Роторный двигатель Подготовил студент группы 1 -НТТС-3 Чмиль. Роторный двигатель школьников


Школьники изобрели самый мощный в мире двигатель :: NoNaMe

Павел Котляр 28.06.2016, 08:40

Как выходец из СССР Николай Школьник изобрел самый мощный в мире двигатель

Школьники изобрели самый мощный в мире двигатель

«Газета.Ru» пообщалась с создателями самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

----------------------<cut>----------------------

How It Works LiquidPiston X Engine

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.

Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные? И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%. Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью «Газете.Ru» Школьник-младший. Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива. Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки стало их использование на автомобилях Mazda RX. Школьники изобрели самый мощный в мире двигатель

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов.

Принципиальным в ней было то, что в двигателе Школьников не камера,а ротор напоминает по форме орех, который вращается в треугольной камере. Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.

Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

LiquidPiston XMini in a Gokart 4 hp — 4 lbs!

Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.

Но главное, КПД таких моторов резко растет при увеличении их объемов. Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг. Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник. Школьники изобрели самый мощный в мире двигатель

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Combustion Demo Video – X Mini 70cc Gasoline Powered Prototype

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания. Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший. То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA. LiquidPiston unveils quiet X Mini engine prototype

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников. Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр. Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе. Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник. ...Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале "Популярная механика". В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.https://geektimes.ru/post/2...

txapela.ru

Школьники изобрели самый мощный в мире двигатель страница 2 :: NoNaMe

Павел Котляр 28.06.2016, 08:40

Как выходец из СССР Николай Школьник изобрел самый мощный в мире двигатель

Школьники изобрели самый мощный в мире двигатель

«Газета.Ru» пообщалась с создателями самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

----------------------<cut>----------------------

How It Works LiquidPiston X Engine

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.

Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные? И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%. Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью «Газете.Ru» Школьник-младший. Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива. Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки стало их использование на автомобилях Mazda RX. Школьники изобрели самый мощный в мире двигатель

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов.

Принципиальным в ней было то, что в двигателе Школьников не камера,а ротор напоминает по форме орех, который вращается в треугольной камере. Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.

Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

LiquidPiston XMini in a Gokart 4 hp — 4 lbs!

Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.

Но главное, КПД таких моторов резко растет при увеличении их объемов. Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг. Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник. Школьники изобрели самый мощный в мире двигатель

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Combustion Demo Video – X Mini 70cc Gasoline Powered Prototype

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания. Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший. То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA. LiquidPiston unveils quiet X Mini engine prototype

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников. Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр. Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе. Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник. ...Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале "Популярная механика". В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.https://geektimes.ru/post/2...

txapela.ru

Школьники изобрели самый мощный двигатель в мире » Саквояж

История создателей самого мощного в мире двигателя внутреннего сгорания. Как увеличить в разы КПД мотора, в чем отличие нового агрегата от известных роторных двигателей и в чем преимущество советского образования перед американским — в материале отдела науки.

Технологии неуклонно развиваются. О том, как защитить свою электропроводку, можно читать на сайте интернет-магазина «Электрика Шоп».

Выходец из СССР, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания. Новый мотор будет в разы превосходить существующие по КПД и уступать по массе.В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США, где получил научную степень и стал физиком-теоретиком — его интересовали приложения, связанные с общей и специальной теорией относительности. Поработав в области ядерной физики, молодой ученый открыл в США две компании: одну — занимающуюся программным обеспечением, вторую – разрабатывающую шагающие роботы. Позже он на десять лет занялся консультированием проблемных компаний, занимающихся техническими инновациями.Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные?

И действительно, несмотря на то что поршневой двигатель внутреннего сгорания человечество совершенствует уже полтора века,КПД бензиновых моторов сегодня не превышает 25%, дизельных — порядка 40%.

Между тем сын Школьника Александр поступил в MIT и получил степень доктора в области компьютерных наук, стал специалистом в области оптимизации систем. Думая над увеличением КПД двигателя, Николай Школьник разработал собственный термодинамический цикл работы двигателя HEHC (High-efficiency hybrid cycle), который стал ключевым этапом в реализации его мечты.«Последний раз такое происходило в 1892 году, когда Рудольф Дизель предложил новый цикл и создал свой двигатель», — пояснил в интервью Школьник-младший.

Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива.Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов.Принципиальным в ней было то, что в двигателе Школьников не камера,а ротор напоминает по форме орех, который вращается в треугольной камере.

Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо.Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания.

Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 «кубика» имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.Но главное, КПД таких моторов резко растет при увеличении их объемов.

Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг.

Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. «Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%», — поясняет Школьник.

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

«Это самый экономичный, мощный двигатель не только среди роторных, но и всех двигателей внутреннего сгорания.

Это показывают наши измерения, а то, что мы получим на более крупных моторах, мы уже смоделировали на компьютерах», — радуется Школьник-младший.То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA.

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников.

Александр считает, что создать столь революционный двигатель помогло отчасти образование, которое получил его отец еще в СССР. «Он думает по-другому, не так, как обычный инженер в США. Его фантазия ограничена только физикой. Если физика говорит — что-то возможно, то он верит, что это так, и лишь думает, как это можно сделать», — добавил Александр.Сам Николай Школьник по-своему рассказывает об истории своего успеха и преимуществах советского образования.«В США я переживал, что, имея специальность «машиностроение», я не буду иметь достаточного бэкграунда по физике и, особенно, математике.Эти опасения оказались напрасными благодаря превосходной подготовке, которую я получил в советской школе.

Эта солидная образовательная подготовка до сих пор помогает мне здесь в нашей работе с новым роторным двигателем. С моей точки зрения, есть два больших отличия между американскими инженерами и получившими образование в России. Во-первых, американские инженеры невероятно эффективны в том, что они делают. Обычно требуется два-три русских инженера, чтобы заменить одного американского. Однако русские имеют более широкий взгляд на вещи (связанный с образованием, по крайней мере в мое время) и способность достигать целей с минимумом ресурсов, что называется, на коленке», — поделился размышлениями Николай Школьник.

…Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале «Популярная механика». В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.

Источник

Читайте ещё: Как производят ракетные, авиационные и наземные двигательные установки

published on sakvoiazh.ru according to the materialsribalych.ru

sakvoiazh.ru

Изобретатели роторного двигателя нового типа заключили контракт с DARPA / Хабр

Компания LiquidPiston получила для финансирования своего проекта средства от DARPA. Проект представляет собой улучшенный мотор внутреннего сгорания роторного типа под названием X1. Во главе компании, работающей в городе Блумфилд штата Коннектикут, стоят инженеры, отец и сын, Николай и Александр Школьники.

Изобретатели заявляют множество уникальных свойств своего изделия. Например, тепловой КПД их мотора равен 50% (по сравнению с 20-30% обычного бензинового ДВС). Правда, если взять дизельный двигатель, добавить в него турбонаддув и промежуточное охлаждение, мы также получим КПД порядка 50%. Но при этом дизельный двигатель будет очень много весить.

Как утверждает Александр Школьник, типичный дизельный генератор на 3 кВт имеет размеры 100х60х60 см и весит более 70 кг. При этом генератор на основе двигателя X1 аналогичной мощности будет весить 15 кг (сам мотор – 4 кг), а размер его будет составлять 30х30 см. Фактически, такой генератор будет умещаться в рюкзаке. Изобретатели постарались взять лучшее от разных тепловых циклов и уменьшить потери энергии двигателя. Теоретический предел КПД нового двигателя – 75%, но пока инженеры трудятся над достижением реального показателя в 57%.

Работа двигателя X1 напоминает процесс работы известного роторного двигателя Ванкеля, вывернутый наизнанку. Ротор закреплён на эксцентрическом валу, и содержит в себе каналы для впуска газовой смеси и выпуска отработавших газов. Расположенные по углам равностороннего треугольника свечи отрабатывают по разу за один оборот вала.

Двигатель работает на прямом впрыске и обеспечивает высокую степень сжатия — 18:1. Не меняющийся во время сгорания объём камеры позволяет сжигать топливо дольше и полнее. Отработавшие газы достигают почти атмосферного давления перед выходом, в связи с чем успевают отдать почти всю свою энергию ротору.

Высокая эффективность также позволяет отказаться от водяного охлаждения двигателя. Работая под нагрузкой, двигатель может пропускать циклы зажигания и засасывать воздух, который будет охлаждать его. Рассматривается даже вариант впрыска в камеру сгорания воды, которая будет охлаждать двигатель, уменьшать выбросы отработавших газов и одновременно превращаться в пар, толкающий ротор.

Слева — двигатель Ванкеля, справа — X1

Компактность и мощность двигателя заинтересовали военных, которым требуются портативные энергетические системы. В случае успешного внедрения двигатель найдёт множество применений — переносной электрогенератор, двигатель для беспилотных аппаратов, и многое другое.

Инженеры придумали новый двигатель ещё в 2003 году. К 2012 году был построен первый прототип, о котором написали в журнале "Популярная механика". В 2015 году компания не только заключила контракт с DARPA, но и приступила к разработкам мини-версии двигателя.

habr.com

Уроженец Украины создал самый мощный двигатель в мире (видео)

Выходец из Украины, живущий в США, вместе с сыном изобрел, запатентовал и испытал самый мощный и эффективный в мире двигатель внутреннего сгорания.

Новый мотор будет в разы превосходить существующие по КПД и уступать по массе, передает "Газета.ru".

В 1975 году вскоре после окончания Киевского политехнического института молодой физик Николай Школьник уехал в США. Однако как инженера Школьника постоянно волновал один вопрос — почему современные автомобильные моторы такие неэкономичные?

Изобретатели остановились на роторном двигателе, принцип которого был предложен в середине XX века немецким изобретателем Феликсом Ванкелем. Идея роторного двигателя проста. В отличие от обычных поршневых моторов, в которых много вращающихся и движущихся частей, снижающих КПД, роторный двигатель Ванкеля имеет овальную камеру и вращающийся внутри нее треугольный ротор, который своим движением образует в камере различные участки, где происходит впуск, сжатие, сгорание и выпуск топлива.

Плюсы двигателя — мощность, компактность, отсутствие вибраций. Однако, несмотря на более высокий КПД и высокие динамические характеристики, роторные двигатели за полвека не нашли широкого применения в технике. Одним из немногих примеров серийной установки стало их использование на автомобилях Mazda RX.

Слабыми местами таких моторов являлись ненадежность, связанная с низкой износостойкостью уплотнителей, благодаря которым ротор плотно примыкает к стенкам камеры, и низкая экологичность.

Уже работая в фирме LiquidPiston, основателями которой они стали, Школьники создали свою, абсолютно новую реинкарнацию идеи роторных моторов. Принципиальным в ней было то, что в двигателе Школьников не камера, а ротор напоминает по форме орех, который вращается в треугольной камере.

Это позволило решить ряд непреодолимых проблем двигателя Ванкеля. Например, пресловутые уплотнители теперь можно делать из железа и крепить их неподвижно к стенкам камеры. При этом масло подводится прямо к ним, в то время как раньше оно добавлялось в сам воздух и, сгорая, создавало грязный выхлоп, а смазывало плохо. Кроме того, при работе двигателя Школьников происходит так называемое изохорное горение топлива, то есть горение при постоянном объеме, что увеличивает КПД мотора.

Изобретатели создали один за другим пять моделей принципиально нового мотора, последняя из которых в июне была впервые протестирована — ее поставили на спортивный карт. Испытания оправдали все ожидания. Миниатюрный двигатель размером со смартфон, массой менее 2 кг имеет мощность всего 3 л.с. Двигатель высокооборотистый, работает на частоте 10 тыс. об./мин., но может достигать и 14 тыс. КПД мотора составляет 20%. Это много, учитывая, что обычный поршневой мотор такого же объема в 23 "кубика" имел бы КПД лишь 12%, а поршневой мотор такой же массы дал бы всего 1 л.с.

Но главное, КПД таких моторов резко растет при увеличении их объемов.

Так, следующий двигатель Школьников будет дизельным мотором мощностью 40 л.с., при этом его КПД составит уже 45%, а это выше, чем эффективность лучших дизелей современных грузовиков.

Весить он будет всего 13 кг, притом что его поршневые аналоги такой же мощности сегодня весят под 200 кг. Этот мотор уже планируется ставить на генератор, который будет вращать колеса дизель-электрического автомобиля. "Если же мы построим еще больший двигатель, мы можем достичь КПД в 60%", — поясняет Школьник.

В перспективе компактные, оборотистые и мощные моторы Школьников планируется использовать там, где эти свойства особенно важны — при конструировании легких дронов, ручных бензопил, газонокосилок и электрогенераторов.

Пока мотор гоняли 15 часов, однако по нормативам, чтобы пойти в производство, он должен отработать непрерывно 50 часов. При этом для автомобильной промышленности требуется надежность мотора на 100 тыс. миль пробега, что пока остается мечтой, признают конструкторы.

То, что озвученные цифры — не фантазии изобретателей, подтверждает серьезность намерений инвесторов. Сегодня в стартап уже вложено $18 млн венчурных инвестиций, $1 млн которых дало американское агентство передовых разработок DARPA.

Интерес военных тут понятен. Дело в том, что военными США в авиации применяется в основном топливо JP-8. И военные хотят, чтобы вообще вся армейская техника работала на этом виде топлива, на котором, кстати, могут работать и дизельные моторы.

Но современные дизельные двигатели громоздки, поэтому DARPA так активно присматривается к разработке Школьников.

gloss.ua

Роторный двигатель Подготовил студент группы 1 -НТТС-3 Чмиль

Роторный двигатель Подготовил студент группы 1 -НТТС-3 Чмиль Н. А. Роторный двигатель Подготовил студент группы 1 -НТТС-3 Чмиль Н. А.

Содержание 1) 2) 3) 4) 5) 6) 7) Введение История Устройство двигателя Принцип работы Содержание 1) 2) 3) 4) 5) 6) 7) Введение История Устройство двигателя Принцип работы Конструктивные решения и технологии Достоинства и недостатки Применение

История Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU -Феликс Ванкель и Вальтер Фройде. История Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU -Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде, в автомобильной среде силовой агрегат известен как мотор Ванкеля.

Устройство двигателя Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора Устройство двигателя Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.

 В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.

Принцип работы роторного двигателя показан на схеме. Для простоты приведен пример мотора с одной Принцип работы роторного двигателя показан на схеме. Для простоты приведен пример мотора с одной секцией. В положении 1 объем полости минимален, и это соответствует началу такта впуска. По мере вращения ротор открывает впускные окна и в камеру всасывается топливовоздушная смесь (позиции 2– 4). В положении 5 рабочая полость имеет максимальный объем. Далее ротор закрывает впускные окна и начинается такт сжатия (позиции 6– 9). В положении 10, когда объем полости вновь минимален, происходит воспламенение смеси с помощью свечей и начинается рабочий такт. Энергия сгорания газов вращает ротор. Расширение газов идет до положения 13, а максимальный объем рабочей полости соответствует позиции 15. Далее, до положения 18, ротор открывает выпускные окна и выталкивает отработавшие газы. Затем цикл начинается снова.

Конструктивные решения и технологии Статоры изготовлены по технологии вставки листового металла: в корпус из Конструктивные решения и технологии Статоры изготовлены по технологии вставки листового металла: в корпус из алюминиевого сплава вставлена подложка из специальной стали. Благодаря этому конструкция легкая и прочная. Стальная подложка имеет хромовое покрытие с микроскопическими канавками для лучшего удержания масла. Боковые корпусы — из специального чугуна. В каждом есть впускные и выпускные окна. А на крайних закреплены стационарные шестерни. Боковые корпусы в паре с роторами по функционалу можно сравнить с механизмом ГРМ поршневого мотора. Ротор — по сути, тот же самый поршень и одновременно шатун. Изготовлен из специального чугуна, пустотелый, максимально облегчен. На каждой его стороне есть кюветообразная камера сгорания и, конечно же, уплотнители. Во внутреннюю часть вставлен роторный подшипник — своего рода шатунный вкладыш коленчатого вала.

 Если привычный поршень обходится всего тремя кольцами (два компрессионных и одно маслосъемное), то Если привычный поршень обходится всего тремя кольцами (два компрессионных и одно маслосъемное), то у ротора подобных элементов в несколько раз больше. Так, апексы (уплотнения вершин ротора) играют роль первых компрессионных колец. Они изготовлены из чугуна с электроннолучевой обработкой — для повышения износостойкости при контакте со стенкой статора. Система смазки имеет минимум один радиатор для охлаждения масла при работе мотора на больших нагрузках и несколько видов масляных форсунок. Масло попадает в рабочую полость и смешивается с топливовоздушной смесью, обеспечивая смазку остальных элементов, и сгорает вместе с ней. Топливная система довольно проста — за исключением количества и расположения форсунок. Две — перед впускными окнами (по одной на ротор), еще столько же — во впускном коллекторе.

Достоинства и недостатки Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его Достоинства и недостатки Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями. 1. Роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям. 2. У этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя. 3. Роторный двигаель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге. 4. В нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе. 5. Роторный двигатель обладает высокой удельной мощностью. Недостатки 1. Большой расход топлива на низких оборотах. 2. Недостатком этого типа двигателей является сложность изготовления его деталей. 3. Роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.

4. 5. Высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания 4. 5. Высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100 -150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата. Роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега.

Применение Самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Самая Применение Самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX. Производство последней модели из этого семейства, Mazda RX 8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.

present5.com

роторный двигатель - патент РФ 2386815

Изобретение относится к машиностроению. Роторный двигатель содержит корпус с отверстиями для ротора и отсекателя и каналы для подачи и отвода рабочего тела. Ротор имеет незамкнутый профилированный паз изменяемой глубины, расположенный в плоскости, перпендикулярной оси вращения ротора, и выполняющий функции камеры расширения. Отсекатель установлен в корпусе, входит в паз на роторе и имеет возможность совершать возвратно-поступательные движения в корпусе и пазе ротора. Между началом паза на роторе и его концом расположена поверхность ротора. Техническим результатом является упрощение конструкции и повышение КПД. 4 ил. роторный двигатель, патент № 2386815

Рисунки к патенту РФ 2386815

Изобретение относится к категории двигателей и может быть использовано в области машиностроения.

Аналогичные технические решения известны, например четырехтактный двигатель внутреннего сгорания (ДВС) (см. «Двигатели внутреннего сгорания» в 3 кн. Учебник под ред. В.Н.Луканина. М.: Высшая школа, 1995). Двигатель имеет четыре такта при работе: впуск, сжатие, сгорание и выпуск. При сгорании топлива в цилиндре ДВС происходит преобразование энергии, полученной при сгорании топливной смеси, в механическое возвратно-поступательное движение поршня, которое затем преобразуется во вращательное движение вала посредством коленчатого вала. Общими признаками предлагаемого решения и аналога, описанного выше, является преобразование энергии рабочего тела во вращательное движение вала.

Преимущества ДВС:

- технически отработанная конструкция,

- широкое распространение.

Недостатки ДВС:

- низкий КПД,

- необходимость преобразовывать возвратно-поступательное движение во вращательное,

- большое количество деталей.

Технический результат, которого невозможно достичь аналогом - прямое преобразование энергии рабочего тела во вращательное движение.

Известно также техническое решение, выбранное в качестве прототипа - роторный двигатель Ванкеля (см. «Ванкеля двигатель», Большая Советская Энциклопедия, М., Советская энциклопедия).

Роторно-поршневой двигатель Ванкеля представляет собой корпус, в котором установлен трехгранный ротор, имеющий зубчатое колесо. Колесо обкатывается вокруг неподвижной шестерни, установленной в корпусе, вследствие чего ротор совершает в корпусе движение по эпитрохоидальной поверхности. Между корпусом и поверхностью ротора поочередно образуются замкнутые полости, выполняющие функции камер двигателя. Двигатель работает по четырехтактному циклу.

Преимущество двигателя Ванкеля:

- прямое преобразование энергии сжигания топливной смеси во вращательное движение;

- высокая удельная мощность.

Недостатки роторного двигателя Ванкеля:

- высокие требования к технологичности изготовления,

- относительно небольшой моторесурс,

- повышенный расход топлива.

Общими признаками предлагаемого решения и аналога, описанного выше, являются преобразование энергии рабочего тела непосредственно во вращательное движение.

Технический результат, которого невозможно достичь аналогом, описанным выше, заключается в невозможности упрощения конструкции и повышения КПД.

Причиной невозможности получения технического результата является то, что данная компоновочная схема работает по сложной траектории движения движущихся частей двигателя.

Учитывая анализ и характеристики аналогичных технических решений, можно сделать вывод, что создание конструктивно простого и эффективного двигателя роторного типа является актуальной задачей.

Сущность изобретения поясняется нижеследующими описаниями и чертежами, где на фиг.1 представлен корпус роторного двигателя с установленным в нем отсекателем, на фиг.2 и 3 представлен разрез корпуса с ротором и отсекателем, на фиг.4 показан разрез ротора в районе паза изменяемой глубины.

Технический результат, указанный выше, достигается тем, что конструкция роторного двигателя представляет собой (фиг.1):

- корпус 1, в котором установлены ротор и отсекатель и имеются каналы для подачи и отвода рабочего тела;

- ротор 2, в котором имеется незамкнутый паз 4 постоянной ширины и переменной глубины;

- отсекатель 3, установленный в корпусе 1, входящий в паз на роторе 2 по его ширине, который имеет возможность совершать возвратно-поступательные движения в профилированном отверстии корпуса 1.

Ротор 2 представляет собой цилиндрическую деталь, устанавливаемую в корпус таким образом, чтобы он мог свободно вращаться в корпусе двигателя, но при этом зазор между корпусом и ротором был минимальным. В необходимых случаях известными техническими способами производится уплотнение зазора между корпусом и ротором. В плоскости, перпендикулярной оси вращения, в роторе изготовлен незамкнутый паз 4 постоянной ширины и переменной глубины. В комбинации с другими деталями двигателя паз выполняет функцию камеры расширения, в которой происходит преобразование физической энергии рабочего тела во вращательное движение ротора. Профиль паза показан на фиг.4, где показан разрез ротора в зоне паза. Внутренняя (глубинная) поверхность паза в роторе образована тремя рабочими участками:

- участок опускания отсекателя обозначен линией EF. На этом участке происходит опускание отсекателя на участок уплотнения, поэтому он сделан криволинейным с таким расчетом, чтобы обеспечить плавное движение отсекателя от поверхности ротора к зоне уплотнения при вращении ротора. Глубина паза на этом участке изменяется от ноля до диаметра поверхности уплотнения;

- участок уплотнения обозначен линией BCD и представляет собой цилиндрическую либо профилированную поверхность, образованную правильной окружностью вокруг центра ротора. Качество изготовления поверхности уплотнения определяется классом двигателя. Протяженность поверхности уплотнения определяется конструктивными особенностями двигателя;

- участок поднимания отсекателя обозначен линией АВ. На этом участке отсекатель отжимается внутренней (глубинной) поверхностью паза от участка уплотнения до поверхности ротора, поэтому он изготавливается криволинейным, чтобы обеспечить плавное поднимание отсекателя от участка уплотнения до поверхности ротора. Глубина паза на этом участке изменяется от диаметра поверхности уплотнения до ноля;

- между краями паза имеется участок на поверхности ротора, обозначенный линией AF. Ширина этого участка определяется конструктивными особенностями двигателя и рассчитывается таким образом, чтобы минимизировать потери на утечку рабочего тела при работе двигателя. В необходимых случаях названная поверхность уплотняется известными техническими способами.

Таким образом, между началом паза и его концом расположена поверхность ротора.

Боковые стенки паза в роторе параллельны друг другу и образованы параллельными плоскостями, расположенными перпендикулярно оси вращения ротора.

В необходимых случаях возможно также использование в роторе профилированного паза, при котором его боковые стенки образованы криволинейными поверхностями либо непараллельны.

Для использования двигателя в качестве привода механизмов к ротору известными техническими способами подсоединяется вал отбора мощности.

Отсекатель 3 представляет собой массивную вытянутую по длине деталь, установленную в отверстие в корпусе 1 двигателя. Продольная ось отсекателя расположена посередине паза в роторе и расположена в плоскости, перпендикулярной оси ротора. Отсекатель имеет ширину, равную ширине паза в роторе, и может совершать возвратно-поступательные движения в пазе и отверстии в корпусе по прямой линии, перпендикулярной оси ротора. Отсекатель должен быть изготовлен таким образом, чтобы минимизировать потери на утечку рабочего тела при работе двигателя между стенками паза в роторе и отсекателем. Рабочая часть отсекателя, непосредственно прилегающая к участку уплотнения паза ротора, должна максимально точно повторять профиль участка уплотнения для наиболее эффективного уплотнения этого участка. При необходимости поверхности отсекателя уплотняются известными техническими способами. Размеры отсекателя должны рассчитываться с учетом значительных нагрузок, которые он воспринимает при работе двигателя.

Корпус роторного двигателя 1 представляет собой деталь, в которой имеется отверстие для ротора 2, каналы для подачи 6 и отвода 7 рабочего тела и профилированное отверстие для отсекателя. Отверстие для ротора должно быть изготовлено таким образом, чтобы обеспечить свободное вращение ротора и при этом минимализировать потери рабочего тела между стенками отверстия и поверхностью ротора. Отверстие для отсекателя должно быть изготовлено таким образом, чтобы обеспечить свободное возвратно-поступательное движение отсекателя и при этом минимизировать потери рабочего тела между стенками отсекателя и стенками отверстия для него в корпусе. При необходимости поверхности отверстия для отсекателя, прилегающие к отсекателю, уплотняются известными техническими способами.

Таким образом, мы имеем роторный двигатель, содержащий корпус с отверстиями для ротора и отсекателя и каналы для подачи и отвода рабочего тела, ротор, имеющий незамкнутый профилированный паз изменяемой глубины, расположенный в плоскости, перпендикулярной оси вращения ротора, выполняющий функции камеры расширения, и отсекатель, установленный в корпусе и входящий в паз на роторе, имеющий возможность совершать возвратно-поступательные движения в корпусе и пазе ротора, где между началом паза на роторе и его концом расположена поверхность ротора.

Материалы для изготовления деталей предложенного роторного двигателя - любые известные конструкционные материалы. Материалы для конструкции двигателя подбираются в зависимости от класса двигателя, цикла работы, используемого рабочего тела и других инженерных параметров.

Предложенная конструкция роторного двигателя может работать по любому из двух основных циклов работы двигателя - внешнему циклу и как двигатель внутреннего сгорания.

Рассмотрим принцип работы роторного двигателя при работе по внешнему циклу.

Примем, что на начальном этапе работы роторного двигателя отсекатель 3 находится на поверхности ротора 2 - на участке AF. При повороте ротора против часовой стрелки отсекатель проникает в паз ротора и углубляется в него по участку опускания (положение на фиг.2). Движение отсекателя на этом участке осуществляется принудительно. Механизм прижимания отсекателя может быть различным, в зависимости от конструкции двигателя - начиная от обычной пружины и заканчивая более сложными техническими решениями - пневматический, гидравлический или иной привод. При достижении отсекателем участка уплотнения он прижимается к этому участку на линии ED, обеспечивая герметизацию в камере расширения. В момент прижатия отсекателя к участку уплотнения паза ротора внутри ротора образуется замкнутый объем 5, ограниченный боковыми стенками паза ротора, корпусом двигателя, поверхностью EF паза ротора и поверхностью EG отсекателя (фиг.2). Этот замкнутый объем в дальнейшем будем называть камерой расширения. В камеру расширения через канал 6 корпуса подается рабочее тело. В качестве рабочего тела при внешнем цикле работы двигателя может использоваться сжатый газ, жидкость под давлением, пар.

При попадании в камеру расширения рабочее тело за счет физических свойств расширения создает усилие на стенках камеры расширения. При этом возникают две неуравновешенные силы - сила F1 на участке EG отсекателя и сила F 2 на участке EF паза ротора (фиг.2). Сила F1 передается через отсекатель на корпус двигателя и гасится. Сила F2 действует на ротор на плече относительно оси вращения ротора, вследствие чего возникает вращательный момент вокруг оси ротора, приводящий к его вращению. При вращении ротора объем камеры расширения увеличивается.

При достижении положения, показанном на фиг.3, ротор приходит в положение, в котором оказывается открытым канал 7 в корпусе, рабочее тело покидает камеру расширения, давление в камере расширения сбрасывается, детали камеры расширения размыкаются, и паз в роторе своей поверхностью АВ отжимает отсекатель на поверхность ротора. Затем цикл повторяется.

Таким образом, мы имеем два цикла работы двигателя - рабочий ход от положения на фиг.2 до положения на фиг.3 и холостой ход от положения на фиг.3 до положения на фиг.2. Сила F2 действует на ротор постоянно все время рабочего хода двигателя, создавая стабильный крутящий момент. Вращение ротора во время холостого хода при рассмотренном выше однокамерном роторном двигателе может быть организовано с помощью маховика, что допустимо в двигателях, работающих с малой мощностью.

Однако работа предложенного роторного двигателя с одной камерой технически не рациональна. Наиболее эффективный технический результат может быть получен при изготовлении на одном роторе нескольких, минимум двух, камер расширения, работающих со смещенными циклами, т.е. когда одна из камер находится в положении холостого хода, в другой камере осуществляется рабочий ход. Дополнительные камеры расширения располагаются на роторе на некотором расстоянии друг от друга в виде параллельных профилированных пазов, аналогичных описанному пазу. Каждая из дополнительных камер должна иметь свой отсекатель. В этом случае роторный двигатель будет иметь постоянный крутящий момент. На фиг.1 показан дополнительный паз 8 с индивидуальным отсекателем 9.

Количество камер расширения, расстояние между ними, профиль пазов и циклы работы двигателя определяются конструктивными особенностями двигателя.

Преимущество предложенного технического решения:

- простота конструкции, выраженная в минимальном количестве деталей двигателя;

- высокая технологичность изготовления, обусловленная тем, что основные рабочие поверхности двигателя имеют простые формы - прямые линии и окружности. Простейший двигатель, изготовленный без применения специальных методов уплотнения, например, паровой или пневматический, можно изготовить в любой механической мастерской без использования прецизионного оборудования;

- высокий КПД двигателя. Рабочий ход одной камеры расширения двигателя может составлять до 270 и более градусов оборота ротора, что позволяет максимально эффективно использовать физические свойства энергии рабочего тела при преобразовании ее во вращательное движение;

- низкий расход рабочего тела;

- возможность получения высокой удельной мощности двигателя при минимальных габаритных размерах;

- абсолютная уравновешенность двигателя;

- малая шумность двигателя за счет возможности эффективного использования рабочего тела;

- высокие обороты двигателя;

- экологичность двигателя, работающего по принципу ДВС, за счет наиболее полного сгорания топлива. Возможность этого обеспечивается длинным рабочим циклом.

Таким образом, предложенный роторный двигатель позволяет значительно улучшить технические характеристики машин и механизмов. Применение предложенного технического решения позволяет создать новый этап в машиностроении.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Роторный двигатель, содержащий корпус с отверстиями для ротора и отсекателя и каналы для подачи и отвода рабочего тела, ротор, имеющий незамкнутый профилированный паз изменяемой глубины, расположенный в плоскости, перпендикулярной оси вращения ротора, выполняющий функции камеры расширения, и отсекатель, установленный в корпусе и входящий в паз на роторе, имеющий возможность совершать возвратно-поступательные движения в корпусе и пазе ротора, отличающийся тем, что между началом паза на роторе и его концом расположена поверхность ротора.

www.freepatent.ru