Stepper motor. Распиновка шаговых двигателей


Схемы управления шаговыми двигателями

Современные шаговые двигатели, гибридые либо ШД на постоянных магнитах,  как правило, производятся с двумя обмотками (4 вывода), с двумя обмоткми и центральными отводами (6 либо 5 выводов) и с четырьмя обмотками (8-ми выводные ШД). Биполярные двигатели имеют две обмотки и, соответственно, четыре вывода. Униполярные двигатели также имеют две по обмотки, но у каждой из них есть центральный отвод, что позволяет использовать для управления двигателем простой униполярный драйвер (т. е. переключать направление магнитного поля, создаваемого обмотками двигателя переполюсовкой половин обмоток двигателя). Иногда средние отводы могут быть объединены внутри двигателя, такой двигатель может иметь 6 или 5 выводов. В силу простоты униполярной схемы управления эти двигатели находят широкое применение в самых различнх областях промышленности.

Однако большинство драйверов предназначено для управления биполярными двигателями. При тех же габаритах  биполярный шаговый двигатель обеспечивает больший момент по сравнению с униполярным. Поэтому наибольший практический интерес у новичков вызывает именно схема управления биполярным шаговым двигателем.

Постараемся разабраться, каким образом можно подключить 6-ти или 8-ми выводной мотор к биполярной схеме управления и как при этом изменяются электрические характеристики двигателя?

6-ти выводные шаговые двигатели

Для подключения 6-ти выводного шагового двигателя к классическому биполярному драйверу может быть выбран один из двух способов - униполярное либо биполярное подключение обмоток двигателя.

Униполярное подключение

Если требуется вращать двигатель на средних и высоких скоростях (из диапазона рабочих скоростей), лучший тип подключения - использовать центральный отвод.

Электрические характеристики двигателя - ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. - в этом случае равны данным, приведенным в каталоге.

Биполярное подключение

Если требуется вращать двигатель на низких скоростях (из диапазона рабочих скоростей), лучший тип подключения - биполярное.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в  √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток - 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R - именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении - Iуниполяр.2 * R

При последовательном включении обмоток потребляемая мощность становится Iбиполяр.2  * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = Iбиполяр.2 * 2* R, откуда

Iбиполяр.=  Iуниполяр. / √2, т.е.

Iбиполяр.= 0.707 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tбиполяр. = 1.4 * Tуниполяр.

Итак, характеристики ШД будут такими:

Параметр Значение
Ток обмотки, А Iбиполяр.= 0.707 * Iуниполяр.
Сопротивление обмотки, Ом Rбиполяр. = 2 * Rуниполяр.
Индуктивность обмотки, мГн Lбиполяр. = Lуниполяр.
Крутящий момент, кг×см Tбиполяр. = 1.4 * Tуниполяр.

8-ми выводные шаговые двигатели

Для подключения 8-ми выводного шагового двигателя (то есть двигателя с четырьмя обмотками) к классическому биполярному драйверу может быть выбран один из трех способов - униполярное, последовательное либо параллельное подключение обмоток двигателя.

Униполярное подключение шагового двигателя (схема электрическая)

 

 

Если требуется вращать двигатель на средних скоростях (из диапазона рабочих скоростей), лучший тип подключения - использовать лишь две из четырех обмоток.

Электрические характеристики двигателя - ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. - в этом случае равны данным, приведенным в каталоге.

Биполярное последовательное подключение  шагового двигателя (схема электрическая)

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в  √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток - 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R - именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении - Iуниполяр.2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед.2  * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = Iпослед.2 * 2* R, откуда

Iпослед.=  Iуниполяр. / √2, т.е.

Iпослед.= 0.707 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tпослед. = 1.4 * Tуниполяр.

Итак, характеристики ШД будут такими:

Параметр Значение
Ток обмотки, А Iбиполяр.= 0.707 * Iуниполяр.
Сопротивление обмотки, Ом Rбиполяр. = 2 * Rуниполяр.
Индуктивность обмотки, мГн Lбиполяр. = Lуниполяр.
Крутящий момент, кг×см Tбиполяр. = 1.4 * Tуниполяр.

Биполярное параллельное подключение шагового двигателя (схема электрическая)

Наиболее эффективно использование параллельного включения обмоток для высоких скоростей.

При таком типе подключения нужно увеличить ток, подаваемый на обмотки двигателя в  √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при параллельном включении обмоток требуемый ток - 2.8 А, то есть в 1.4 раза больше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R - именно оно приведено в каталоге). При параллельном включении обмоток сопротивление объединенной обмотки уменьшаетсяв два раза (0.5 R).

Потребляемая мощность при униполярном включении - Iуниполяр.2 * R

При параллельнном включении обмоток потребляемая мощность становится 0.5 * Iбиполяр.2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = 0.5 * Iбиполяр. 2 * R, откуда Iбиполяр..=  Iуниполяр. /√2, т.е.

Iбиполяр.= 1.4 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением величины тока, пропускаемого через обмотки. Но так как ток увеличился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tбиполяр. = 1.4 * Tуниполяр.

Итак, характеристики ШД будут такими:

Параметр Значение
Ток обмотки, А Iбиполяр.= 1.4 * Iуниполяр.
Сопротивление обмотки, Ом Rбиполяр.. = 0.5 * Rуниполяр.
Индуктивность обмотки, мГн Lбиполяр.. = 4 * Lуниполяр.
Крутящий момент, кг×см Tбиполяр. = 1.4 * Tуниполяр.

Пример: параметры ШД FL60STH86-2008AF для различных подключений

Параметр униполярное параллельное последовательное
Ток/ фаза, А 2 2.8 1.4
Сопротивление обмотки, Ом 1.5 0.75 3
Индуктивность обмотки, мГн 3 1.5 6
Крутящий момент, кг×см 22 кг х см 31 кг х см 31 кг х см
Преимущества / недостатки Средний момент при среднем энергопотреблении Высокий момент при высоком потреблении тока Высокий момент на низких скоростях при низком энергопотреблении
Максимальная эффективность средний скоростной диапазон высокоскоростной диапазон низкоскоростной диапазон

Общий характер изменения динамических характеристик ШД в зависимости от типа подклюяения

www.npoatom.ru

Управление шаговым двигателем - СХЕМЫ - Каталог статей

Это довольно простая схема контроллера шагового двигателя, которая позволит вам точно управлять однополярным шаговым двигателем через параллельный порт вашего компьютера. Шаговый двигатель можно применить в конструировании роботов, в изготовлении печатных плат, использовать в качестве микродрели, автоматической кормушки для аквариумных рыбок и т.д. Если вы никогда не работали с шаговыми двигателями, то эта статья для вас.

Как работает шаговый двигатель?

Шаговые двигатели отличаются от регулируемых двигателей постоянного тока. Вместо того чтобы вращаться как двигатели постоянного тока, шаговый  двигатель совершает дискретное вращение под воздействием серии импульсов. В нашем примере двигателю необходимо 48 импульсов  чтобы совершить полный оборот в 360 градусов.

Другое преимущество шаговых двигателей - то, что их скорость вращения может быть достигнута почти мгновенно при изменении направления вращения на противоположное.

Шаговый двигатель состоит из ротора - постоянного магнита, который вращается внутри, и статор - четыре катушки (север, восток, юг, запад), которые являются частью корпуса и не перемещаются. Ротор совершает вращение посредством последовательных импульсов  напряжение постоянного тока подаваемого к одной или двум катушкам одновременно.

Устройство Шагового двигателя.

Чтобы управлять шаговым двигателем необходим контроллер. Контроллер - схема, которая подает напряжение к любой из четырех катушек статора. Устройство может быть построено с использованием интегральной микросхемы  типа ULN2003 (отечественный аналог К1109КТ22) состоящая из набора  мощных составных ключей с защитными диодами на выходе. Наличие защитных диодов позволяет подключать индуктивные нагрузки без  дополнительной защиты от выбросов обратного напряжения.

Подключения шагового двигателя.

Однополярный двигатель должен иметь пять или шесть контактов в зависимости от модели. Если двигатель имеет шесть контактов то необходимо соединить выводы 1 и 2 (красный) вместе и подключить их к плюсу 12-24V напряжения питание. Оставшиеся выводы a1 (желтый), b1 (черный), a2 (оранжевый), b2 (коричневый) подключить к контроллеру согласно схеме.

Способы управления.

Есть несколько способов, которые вы можете использовать, чтобы управлять шаговым двигателем.

1. Одиночные импульсы - самый простой способ. Одновременно подключается только одна катушка.  Необходимо  48 пульсов чтобы ротор совершил один полный оборот. Каждый пульс перемещает ротор на 7,5 градусов.

2. Двойной импульс - одновременное подключение двух соседних катушек. В этом случае также необходимо 48 пульсов чтобы ротор совершил один полный оборот. Каждый пульс перемещает ротор на 7,5 градусов.

3. Комбинированные импульсы - чередование первого и второго способа. Двигатель нуждается в 96 пульсах, чтобы совершить один оборот. Каждый пульс перемещает ротор приблизительно на 3,75 градуса.

Программное обеспечение контроллера  шагового двигателя.

Для управления работой шагового двигателя  используем компьютер и программу. При использовании компьютера вы будете в состоянии сделать намного больше с вашим шаговым двигателем и наиболее важно - визуализировать, как ток течет через катушкиВ программе понятный графический интерфейс, который позволяет точно управлять скоростью двигателя и направлением вращения в реальном времени, а также позволяет выбирать способы управления.  Программа работает с версией Windows (98/ME/2000/XP). и скачать ее можно тут

tehnomir.ucoz.lv

Stepper motor

Шаговые двигатели

              

        Я не хочу долго и нудно излагать теорию ШД. Очень хорошо о двигателях написано Здесь. Я лишь добавлю свои мысли.

        Для СNC проекта нужны шаговые двигатели размеров Nema 23 и 34 в мм это будет 56 и 88.         Основные характеристики двигателей - количество обмоток и соответственно количество выводов, ток,         сопротивление обмоток, тяга.

Подключение шаговых двигателей.

Стандартная схема подключения биполярного с 4 проводами

Схема подключения 8 проводного биполярного двигателя Дает большее сопротивление обмоток, больший ток и соответственно больше тяги.
 

Схема подключения униполярного 6 проводного  двигателя Дает большее сопротивление обмоток, больший ток и соответственно больше тяги.

Вариант подключения униполярного 6 проводного  двигателя Дает меньшее сопротивление обмоток, меньший ток и соответственно больше скорости. Вариант подключения биполярного 8 проводного  двигателя Дает меньшее сопротивление обмоток, меньший ток и соответственно больше скорости.

 

    1. Двигатели от дисководов 5.25 и маленьких принтеров для CNC проекта - не подходят - слишком слабые!         Умельцы их применяют для конструирования роботов или небольших механизмов. Почитав конференции, я понял что наши          шаговые двигатели  типа ДШ - тоже отстой и можно даже и не пытаться,  что то серьезное сделать на них. А цены на них          совсем не дешевые. Так что лучше добавить и купить нормальный импортный двигатель. Это мое мнение, если я не прав          можете меня переубедить.      2. Двигатели от широких матричных принтеров можно применить. На их основе можно сделать Плоттер для рисования          чертежей. Но электроника от принтера не пойдет - нужно паять свой контроллер. Из принтера можно взять направляющие          и некоторые детали.     3. Двигатели мощностью 50 - 80 oz.in (3,6-5,7 кг.см) в основном применяются в Foamcutter и небольших CNC станках для          сверления печатных плат.     4. Двигатели с тягой 80-120 oz.in (5,7-9 кг.см) применяют в средних станках типа CNC_Mill для обработки дерева, пластмассы.     5. Двигатели тягой 120-250 oz.in (9-18 кг.см) применяют уже для серьезных проектов CNC_Router для обработки дерева,          пластмассы, алюминия, и др.     6. Двигатели тягой б40 oz.in и больше (46 кг.см) используют для переделки профессионального оборудования в СNC (например          сверлильного или токарного станка). На таких станках можно обрабатывать и стальные детали под управлением с          компьютера с очень высокой точностью!

cnchobby.narod.ru