходимого количества топлива.

Чем сильнее водитель нажимает на педаль акселератора, тем большее количество воздуха поступит в камеры сгорания силового агрегата. Датчик расхода сразу же фиксирует это, а затем посылает команду основному компьютеру, чтобы тот отправил в цилиндры больше горючего.

Если автомобиль движется равномерно, то в этом режиме кислород тратится в небольших объемах, а значит, и расход топлива не будет большим. За этим следит этот самый расходомер воздуха.

Устройство, типы датчиков, принципы работы

Вместе с техническим прогрессом совершенствуется и конструкция этих приборов. В начале развития автомобильной отрасли для этих целей применяли трубку Пито. Также подобное устройство называли лопаточный расходомер воздуха. В качестве основного элемента использовали тонкую пластинку. Она была мягко закреплена. Поток воздуха изгибал пластинку. Потенциометр, который также был встроен в схему, мог измерять, насколько сильно изогнута пластинка (измерялось сопротивление). Это было сигналом для основного блока управления.

По этому же принципу работали эти приборы на многих немецких автомобилях. Так, если вскрыть расходомер воздуха "БМВ" 80-х годов выпуска, то там можно найти датчик с именно таким устройством. Естественно, на современных авто стоят системы с другим устройством.

Среди самых современных и распространенных на многих автомобилях устройств выделяют пластинчатые измерители. В этом приборе в качестве базового элемента применяется теплообменник с двумя платиновыми пластинами. При помощи электричества пластина нагревается. Одна пластина рабочая, а другая – контрольная. Принцип работы этой конструкции основан на сохранении температур на каждой из пластин, при этом температура должна быть максимально одинаковой. Эти устройства можно встретить на большинстве автомобилей, данная технология очень популярна. Только теперь вместо мембран применяется проволочка из платины. Расходомер воздуха "Мерседеса" действует по такому же принципу.

Работает это следующим образом. Когда поток воздуха проходит через теплообменник, то он охлаждает рабочую пластину из платины. Для поддержания на этой пластине такой же температуры, что и на контрольной, на нее подается больший ток. Изменение тока и является теми данными, что нужны ЭБУ.

Еще один расходомер воздуха – это устройство с пленочными измерителями. Рабочими элементами здесь выступают пластины из кремния с платиновым напылением. Такая технология используется недавно, поэтому эти конструкции еще не слишком распространены.

Еще существуют устройства с вихревыми измерителями. Работа их построена на измерении частот завихрений, которые создаются на некотором расстоянии сзади выступа во впускном клапане.

Самая современная конструкция – расходомер мембранного типа. Здесь применяется очень тонкая мембрана, которая помещена в воздушный поток. С одной и с другой стороны устанавливаются датчики температуры. Когда автомобиль движется, стороны не могут охлаждаться равномерно. Разница температур затем отправляется на ЭБУ для дальнейших расчетов.

В современных иномарках такой датчик и вовсе может отсутствовать, вместо него применяют систему абсолютного давления.

Признаки неисправностей

В автомобиле нет ничего вечного, датчик расходомера воздуха тоже выходит из строя, причем регулярно. Многие автолюбители обсуждают на форумах эту проблему.

Как можно узнать, что это важное устройство начало выходит из строя? Очень просто. Те показатели, что измеряет этот элемент, очень важны в процессе правильного приготовления рабочей смеси топлива и воздуха. Неисправности ДМРВ приводят к серьезным нарушениям работы мотора, а то и вовсе двигатель запустить невозможно.

Если расходомер вышел из строя, то может загореться лампа на приборной панели, предлагающая проверить двигатель. Также неполадки влекут за собой повышенный расход топлива, резкий спад мощности силового агрегата. Например, когда выходит из строя расходомер воздуха "Ауди", это ко всему прочему сопровождается снижением динамических характеристик немецкого авто, становится очень трудно завести двигатель, в режиме холостого хода нет стабильности оборотов.

Опытный автолюбитель скажет, что это стандартные признаки, которые могут быть никак не связаны с ДМРВ. Да, это так. Но первое, что стоит проверить при таких симптомах – это ДМРВ.

Как проверить расходомер воздуха

Современная практика диагностики предполагает применение нескольких способов проверки. Первый метод – необходимо просто отключить питание датчика. Для этого просто отсоединяют разъем и заводят двигатель. После этого ЭБУ уведомит о серьезных проблемах. Топливо будет продолжать подаваться, но при помощи дроссельной заслонки.

Далее необходимо набрать обороты до 1500, а затем рекомендуется поехать на машине. Если агрегат стал работать гораздо резвей и динамичней, значит, во всем виноват именно ДМРВ.

Диагностика с тестером

Второй способ предусматривает использование мультиметра. Прежде чем начать тестирование, необходимо помнить, что способ актуален не для всех датчиков. Таким методом можно проверить только расходомер воздуха Bosch.

Первым делом необходимо настроить тестер на 2 В и перевести его в режим постоянных напряжений. В схеме от "Бош" четко сказано, что ДМРВ должен иметь четыре провода. Так, по желтому проводу подается сигнал, серо-белый – напряжение, зеленый – это земля, розово-черный запитывается вместе с главным реле.

Теперь красный щуп тестера необходимо присоединить к желтому проводу. Черный щуп подключается к зеленому проводу. Двигатель перед этими измерениями необходимо заглушить, а вот зажигание выключать не нужно. Далее замеряется напряжение.

Если элемент в рабочем состоянии, то тестер покажет 101-102. Допустимые показания – 102-103. Это верхний предел, при котором требуется ремонт расходомера воздуха. Если на экране тестера 105 и более, тогда датчик сломан, требуется замена.

Визуальный осмотр

Третий метод подразумевает диагностику только по внешним признакам. Для того чтобы визуально диагностировать поломку, следует очень внимательно исследовать внутреннюю полость патрубка, на котором закреплен датчик. Эта поверхность должна быть максимально чистой и сухой.

Нужно заметить, что самая частая причина, по которой ДМРВ выходит из строя, это банальная грязь, что попадает на рабочий участок. Этим часто страдает расходомер воздуха "Ауди".

Чтобы исключить попадание грязи, следует проводить регулярную замену фильтров. Кроме этого, на поверхности датчика можно увидеть следы масла. Это говорит о том, что в двигателе превышена норма масла или же есть неполадки в вентиляционной системе картера.

На следующем шаге необходимо снять датчик. Чтобы выполнить демонтаж, понадобится рожковый ключ. Откручивается два болта и элемент снимается из корпуса фильтра для очистки кислорода.

В момент демонтажа необходимо убедиться в наличии полиуретанового уплотнителя. Он зачастую вынимается вместе с датчиком. Кольцо необходимо, чтобы защитить систему от завоздушивания. Если его нет ни в патрубке, ни в датчике, значит причина в отсутствии этого кольца.

Если кольца нет, то грязь будет попадать в полость детали, что не считается допустимым.

Ремонт расходомера воздуха

В большинстве случае ремонту эти приборы не подлежат. Их просто заменяют на аналогичный или же универсальный. Ремонту поддаются лишь те, которые применяют принцип трубки Пито. Часто случаются загрязнения, которые могут затруднять ход пластинки.

Справиться с грязью можно при помощи специальных спреев, которые используются для промывки карбюраторов. В редких случаях можно восстановить работу этого переменного резистора, установив его на плату с контактами. Иногда удается справиться с этой проблемой просто подогнув пластины так, чтобы наконечник работал по еще не изношенной части площадки.

Многие специалисты на СТО предлагают отключения устройства от блока ЭБУ. Однако при этом ничего хорошего не получится.

Не поддаются ремонту и термоанемометрические расходомеры. А вот расходомер воздуха Bosch можно попробовать вылечить.

Как заменить ДМРВ

Если датчик ремонту не подлежит, выход один – замена. Заменить датчик очень просто. Для этого необходимо отключить зажигание, снять разъем. Затем откручиваются винты крепления и отсоединяется шланг впускного тракта, который подсоединен к корпусу фильтра. Далее датчик можно смело снимать, а вместо него устанавливать новый. По этой инструкции можно заменить любой расходомер воздуха. "Опель" - не исключение.

Как продлить ресурс?

Для того чтобы этот прибор служил верой и правдой подольше, необходимо вовремя менять воздушные фильтры и постоянно следить за техническим состоянием двигателя. Чтобы продлить датчику жизнь, также можно отремонтировать двигатель. Зачастую слишком изношенные поршневые кольца и сальники клапанов могут приводить к преждевременной смерти ДМРВ.

Как очистить ДМРВ

Чистить датчик рекомендуется лишь тогда, когда грязью покрылись платиновые спирали. Очень важно, что при очистке запрещено касаться этих проволочек или спиралек руками. Также не подойдет для процедуры зубная щетка.

Перед тем как проверить расходомер воздуха, желательно снять и тщательно вымыть его. Возможно, это будет простым решением проблемы, так как контакты часто загрязняются.

Первым делом необходимо демонтировать датчик. Затем его разбирают. Когда все сделано, т. е. видны спирали, можно при помощи карбюраторного очистителя в виде спрея немного прыснуть на спиральки. Если он новый, и в нем еще высокое давление, то лучше брызгать с небольшого расстояния, так спиральки не повредятся.

Как оказалось, расходомер – это очень важный датчик, а при должном обслуживании он не будет часто выходить из строя.

Итак, мы выяснили, для чего предназначен датчик массового расхода воздуха.

fb.ru

Влияние расходомеров топлива на работу двигателя

У владельцев автотракторной техники нередко происходит внутренняя борьба между желанием поставить на технику расходомеры топлива проточного типа(которые намного точнее датчиков уровня топлива, их не обманешь медленным сливом топлива из “обратки”, не зависят от компонентов топлива) и боязнью появления технических проблем – как с двигателями так и расходомерами.Хотелось бы внести этой статьей больше ясности и облегчить выбор.

Давайте разделим потенциальные проблемы на 3 группы.

  1. Проблемы с расходомером
  2. Проблемы с двигателем
  3. Проблемы саботажа. Связаны с имитацией пунктов 1 и 2 (обычно 2).

Теперь краткая информация о расходомерах и схемах установки.Расходомеры бывают двух типов. Дифференциальные (двухкамерные) и однокамерные.

Дифференциальные расходомеры топлива:

Однокамерные расходомеры

Дифференциальные измеряют и обратку и подачу. Однокамерные требуют переделки схемы топливоподачи так, чтобы измерять только потребление мотора.

Рассмотрим схемы установки подробнее: вот обычно применяемая схема установки дифференциального расходомера? например, отсюда: 

Каких-либо серьезных переделок топливной системы нет. Гидравлическое сопротивление потоку камер расходомера невелико.  Вроде все правильно. Но согласно схеме требуется установка 2-х обратных клапанов – в каждую из камер расходомера.

Это клапан аналогичный перепускному клапану ТНВД, только на небольшое давление (около 0,25 атм каждый).

Проблема в том, что на большом потоке сам клапан добавляет сопротивления, в итоге помпа постоянно работает с повышенным давлением. Если штатное давление открытия перепускного клапана – 1 атм (а на практике бывает и 0.5 атм), то в нашем случае добавляются гидравлические сопротивления клапанов, и давление растет в 1.5 раза. Обратные клапаны так же имеют привычку заклинивать и засоряться.

Обратные клапаны нужны для расходомеров, в  конструкции которых применяются герконы. Датчик видит одно замыкание геркона за оборот, в связи с чем не видит направление потока. В связи с возможными пульсациями топлива в топливопроводах, это вызывает необходимость установки обратного клапана.

В расходомерах Eurosens Delta используются датчики Холла, за один оборот измерительной камеры Eurosens получаются 3 импульса, благодаря чему Eurosens Delta наиболее точно определяет моментальное направление потока. Поэтому, данная система с применением Eurosens Delta не содержит обратных клапанов и лишена связанных с ними недостатков.

Расходомеры нередко применяют с опаской, ввиду возможной парафинизации топлива зимой. Но  если мы вглянем на схему, то увидим, что измерительные камеры установлены после фильтра тонкой очистки топлива, и через них проходит большой поток топлива. Если топливо достаточно жидкое, чтобы пройти через фильтр тонкой очистки топлива – оно пройдет и через расходомер. Возможно кратковременное отсутствие показаний при холодном запуске двигателя зимой, но большой поток подогретого топлива быстро прогревает камеры, и показания расходомера появляются.

Другим слабым местом при зимней  эксплуатации  являются  встроенные бензиновые фильтры, применяемые на некоторых расходомерах. Они не годятся для работы на дизельном  топливе. Их главная функция - защитить камеры расходомера от попадания грязи при неграмотной установке. В дальнейшем они  превращаются в  потенциальную точку парафинизации топлива при минусовых температурах. В расходомерах Eurosens такие фильтры не стоят, мы рекомендуем при необходимости использовать дополнительные штатные фильтры.

Резюме: нет никаких причин бояться установки дифференциальных расходомеров топлива Eurosens Delta. Проблемы с двигателем – не создаются, гидравлическое сопротивление камер незначительно.Проблемы с засорением дифференциального расходомера парафином в основном, надуманы. Большой напор смывает все и уносит обратно в бак.

Сложнее ситуация с однокамерными расходомерами. Проанализируем снова самую распространенную схему установки . Однокамерные расходомеры устанавливаются вот так:

Тут уже не избежать изменения режима работы ТНВД, который не охлаждается проточной соляркой. 

Топливо в баке при этом подогревается, но немного слабее.

В целом, данную схему можно назвать рабочей, и как правило она не вызывает проблем.

Но иногда они есть.

На схеме установки от  мы снова видим обратный клапан, установленный на выходе расходомера. С ним снова могут быть связаны проблемы:

  1. Его заклинивание 
  2. Если штатный перепускной клапан (который в этой схеме переносится перед расходомером) ослаб, что часто происходит в условиях эксплуатации и его давление открытия меньше чем для обратного клапана – топливо сливается обратно в бак, не доходя до полости ТНВД. В этом случае водители жалуются на недостаток мощности.
  3. Можно заметить на схеме, что обратный клапан полностью изолирует полость ТНВД от разгрузки давления. Это вызывает гидроудары в системе, которые могут приводить к попаданию дизельного топлива в систему смазки.

Поэтому рекомендуется однокамерный расходомер Eurosens Direct PN с датчиками Холла, так же не требующий установки обратного клапана. Это упрощает систему контроля расхода топлива и позволяет избежать гидроударов, т.к. все участки системы топливоподачи связаны с перепускным клапаном сброса топлива в бак.

Однокамерные расходомеры более чем дифференциальные подвержены “залипанию” после попадания внутрь парафинов. Через них проходит только малый поток, непосредственно потребляемый двигателем. Потому встроенные фильтры (бензиновые) мы советуем удалять.

Дополнительное преимущество в данной ситуации  у того расходомера, который имеет больший объём рабочей камеры. На ней меньше сказываются отложения парафинов. Изделия широко использующиеся для того вида установок  имеют следующие объёмные характеристики:                                        DFM100(90, 50), VZP4                                             - 5 куб. см.                                        Eurosens Direct PN(Р) 100                                        -10 куб. СмПоэтому предпочтильнее использовать последний, к тому же его ресурс  работы ввиду большого объёма камеры и вследствие этого меньшего количества оборотов на литр топлива, гораздо выше аналогов. 

Резюме:

Однокамерные расходомеры целесообразно применять в случаях когда

  1. Дизельный двигатель низко форсирован, не обладает электронными системами контроля. Температура ТНВД немного повышается.
  2. В наличии качественное зимнее топливо, не образующее парафинов.
  3. Выброшены дополнительные мелкие фильтры, создающие к тому же дополнительное гидравлическое сопротивление 
  4. Есть желание сэкономить и не приобретать более дорогой дифференциальный расходомер.
  5. Из ряда предложений по датчикам выбирать наиболее оптимальное по цене и надежности

Мы уверены, что при соблюдении этих советов вы не будете разочарованы в точном и надежном средстве контроля расхода топлива - расходомерах.

teletracking.ru

Расходомер воздуха - что это такое? Принцип действия

Жесткие требования стандартов токсичности заставляют производителей оборудовать свои двигатели все новыми системами призванными снизить выброс вредных веществ в атмосферу. Для эффективной работы этих систем им необходимо знать точный состав сгорающей в камере цилиндра смеси, т.е. эта система должна знать, сколько в состав смеси входило топлива и сколько воздуха, только в этом случае вредные вещества будут удалены из выхлопных газов в максимально полном объеме.

Информацию о количестве потребляемого воздуха системе управления двигателем сообщает такое устройство как расходомер. Расходомер может измерять как объем, так и массу попавшего в камеру сгорания воздуха и поэтому различают два способа измерения расхода воздуха:

• Первый способ – механический;• Второй – тепловой.

В первом случае объем воздуха измеряется в зависимости от перемещения заслонки, а во втором в зависимости от изменения температуры особого элемента. В настоящее время механические расходомеры уже не устанавливаются и потому, перейдем сразу ко второму способу измерений.

Тепловой способ измерения расхода воздуха

Этот способ вытеснил механический благодаря своей совершенности и более точным измерениям массы поступающего воздуха, которую измеряет термоанемометрический расходомер. Эти устройства можно охарактеризовать как быстродействующие, точные и не зависящие от температуры воздух, они в отличие от первого варианта не имеют никаких подвижных частей.

Термоанемометрический расходомер также известен под названием датчик массового расхода и это устройство в настоящий момент используют в системах впрыска как бензиновых, так и дизельных двигателей, включая системы непосредственного впрыска, и работает этот прибор как часть системы управления двигателем. При этом в некоторых системах такой прибор не используется и его функции выполняет датчик, контролирующий давление воздуха во впускном трубопроводе.

Стоит отметить, что расходомер может быть выполнен в двух вариантах и главным их различием является конструкция чувствительного элемента устройства, а это может быть либо проволока, либо пленка.

Проволочный расходомер

Чувствительным элементом проволочного расходомера является платиновая нить, температура которой всегда постоянная, что достигается ее нагревом при помощи электрического тока.

Когда воздух проходит через нить ее температура падает и для повышения этого показателя необходимо увеличить ток, идущий на нагрев нити. При этом специальный преобразователь преобразует ток в выходное напряжение, между величиной которого и массой проходимого воздуха существует определенная зависимость. Именно на основе этих данных блок управления принимает конкретные решения.

Однако со временем нить загрязняется и потому здесь предусмотрен режим самоочистки. Проволока при неработающем двигателе нагревается до температуры в 1000 градусов, благодаря чему и очищается. Недостатком такого расходомера является снижение точности измерений с течением времени. Происходит это из-за того, что нить становится тоньше и уже не обладает начальной точностью показаний.

Этот недостаток был учтен при разработке пленочного расходомера, который и заменил своего предшественника. Работает этот прибор по тому же принципу что и проволочный расходомер и основным его отличием является использование пленки вместо платиновой нити.

Пленочный расходомер и принцип его работы

Чувствительный элемент этого устройства представлен кристаллом кремния, который имеет несколько достаточно тонких слоев платины. Эти слои выступают в качестве резисторов:

• Нагревательного;• Резистора датчика температуры;• Двух терморезисторов.

Сам чувствительный элемент находится в особом воздушном канале, который насыщается воздухом за счет разряжения. При этом достаточно высокая скорость воздушного потока препятствует загрязнению элемента. К тому же канал сконструирован особым образом, что позволяет более точно определить массу сгоревшего воздуха, благодаря возможности точного измерения массы как прямого, так и отраженного от клапанов воздуха.

Резистор, отвечающий за нагрев, всегда поддерживает постоянную температуру элемента, а разница температур на терморезисторах позволяет определить массу воздуха и направление его движения.

Как правило, такой расходомер выдает аналоговый сигнал в виде напряжения постоянного тока. Хотя некоторые конструкции расходомеров способны выдавать и более точный цифровой сигнал, который является предпочтительным с точки зрения блока управления.

 

Сигнал, выдаваемый пленочным расходомером, помогает определить:

• Для карбюраторных моделей ДВС – момент впрыска, количество топлива, момент поджигания топливной смеси и алгоритм работы системы улавливания паров.• Для дизельных моделей – момент впрыска и алгоритм работы системы рециркуляции газов.

Точное знание массы воздуха поступающего в камеру сгорания помогает системе управления рассчитать необходимо количество топлива, что обеспечивает полное сгорание топливной смеси и как следствие минимальное количество вредных веществ в выхлопе.

Другие полезную информацию читайте на страницах нашего сайта www.reno.by

reno.by

Расходомер топлива для авто своими руками — Поделки для авто

В одной из статей первого номера журнала «Радио» за 1986 год был описан вариант устройства, позволяющего осуществлять контроль над количеством жидкости и ее скоростью (в данном случае нас интересует топливо для авто), которая протекает в магистральных трубах.

В связи с высокими требованиями к точности обработки, могут возникнуть определенные сложности при повторении описанного расходомера, а так же в процессе его налаживания. Электронный блок этого прибора должен быть хорошо защищен от помех, в связи с тем, что в автомобильной бортовой сети уровень помех достаточно высокий. У этого устройства имеется и другой недостаток. Речь идет об том, что при сокращении скорости топливного потока, погрешность измерения неизбежно увеличивается.

Устройство, описанное ниже, не имеет указанных недостатков, конструкция датчика у него более простая, так же, как и схема электронного блока. Это устройство не имеет прибора, контролирующего скорость топливного расхода – для данной функции предназначен счетчик суммарного расхода. Водитель на слух воспринимается скорость топливного расходования, которое пропорционально частоте срабатывания. В городских условиях интенсивного движения это особенно важно, поскольку не отвлекает водителя от управления автомобилем.

 

Из чего состоит расходомер?

В приборе два узла:

1. Датчик с электрическим клапаном.

2. Электронный блок.

 

Датчик встроен в топливную магистраль, и располагается между карбюратором и бензонасосом. Электронный блок находится в салоне. На рисунке изображена конструкция датчика. 1 Эластичная диафрагма 4 зажата между поддоном 2 и корпусом 8. Она разделяет внутренний объем на две полости – нижнюю и верхнюю.

Направляющая втулка 7 выполнена из фторопласта. В ней свободно перемещается шток 5. В его нижней части зажата диафрагма с помощью гайки и двух шайб 3. Постоянный магнит 9 установлен на верхнем конце штока. Параллельно каналу, где расположен шток, вверху корпуса, имеется 2 дополнительных канала. В эти каналы входят два геркона 10. Один геркон срабатывает при нижнем положении магнита и диафрагмы, другой – при верхнем положении.

Puc.1. 1-Штуцер, 2 — Поддон, 3- Шайбы, 4 — Диафрагма, 5- Шток, 6 — Пружина, 7 — Втулка, 8 — Корпус, 9 — Магнит, 10 — Герконы

Диафрагма переходит в верхнее положение, благодаря действию давления топлива, которое поступает от бензонасоса. В нижнее положение она возвращается с помощью пружины 6. Чтобы датчик включился в топливную магистраль, на корпусе предусмотрено два штуцера, на поддоне – один. Штуцеры 3. На рисунке показана 2 гидравлическая схема расходомера. Топливо от бензонасоса, через электроклапан и канал 3, начинает поступать в каналы 1, 2, заполняя в датчике нижнюю и верхнюю полости. А в карбюратор оно поступает через канал 4. Клапан переключается под воздействием электронного блока и поступающих от него сигналов (на данной схеме не указан). Эл.блок управляется герконовым коммутатором, установленным в датчике.

Puc.2 Гидравлическая схема расходомера топлива.

Обмотка электроклапана в исходном состоянии обесточена, каналы 3 и 1 сообщаются между собой, в то время, как канал 2 перекрыт. На схеме показано, что диафрагма располагается в нижнем положении. В нижней полости 6 возникает избыток давления жидкости с помощью бензонасоса. Диафрагма начнет постепенно подниматься, по мере выработки топлива двигателем, из верхней полости а датчика, сжимая пружину.

Геркон 1 сработает по достижении верхнего положения, тогда электроклапан откроет канал 2 и закроет канал 3. При этом канал 1 постоянно открыт. Диафрагма немедленно переместится вниз под действием сжатой пружины. Она вернется в свое исходное положение, пропустив топливо из полости б в а, через каналы 1 и 2. Затем наблюдается повтор цикла в работе расходомера.

К электроклапану и датчику подключают электронный блок, с помощью гибкого кабеля, через разъем ХТ1. В датчике установлены горкомы SF1 и SF2. По схеме – ни на один из них не воздействует магнит. Транзистор VT1 закрыт в исходном положении, обмотка электромагнита клапана Y1 обесточена, 2 реле К1 разомкнуты. рРядом с герконом SF2 находится магнит датчика, поэтому геркон не проводит ток.

Puc.3 Электронный блок расходомера топлива.

Магнит постепенно перемещается, по мере расхода топлива, между герконами SF2 и SF1, из полости а датчика. В определенный момент переключается геркон SF2, но изменений в блоке это не вызовет никаких. Магнит, в конце хода переключает геркон SF1, и базовый ток транзистора VT1 потечет резистор R2 и через геркон SF1. Открывается транзистор, срабатывает реле К1, и включает электромагнит клапана контактами К1.2. При этом цепь питания счетчика импульсов Е1 замкнет контактами К1.1.В итоге магнит и диафрагма быстро будут перемещаться вниз. В определенный момент, после обратного переключения, геркон SF1 размыкает цепь базового тока транзистора. При этом он остается открытым, поскольку теперь базовый ток протекает через диод VD2, замкнутые контакты К1.1 и геркон SF2. Это является причиной того, что шток с магнитом и диафрагмой продолжают перемещаться.Магнит переключает геркон SF2 в конце обратного хода. После этого выключатся счетчик Е1 и электромагнит Y1 клапана, транзистор закроется и система возвращается в свое исходное состояние, после чего она готова новому циклу работы. Как видим, число циклов фиксирует счетчик Е1. При этом один цикл соответствует тому или иному объему топлива, равного объему ограниченного диафрагмой пространства, расположенной в нижнем и верхнем положениях.Умножением объема топлива, использованного в ходе одного цикла, на показания счетчика, и определяют расход топлива, который устанавливают во время тарировки датчика. Чтобы было удобнее рассчитывать расходуемое топливо за один цикл, его объем приравнен к 0,01 литра. Этот объем можно изменить, увеличив или уменьшив, меняя при этом между герконами расстояние по высоте.Оптимальный ход диафрагмы, при имеющихся размерах датчика, составляет около 10 мм. Продолжительность цикла датчика – в пределах от 6 до 30 с., и находится в зависимости от режима работы двигателя. При его тарировке следует отключить от бензобака трубопровод, вставив его в мерный сосуд, наполненный топливом, далее надо запустить двигатель, чтобы выработать то или иное количество топлива – делим его на число циклов (определяем по счетчику), и в итоге получаем число единичного объема топлива, израсходованного за один цикл.

Возможность его отключения предусмотрена в расходомере, тумблером SA1. При этом топливо будет поступать в карбюратор напрямую, через полость а, по каналам 2 и 3, поскольку диафрагма датчика в это время постоянно будет находиться в нижнем положении. Чтобы отключить в электроклапане устройства, придется снять перекрывающую канал 3 резиновую манжету, однако погрешность расходомера при этом ухудшится. Монтаж электронного блока выполнен на печатной плате, изготовленной из стеклотекстолита – пластина толщиной 1,5 мм. Ее чертеж приведен на рисунке 4. устанавливаемые на плату детали обведены штрихпунктиром на схеме. Смонтирована плата в металлической коробке. Ее крепление выполнено под щитком приборов в салоне авто.

Puc.4 Чертеж платы электронного блока расходомера топлива

Что использовалось в устройстве:

— Реле РЭС9

— Электроклапан – П-РЭ 3/2,5-1112

— Паспорт PC4.529.029.11

— Счетчик СИ-206 или СБ-1М.

— Постоянный магнит.

При этом магнит можно брать любой, где длина 18…20 мм, а полюса имеют торцевое расположение. Важно, чтобы магнит мог свободно перемещаться в пределах своего канала, не затрагивая стенок. Для этого вполне подойдет магнит от РПС32 дистанционного переключателя, но придется его сточить до нужных размеров. Вытачивают поддон и корпус датчика из любого материала с немагнитными и бензостойкими качествами.

Между каналами магнита и герконов толщина стенки должна составлять до 1 мм, под магнит глубина отверстия – 45 мм, диаметр – 5,1+0,1 мм. Шток выполнен из стали 45 или латуни, длина резьбовой части – 8 мм, диаметр – 5 мм, общ.длина – 48 мм. На штуцерах датчика резьба – М8; отверстие с диаметром – 5 мм. На штуцерах электроклапана резьба коническая К 1/8″ ГОСТ 6111-52.

Используется пружина диаметром 0,8 мм, из стальной проволоки, ГОСТ 9389-75. Усилие полного сжатия – 300…500 г, диаметр пружины – 15 мм, длина – 70 мм, шаг – 5 мм. В случае, когда шток изготовлен из стали, магнит сам удерживается на нем.

Когда шток сделан из немагнитного металла, необходимо укрепить магнит другим способом. Чтобы давление сжимаемого воздуха, не мешало работе датчика, следует предусмотреть во втулке перепускной канал, сечением порядка 2 кв.мм. Диафрагма выполнена из полиэтилена 0,2 мм. Ее придется отформовать перед установкой в датчик. В этих целях можно использовать поддон датчика.

Из листового дюралюминия 5 мм. следует выполнить прижимное кольцо, которое по форме соответствует фланцу поддона. Шток, в сборе с ее заготовкой, для формовки диафрагмы вставляют в отверстие штуцера поддона с внутренней стороны, и зажимают технологическим кольцом всю заготовку.

Далее нагревают равномерно узел со стороны диафрагмы, удерживая его на расстоянии 60…70 см от пламени горелки. Формуют диафрагму слегка поднимая шток. Чтобы он, в дальнейшем, не теряла эластичности, надо чтобы она находилась в топливе постоянно. Поэтому придется пережимать шланг к карбюратору при длительной стоянке машины. Это исключит испарение бензина.

В моторном отсеке устанавливают электроклапан и датчик. Крепят их около топливного насоса и карбюратора на кронштейне, соединяя кабелем с электронным блоком. С помощью насоса с манометром можно проверить работоспособность расходомера, без его установки на автомобиль.

При этом манометр подключают вместо бензонасоса. Датчик срабатывает при давлении 0,1 …0,15 кг/см2. Расходомер был испытан на автомобилях Жигули и Москвич. В ходе проверки было установлено, что режим работы двигателя никак не влияет на точность показаний расхода топлива. Точный расход определяется расчетом погрешности установки разового объема при тарировке до 1,5…2 %.

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai


Смотрите также