ЭЛЕКТРОДВИГАТЕЛИ ЛЮБЫХ МОДЕЛЕЙ ______________ _____________ СО СКЛАДА И ПОД ЗАКАЗ. Шаговый двигатель реактивный


§ 23.4. Шаговые двигатели

Шаговые (импульсные) двигатели (ШД) используют обычно в качестве исполнительных двигателей, преобразующих электрические сигналы (импульсы напряжения) в угловые или линейные дискретные (скачкообразные) перемещения (шаги). Наибольшее применение ШД получили в электроприводах с программным управлением.

Различают шаговые двигатели с активным (возбужденным) и реактивным ротором. Шаговые двигатели с активным рото­ром имеют обмотку возбуждения или выполнены с постоянными магнитами на роторе; шаговые двигатели с реактивным ротором не имеют обмотки возбуждения, а их ротор выполняют из магнитно-мягкого материала. Обмотку управления ШД обычно располагают на статоре и делают одно- или многофазной (чаще трех- или четырехфазной).

Рассмотрим принцип действия шагового двигателя на примере реактивного трехфазною ШД, статор которого имеет шесть явно выраженных полюсов (по два полюса на фазу), а ротор — два по­люса (рис. 23.9).

Рис 23.9. Принцип действия реактивного шагового двигателя

При прохождении импульса тока в фазе 1 обмотки управления ротор занимает положение, соответствующее действию электро­магнитных сил, т. е. по оси полюсов 1—1. В момент времени появится импульс тока в фазе 2. При этом на ротор будут действо­вать силы, обусловленные одновременным воздействием двух МДС (полюсов 1— 1 и 2—2). В результате ротор повернется по часовой стрелке и займет положение, промежуточное между по­люсами 1—1 к 2—2, т. е. повернется на шаг = 30°. В моментимпульс тока в фазе 1 прекратится и ротор, сделав шаг = 30°, займет положение по оси полюсов 2—2. В момент появится им­пульс тока в фазе 3 и ротор, повернувшись еще на 30°, займет по­ложение между полюсами статора 2—2 и 3—3. В моменты време­ни иротор также будет совершать шаги по 30° и в концецикла (момент ) займет положение по оси полюсов статора 1—1, совершив за этот цикл поворот на 180°.

В последующие циклы процессы в ШД будут повторяться. Таким образом, рассматриваемый реактивный трехфазный ШД работает по шеститактной схеме коммутации с раздельно-совместным включением фазных обмоток управления:.

Работают реактивные ШД от однополярных импульсов напряже­ния, так как изменение полярности этих импульсов не изменяет на­правления реактивного момента. Для изменения направления враще­ния ротора рассматриваемого ШД необходимо изменить схему коммутации обмоток, например ...

Если в этом двигателе применить раздельное включение об­моток, т. е. принять схему коммутации 1 23..., то шагдвигателя = 60°.

Шаг двигателя (град)

, (23.7)

где — число полюсных выступов на роторе; ту — число фаз­ных обмоток управления, пространственно смещенных относи­тельно друг друга; - коэффициент, определяемый способом включения фазных обмоток управления (при раздельном включе­нии = 1 , при раздельно-совместном —= 2).

Уменьшение шага способствует повышению устойчивости и точности работы ШД Для уменьшения шага увеличиваютчисло полюсных выступов на роторе . Так, если в рассматриваемом двигателе применить ротор крестообразного сечения (= 4), то при шеститактной коммутации шаг = 15°.

Шаговые двигатели с активным ротором (с обмоткой возбуждения или постоянными магнитами на роторе) позволяют получить, большие значения вращающего момента, а также обеспечивают фиксацию ротора при отсутствии управляющего сигнала.

Один из важных параметров ШД — частота приемистости - максимальная частота следования управляющих импульсов, при которой ротор втягивается в синхронизм с места без потери шага. У шаговых двигателей реактивного типа частота приемистости при номинальной нагрузке достигает 1000 — 1300 Гц. С увеличе­нием шага частота приемистости уменьшается. Шаговый двигатель работает в комплекте с коммутатором — устройством, преобразующим заданную последовательность управляющих импульсов в - фазную систему прямоугольных импульсов напряжения.

При рассматривании принципа работы шагового двигателя влияние нагрузочного момента на валу двигателя не учитывалось. Если же на вал шагового двигателя действует нагрузочный момент , то при переключении управляющего импульса с одной фазы на другую МДС статора повернется на угол , а ротор двигателя, поворачиваясь за вектором МДС, будет отставать от него на угол называемый углом статической ошибки шагового двигателя, эл. град:

где — максимальный статический момент, соответствующийуглу смещения ротора относительно вектора МДС статора = 90эл. град.

Быстродействие шаговых двигателей определяется скоростью протекания электромагнитных процессов при переключении управляющих импульсов напряжения с одной фазы статора на другую. Скорость протекания этих процессов оценивается элек­тромагнитной постоянной времени, с

,

где — индуктивность обмотки одной фазы статора, Гн;-активное сопротивление обмотки одной фазы статора, Ом.

Для повышения быстродействия шагового двигателя в обмот­ки фаз статора последовательно включают резисторы , тогда

Энергетическим показателем шагового двигателя является значение потребляемой мощности . Частота вращения шагового двигателя регулируется изменением частоты подачи управляющих импульсов напряжения на фазы обмотки статора.

studfiles.net

принцип действия, виды, режимы работы

Шаговый двигатель – электрический синхронный мотор, совершающий оборот некоторым количеством равноценных эквивалентных перемещений. От длины элементарного сегмента зависит точность, с которой ротор позиционируется нужным образом. В отдельности минимальное перемещение называется шагом.

Принцип действия шаговых двигателей, разновидности

Шаговый двигатель в комплекте с драйвером выполняет преобразование числа входящих импульсов в заданное угловое перемещение вала. Устройство сопрягается с цифровой техникой, управляющий сигнал часто аналоговый. Входы обмоток посещает синусоида нужной фазы. Драйвер, получающий на контакты цифровой сигнал, декодирует волну, формирует нужные сигналы управления двигателем. Одна, две, три, четыре фазы. Определяется конструкцией, нуждами техники.

Конструкция шагового двигателя

Конструкция шагового двигателя

Особенностью шагового двигателя назовем форму стального ротора. Снабжен полюсами, подчеркнутыми путем вынесения на кончик острого либо тупого зубца. Мертвый металл, притягиваемый катушками статора. Характеризуется некоторой намагниченностью остаточного рода, вызванной действием поля. Точное позиционирование полюсов статора обеспечивает шаговому двигателю уникальное свойство: точное позиционирование по углу поворота вала. Из правила встречаются исключения, рассмотренные ниже по тексту.

Шаговые двигатели используются промышленностью, цифровой техникой – где требуется обеспечить точное позиционирование вала. Некоторые источники датируют изобретение серединой XIX века, первые сведения просочились в специализированные журналы в 20-х годах XX века. Речь о трехфазном реактивном шаговом двигателе. Исходное применение традиционно стало военным: на кораблях королевского флота Великобритании узлы направляли в нужную сторону торпеды. Позже технология перекочевала, посетив армию США.

Первый открытый патент получен на прибор с ротором, статором на 32 зуба шотландским инженером Уолкером в 1919 году. Прибор рассчитан работать с трехфазным напряжением. Сегодня шаговые двигатели встречаются в жестких дисках персональных компьютеров, автоматизированных линиях сборки. Ключевыми достоинствами считают низкую стоимость, простоту позиционирования. Альтернатив не придумано. Устройства применяются приблизительно с 70-х годов XX века, формируют четыре основные группы:

  1. Шаговые двигатели на постоянных магнитах.
  2. Гибридные синхронные двигатели.
  3. Вентильные реактивные двигатели.
  4. Шаговые двигатели Лавета.

Полюсы различной намотки, к примеру, унифилярной, бифилярной (см. Катушка индуктивности). В первом случае ротор совершает обороты однонаправленно, если не предусмотреть дополнительную коммутацию фаз. Бифилярный двигатель отрабатывает реверс простой подачей напряжения на другие пары контактов. На каждом полюсе нить проволоки намотана, образуя две катушки. Конструкция такова, что знаки полей противоположные. Обеспечивает простую организацию реверса. Схожие схемы видим на примере двигателя привода барабана стиральной машины.

Мировой практикой принята стандартизированная маркировка указанных разновидностей устройств:

  1. Красный, желтый – первая обмотка.
  2. Черный, оранжевый – вторая обмотка.
  1. Обмотка с центральным общим выводом. Красный, черный, красный с белым – первая обмотка. Зеленый, белый, зеленый с белым – вторая обмотка.
  2. Двойная обмотка полюса. Красный, красный с белым – первая пара первой обмотки. Желтый, желтый с белым – вторая пара первой обмотки. Черный, черный с белым —первая пара второй обмотки. Оранжевый, оранжевый с белым – вторая пара второй обмотки.

Каждая обмотка способна образовывать несколько полюсов. Для включения реверса бифилярных шаговых двигателей коммутируется другая пара контактов. И если для формирования обратного вращения унифилярных разновидностей нужен формирующий контроллер, здесь допустимо использовать рядовой контактор.

Режимы работы шаговых двигателей

Изделия функционируют в нескольких режимах:

  1. Полный шаг реализуется поочередной подачей управляющих напряжений по фазам. Стандартное число – 200 перемещений на 1 оборот.
  2. В режиме половинного шага после активации одной фазы, остается состояние неизменным часть времени включения следующей. Получается, на зуб действуют одновременно два полюса. Вал замирает, фиксируя промежуточное положение. Потом первая фаза пропадает, ротор делает полшага вперед. Несмотря на меньший развиваемый крутящий момент, режим находит большее применение промышленностью, благодаря сокращению уровня вибраций. Электрический синхронный мотор

    Электрический синхронный мотор

  3. Микрошаговые режимы считаются искусными ноу-хау наработками конкретных производителей. Режимом заправляет специальный чип, генерирующий управляющие напряжения, чтобы точность позиционирования вала находилась в районе сотой шага (20000 перемещений на 1 оборот). Подобные изыски нужны микроэлектронике, не исключено возникновение потребности тонких технических решениях среди промышленных конвейеров. Драйвер генерирует 50 с лишним тысяч циклов управляющих напряжений на оборот.

Шаговые двигатели на постоянном магните

Род двигателей возможно встретить в помпе стиральной машины. К примеру, блок, удаляющий воду бака после стирки, между отдельными этапами цикла. Скорость вращения вала невелика, ротор в составе содержит постоянный магнит, шаг большой. Допустим, 45 градусов. На обмотки статора поочередно подается напряжение, создавая вращающееся магнитное поле. Постоянный магнит вала следует изменениям вектора напряженности.

Достоинствами шаговых двигателей назовем простоту, низкую стоимость. Постоянные магниты часто применяются принтерами. Отличие от других шаговых двигателей: ротор лишен зубцов, полюсов мало. Бывает два, катушек статора — 4, каждым перемещением вал совершает поворот 90 градусов. Требуется 4 фазы, сдвинутые друг относительно друга на 90 градусов. Драйвер просто реализовать при помощи конденсаторов.

Благодаря низкой скорости оборотов двигатель развивает высокий крутящий момент (загружая бумагу из лотка принтера).

Двигатель с постоянным магнитом

Двигатель с постоянным магнитом

Гибридные синхронные двигатели

Гибридные синхронные двигатели используются промышленностью по причине развития высокого крутящего момента, хорошо держат статическую нагрузку. Вал по-прежнему представлен постоянным магнитом, снабжается зубцами, на статоре множество полюсов. Тип двигателей обеспечивает высокие скорости вращения. Каждый шаг в стандартном исполнении равен 1,8 угловых градусов (200 шагов/оборот). Выпускают специализированные исполнения:

  • 0,9 градуса (400 шагов/оборот).
  • 3,6 градуса (100 шагов/оборот).

Вентильные шаговые двигатели

Главным отличием вентильных двигателей считают отсутствие тяжелых постоянных магнитов. Благодаря чему жесткой фиксации положения не происходит при наличии высокой точности. Двигатели идеальны для просмотра слайдов кинопленки. Относительно плавное, точное движение идеально подходит случаю.

Ротор облегченный, стальной, имеет ярко выраженные, сравнительно немногочисленные зубцы. Шаг средний, например, для трех фаз, 12 полюсов выйдет 15 градусов. Расстояние меж полюсами составляет 30 градусов. Промежуточные положения вал занимает в случаях, когда активируются одновременно две соседние фазы. Чередование соответствует обычной промышленной сети (к примеру, 400 вольт).

Главной особенностью вентильных двигателей является сравнительно малое количество тупых зубцов. Высокой точности позиционирования ожидать не приходится. Для реализации продвинутых алгоритмов применяются сложные драйверы.

Шаговые двигатели Лавета

Шаговые двигатели Лавета временами применяются электрическими часами. Сконструированы работать с сигналом одной фазы. Благодаря возможности миниатюризации двигатели Лавета послужат исполнительной частью наручных часов. Название устройства получили именем изобретателя – инженера Мариуса Лавета.

Инженер Мариус Лавета

Инженер Мариус Лавет позавидует

В 1936 году выпускник Высшей школы электрики сконструировал двигатель, принесший всемирную известность. Статор выглядит, как у электрического мотора с расщепленными полюсами. Одна катушка. Полюсы образованы единичными витками сравнительно толстой медной проволоки, расположенными на магнитопроводе, создавая нужную фазу ЭДС. Индуцированные токи обеспечивают нужный крутящий момент. Задержка распространения магнитного поля по сердечнику используется сдвигать фазу на 90 градусов, имитируя двухфазное напряжение. Ротор представлен постоянным магнитом.

Конструкции охотно используются бытовой техникой (блендерами, миксерами). Отличие двигателей Лавета в том, что благодаря зубцам вал фиксируется с некоторым шагом. Становится возможным характерное движение секундной стрелки. Как большинство шаговых двигателей, разновидность не предназначена работать на реверс.

Параметры шаговых двигателей

Отдельные параметры шаговых двигателей критичны при выборе соответствующего контроллера, формирующего управляющие напряжения:

  1. Индуктивность. Высокое значение параметра обычно у низкоскоростных двигателей с явным крутящим моментом. При повышении количества оборотов вала параметры оборудования непременно ухудшатся. При низкой индуктивности ток вызывает быстрый отклик, требуется в приводах для чтения оптических дисков.
  2. Потребляемый ток влияет на жесткость переключения меж соседними шагами. Более плавный режим требует снижения параметра. Большой потребляемый ток повышает крутящий момент. Таким образом, правильный выбор параметров загружает плечи проектировщика.
  3. Предельный уровень рабочих температур шаговых двигатель невелик. Верхняя граница находится в области 90 градусов Цельсия. Перегрев возможен на высоких крутящих моментах при значительном потреблении тока. Для разгрузки иногда применяется режим удержания, когда вал стопорится некоторое время.

Разновидности драйверов шаговых двигателей

В глобальном смысле выделяют три группы драйверов управления шаговыми двигателями:

  1. Униполярные формируют импульсы тока одного направления. Простой, неприхотливый метод, использование снижает крутящий момент на 40%. Специалисты объясняют феномен невозможностью одновременного питания всех обмоток, способных участвовать в движении. Методика подходит низким рабочим скоростям.
  2. Драйверы с гасящими резисторами сегодня считаются устаревшими. Позволяют выжать из двигателя максимум скорости. Большое количество энергии выделяется теплом на гасящих резисторах.
  3. Биполярные драйверы популярны сегодня. Игнорируя сложность конструкции, достигается высокая эффективность. Каждый драйвер содержит формирующий блок, составленный четырьмя транзисторами. Питание подается, минуя диоды, с резистора снимается сигнал обратной связи. Напряжение достигает определенного уровня, открываются нужные ключи для снижения. Форма сигнала принимает пилообразную форму, двигатель с высоким постоянством поддерживает заданную мощность.

vashtehnik.ru

Реактивные шаговые двигатели

Реактивные шаговые двигатели

У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.

При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.

Величина углового шага редукторного реактивного шагового двигателя определится выражением:

αш=360/КтZр

В выражении для KT величину n2 следует брать равной 1, т.к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.alt

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают. Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики

china.msk.ru

Реактивный шаговой двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Реактивный шаговой двигатель

Cтраница 1

Реактивные шаговые двигатели ШД5, ШД4 и ШД4Б, используемые в приводе металлорежущих станков, устроены аналогично.  [2]

Ротор реактивного шагового двигателя выполняют из магнитно-мягкого материала. На статоре обычно располагают трехфазную сосредоточенную обмотку якоря, фазы которой получают питание от электронного коммутатора. Шаговые двигатели этого типа называют также параметрическими. На рис. 10.17, а, б и в схематично показаны три такта работы реактивного шагового двигателя с трехфазной обмоткой якоря и шестью выступами на статоре; на роторе имеются только два выступа. Когда по фазе 1 проходит ток, ротор занимает положение, показанное на рис. 10.17, а. В следующий момент времени питание подается одновременно на фазы / и 2, и ротор поворачивается в положение ис.  [4]

Ротор реактивного шагового двигателя выполняют из магнитно-мягкого материала. На статоре обычно располагают трехфазную сосредоточенную обмотку якоря, фазы которой получают питание от электронного коммутатора. Шаговые двигатели этого типа называют также параметрическими. На рис. 7.17, о, б и в схематично показаны три такта работы реактивного шагового двигателя с трехфазной обмоткой якоря и шестью выступами на статоре; на роторе имеются только два выступа. Когда по фазе 1 проходит ток, ротор занимает положение, показанное на рис. 7.17, а. В следующий момент времени питание подается одновременно на фазы 1 и 2, и ротор поворачивается в положение ( рис. 7.17 6), соответствующее наибольшей магнитной проводимости для потока, созданного этими фазами.  [6]

Ротор реактивного шагового двигателя выполняют из магнитно-мягкого материала. На статоре обычно располагают трехфазную сосредоточенную обмотку возбуждения, фазы которой получают питание от электронного коммутатора. Шаговые двигатели этого типа называют также параметрическими.  [7]

На рис. 15 - 7 показано устройство трехфазного индукторного реактивного шагового двигателя.  [9]

Работу такого двигателя можно проиллюстрировать с помощью схемы конструкции реактивного шагового двигателя на рис. 22, если представить себе, что ротор выполнен не из ферромагнитного материала, а является многополюсным постоянным магнитом, каждый полюс которого соответствует каждому зубцу.  [10]

На рис. 9 - 15, а, б, в схематично показаны три такта работы реактивного шагового двигателя с трехфазной обмоткой и шестью выступами на статоре; на роторе имеются только два выступа. Когда по фазе / проходит ток возбуждения, ротор занимает положение, показанное на рис. 9 - 15, а. В следующий момент времени питание подается одновременно на фазы / и 2 и ротор поворачивается в положение ( рис. 9 - 15, б), соответствующее наибольшей магнитной проводимости для потока, созданного указанными обмотками.  [11]

При необходимости получения небольших единичных перемещений ротора и в то же время больших частот используются шаговые двигатели с пассивным ротором, которые делятся на реактивные и индукторные. Статор и ротор реактивного шагового двигателя имеют явно выраженные полюсы, называемые обычно зубцами.  [13]

При очень малом шаге ( 5 - Г) применяют реактивный редукторный шаговый двигатель с гребенчатыми выступами на статоре. В настоящее время наиболее широко применяют реактивные шаговые двигатели именно этого типа. Выпускаемые отечественной промышленностью реактивные редукторные шаговые двигатели имеют на статоре шесть полюсных выступов с гребенчатой зубцовой зоной.  [15]

Страницы:      1    2

www.ngpedia.ru

Реактивный шаговый электродвигатель

 

Изобретение относится к области электротехники, а именно к реактивным шаговым электродвигателям. Технический результат изобретения, заключающийся в повышении эргономичности электродвигателя, достигается путем того, что в реактивном шаговом электродвигателе, содержащем немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления плоский П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор, часть магнитов установлена напротив торцов зубцов ротора с меньшей угловой протяженностью, а часть магнитов установлена напротив торцов зубцов ротора с большей угловой протяженностью, причем магниты выполнены в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/5-1, намагничены вдоль оси цилиндра, немагнитный промежуток между торцами магнитов и ротора в 5-15 раз больше радиального зазора между ротором и магнитопроводом. 1 з.п. ф-лы, 6 ил.

Изобретение относится к миниатюрным электрическим машинам для точного приборостроения, в частности к шаговым электродвигателям реактивного типа для часов.

Известны реактивные шаговые электродвигатели, содержащие немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления магнитопровод, имеющий две пары одинаковых полюсов, ротор с двумя попарно одинаковыми зубцами и одинаковые постоянные магниты, фиксирующие ротор [см., например, патент Российской Федерации 2020700, кл. 5 H 02 K 37/00, 1987]. Наиболее близким к предлагаемому техническому решению является реактивный шаговый электродвигатель, содержащий немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления плоский П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор [см. А.С. СССР 1711301, кл. 5 H 02 K 37/00, 1987 г.]. Известные двигатели не позволяют уменьшить размер в плане, упростить и удешевить двигатели разной мощности. Целью предлагаемого изобретения является упрощение и удешевление технологии изготовления с возможностью уменьшения габарита в плане и унификации двигателей с различным вращающим и фиксирующим моментом. Поставленная цель достигается тем, что в реактивном шаговом электродвигателе, содержащем немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления плоский П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор, половина магнитов установлена напротив торцов зубцов ротора с меньшей угловой протяженностью и половина магнитов расположена напротив торцов зубцов ротора с большей угловой протяженностью, причем магниты выполнены в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/5...1, намагничены вдоль оси цилиндра; немагнитный промежуток между торцами магнитов и ротора в 5...15 раз больше радиального зазора между ротором и магнитопроводом; магниты, расположенные напротив торцов зубцов ротора с разной угловой протяженностью, намагничены встречно и замкнуты с торцов, противоположных обращенным к ротору магнитопроводящими кольцами или частями колец, размещенными в кольцевых проточках частей немагнитного корпуса. Изобретение поясняется примерами его реализации и чертежами, где на фиг. 1 показан разрез по стрелкам фиг.2; на фиг.2 - вид по стрелкам фиг.1, на фиг. 3 поясняется размещение и взаимная ориентация магнитов в корпусе при конфигурации магнитной системы двигателя согласно фиг.2 и 4, на фиг.5 и 6 поясняется принцип действия простейшего из исполнений двигателя. Шаговый электродвигатель содержит немагнитный корпус из двух частей 1 и 2, между параллельными торцами которых закреплен П-образный магнитопровод 3, несущий обмотку управления из двух включенных согласно одинаковых катушек 4 и имеющий на концах по паре одинаковых зубцов-полюсов 5. На валу 6 в опорах вращения 7 установлен ротор 8 с четырьмя попарно одинаковыми зубцами 9 и 10. Фиксирующие ротор постоянные магниты 11 и 12 установлены напротив торцов зубцов ротора 9 и 10 в отверстиях 13 частей корпуса 1 и 2. В простейшем случае двигатель может быть выполнен с двумя магнитами. Один из магнитов установлен напротив торца зубца 9 ротора 8 с меньшей угловой протяженностью, а другой магнит установлен напротив торца зубца 10 с большой угловой протяженностью. Отверстия 13 для установки магнитов 11 и 12 в частях корпуса 1 и 2 могут быть выполнены со стороны внешних по отношению к ротору торцов корпуса, симметрично относительно оси вращения ротора и (или) симметрично относительно торцов ротора. Магниты выполнены в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/5...1 и намагничены вдоль оси цилиндра. При этом немагнитный промежуток, образованный между торцами магнитов 11, 12 и зубцами 9, 10 ротора 8, в 5...15 раз больше, чем радиальный зазор между ротором 8 и зубцами - полюсами 5 магнитопровода 3. Магниты, расположенные напротив торцов зубцов ротора с разной угловой протяженностью, намагничены встречно и замкнуты с торцов, противоположных обращенных к ротору магнитопроводящими кольцами 14 или частями кольца 15 (см. фиг. 1 - кольца 14 на фиг.3, часть кольца 15, а магниты 11 и 12 - под частью кольца 15). При этом магнитопроводящие кольца 14 или, соответственно, части колец 15, замыкающие разнополярные торцы магнитов 11, 12 с внешней стороны частей корпуса 1, 2, установлены в кольцевых проточках 16 частей корпуса 1, 2 и закреплены там любым известным способом. Магниты 11, 12 и полюса магнитопровода занимают угловую протяженность в половину угловой протяженности впадин между полюсами магнитопровода. Протяженность углового промежутка между краями полюсов и магнитов в плане - половина угловой протяженности полюсов. Двигатель работает следующим образом. При отсутствии тока в обмотке из катушек 4 зубцы 9 и 10 зафиксированы в положении, например, согласно фиг.2 относительно зубцов-полюсов 5 магнитопровода 3 благодаря, по меньшей мере, одной паре магнитов 11 и 12. При появлении тока в катушках 4 зубцы 10 и 9 ротора 8 стремятся занять положение согласно фиг.5. По окончании импульса тока ротор перемещается в положение согласно фиг.6 под действием момента фиксации магнитов 11, 12. Размещение, по меньшей мере, одной пары магнитов в торцевых отверстиях, по меньшей мере, одной части корпуса позволяет уменьшить размер двигателя в плане. При этом за счет магнитов с высокой энергией (например, из самарий - кобальта) можно ограничить аксиальный размер магнита в пределах 1/5...1 от диаметра. При этом части корпуса с магнитами не будут выступать за толщину намотки катушек 4. Благодаря встречному намагничиванию магнитов, расположенных напротив зубцов ротора с разной угловой протяженностью с замыканием торцов магнитов, противоположных относительно ротора, магнитопроводящим кольцом или его частью, с расположением колец в кольцевых проточках немагнитного корпуса, обеспечивается наиболее полное использование двигателей с различным уровнем вращающего момента.

Формула изобретения

1. Реактивный шаговый электродвигатель, содержащий немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления плоский П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор, отличающийся тем, что часть магнитов установлена напротив торцов зубцов ротора с меньшей угловой протяженностью, а часть магнитов установлена напротив торцов зубцов ротора с большей угловой протяженностью, причем магниты выполнены в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/51, намагничены вдоль оси цилиндра, немагнитный промежуток между торцами магнитов и ротора в 515 раз больше радиального зазора между ротором и магнитопроводом, магниты, расположенные напротив торцов зубцов ротора с разной угловой протяженностью, намагничены встречно и замкнуты с торцов, противоположных обращенным к ротору магнитопроводящими кольцами или частями колец, размещенными в кольцевых проточках частей немагнитного корпуса. 2. Реактивный шаговый электродвигатель по п.1, отличающийся тем, что магниты, размещенные с противоположных торцов ротора, обращены к зубцам ротора полюсами противоположной полярности.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

www.findpatent.ru

Синхронные машины и специальные типы синхронных машин. Реактивный двигатель. Шаговый двигатель?

РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Принцип действия и устройство. Реактивным двигателемназывают синхронный двигатель с явнополюсным ротором без обмотки возбуждения и постоянных магнитов, у которого магнитный поток создается реактивным током, проходящим по обмотке статора. Вращающий момент в таком двигателе возникает из-за различия магнитных проводимостей по продольной и поперечной осям. При этом явновыраженные полюсы ротора стремятся ориентироваться относительно поля так, чтобы магнитное сопротивление для силовых линий поля было минимальным. Вследствие этого появляются тангенциальные силы fт (рис. 7.5), образующие вращающий момент, и ротор вращается в том же направлении и с той же частотой вращения n1 , что и поле статора.

Обмотка статора в двигателях общего применения распределенная, трех- или двухфазная с конденсатором в одной из фаз; она создает вращающееся магнитное поле. Ротор двигателя может иметь различные конструктивные исполнения. На рис. 7.6,а приведено наиболее простое устройство ротора; его собирают из стальных листов аналогично роторам асинхронных двигателей; листы имеют впадины, обеспечивающие различные индуктивные сопротивления по осям dи q. Для пуска в ход двигателя на роторе предусмотрена короткозамкнутая обмотка типа «беличья клетка». Однако двигатели с роторами этой конструкции имеют низкие технико-экономические показатели.

Более высокие показатели получены при использовании современных усовершенствованных конструкций ротора (рис. 7.6,б и в), в которых пазы или вырубки в листах заливают алюминием. Реактивные двигатели с роторами новой конструкции имеют приблизительно такие же технико-экономические показатели, как и другие типы синхронных и асинхронных микродвигателей.

Рис. 7.5. Схема возникновения реактивного момента

 

Рис. 7.6. Роторы реактивных двигателей: 1— пакет ротора; 2— обмотка типа «беличья клетка»; 3— вырезы, залитые алюминиевым сплавом

Электромагнитный момент и угловые характеристики. Электромагнитный момент реактивного синхронного двигателя можно определить по общей формуле (6.36) для синхронной машины, при работе с током возбуждения, равным нулю. В этом случае ЭДС Е0 = 0 и (6.36) принимает вид

(7.4)

М = Рэм/ω1= [mU2/(2ω1)] (1/Xq+ 1/Xd) sin2θ.

Однако при выводе (6.36) не учтены потери мощности ΔPэл1 в обмотке якоря и принято, что электромагнитная мощность Рэм равна мощности Pэл , поступающей в обмотку якоря (в двигателе) или отдаваемой ею (в генераторе). В машинах большой и средней мощности это допущение не вносит заметных погрешностей в основные положения теории работы синхронных машин, так как активное сопротивление Ra обмотки якоря у них значительно меньше реактивных сопротивлений Xd и Хq . В микромашинах при Рном < 0,5 кВт активное сопротивление Ra имеет такой же порядок, как и реактивные сопротивления, вследствие чего потери мощности в нем оказывают влияние на электромагнитный момент, а следовательно, и угловую характеристику. Из векторной

Рис. 7.7. Векторная диаграмма реактивного двигателя (а),его угловые характеристики при различных значениях Rа /Xd(б)

диаграммы (рис. 7.7, а) синхронного двигателя, работающего без возбуждения при Е0 = 0 и учете активного сопротивления якоряRa (она может быть построена на основании диаграммы, приведенной на рис. 6.37,б), можно получить формулу для определения электромагнитного момента:

(7.5)

M = Pэм = mU2(Xd- Xq) [(XdXq- Ra2)sin2θ - 2Ra(Xd- Xq)sin2θ + 2RaXq].
ω1 2ω1(XdXq+ Ra2)

С увеличением Ra максимальный момент Мmax уменьшается, и угловая характеристика (рис. 7.7,б) сдвигается в область меньших углов θ. Максимальный момент реактивного двигателя соответствует углу θ = 25 ÷ 45°.

Устойчивость работы двигателя зависит от значения удельного синхронизирующего моментаМсн.уд — электромагнитного момента, приходящегося на один градус угла θ. Этот момент обычно определяют при значениях θ, близких нулю, т. е. при Мсн.уд =(dM/dθ)θ = 0. Значения удельного синхронизирующего момента Мсн.уд зависят от приложенного напряжения U и отношения Xq/Xd.

Начальный пусковой момент у реактивных двигателей, так же как и у синхронных двигателей с обмоткой возбуждения. и постоянными магнитами, равен нулю. Следовательно, peaктивные двигатели должны иметь пусковую обмотку типа «беличья клетка» для асинхронного пуска. Эта обмотка является одновременно демпферной, которая способствует быстрому затуханию колебаний ротора.

Преимущества и недостатки реактивного двигателя. Реактивные двигатели проще по конструкции, надежнее в работе и дешевле по сравнению с синхронными двигателями с обмоткой возбуждения на роторе; при их использовании не требуется иметь источник постоянного тока для питания цепи возбуждения. Основными недостатками реактивного двигателя являются сравнительно небольшой пусковой момент и низкий cos φ, не превышающий обычно 0,5. Это объясняется тем, что магнитный поток создается только за счет реактивного тока обмотки якоря, значение которого из-за повышенного сопротивления магнитной цепи машины довольно велико.

Шаговые (импульсные) двигатели (ШД) – представляют собой синхронные микродвигатели, у которых питание фаз обмотки якоря осуществляется путём подачи импульсов напряжения от какого либо коммутатора, например, электронного. Под воздействием каждого такого импульса ротор двигателя совершает определённое угловое перемещение, называемое шагом. В качестве ШД обычно применяют синхронные двигатели без обмотки возбуждения на роторе: с постоянными магнитами, реактивные и индукторные (с подмагничиванием). Наибольшее применение ШД получили в электроприводах с программным управлением.



infopedia.su

Реактивный шаговый электродвигатель

 

Изобретение относится к области электротехники и касается особенностей выполнения шаговых двигателей. Сущность изобретения состоит в том, что между торцами частей 1 и 2 немагнитного корпуса установлен П-образный магнитопровод 3, несущий обмотку управления 4 и имеющий на концах по паре одинаковых полюсов 5. Ротор 8 выполнен с четырьмя попарно одинаковыми зубцами 9 и 10. Фиксирующие ротор постоянные магниты установлены в корпусе. При этом часть магнитов установлена напротив торцов зубцов ротора с меньшей угловой протяженностью, а часть магнитов установлена напротив торцов зубцов ротора с большей угловой протяженностью. Технический результат изобретения состоит в упрощении и удешевлении технологии изготовления при одновременном уменьшении габаритов и обеспечении унификации двигателей. 9 з.п. ф-лы, 6 ил.

Изобретение относится к миниатюрным электрическим машинам для точного приборостроения, в частности к шаговым электродвигателям реактивного типа для часов.

Известны реактивные шаговые электродвигатели, содержащие немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления магнитопровод, имеющий две пары одинаковых полюсов, ротор с двумя попарно одинаковыми зубцами и одинаковые постоянные магниты, фиксирующие ротор [см., например, патент Российской Федерации 2020700, кл. 5 H 02 K 37/00, 1987]. Наиболее близким к предлагаемому техническому решению является реактивный шаговый электродвигатель, содержащий немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления плоский П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор, которые установлены в корпусе [см. А.с. СССР 1711301, кл. 5 H 02 K 37/00, 1987 г.]. Известные двигатели не позволяют уменьшить размер в плане, упростить и удешевить двигатели разной мощности. Техническим результатом изобретения является упрощение и удешевление технологии изготовления с возможностью уменьшения габарита в плане и унификации двигателей. Указанный результат достигается тем, что в реактивном шаговом электродвигателе, содержащем немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления плоский П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор, которые установлены в корпусе, часть магнитов установлена напротив торцов зубцов ротора с меньшей угловой протяженностью, а часть магнитов установлена напротив торцов зубцов ротора с большей угловой протяженностью. Магниты могут быть установлены симметрично как относительно оси вращения ротора, так и относительно торцов ротора. Магниты предпочтительно выполнить в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/5...1 и намагниченных вдоль цилиндра. Немагнитный промежуток между торцами магнитов и ротора целесообразно выполнить в 5...15 раз больше радиального зазора между ротором и магнитопроводом. Ротор может быть выполнен с образованием зубцов разной угловой протяженности в аксиальном направлении, части ротора могут быть выполнены одинаковыми и развернуты друг относительно друга на четверть оборота. По меньшей мере, часть магнитов может быть установлена со стороны внешних по отношению к ротору торцов частей корпуса. Изобретение поясняется простейшим из примеров его реализации. На фиг. 1 показан разрез по стрелкам фиг.2, на фиг.2 - вид со стрелками фиг. 1, на фиг.3 поясняется размещение числа магнитов в корпусе при конфигурации двигателя согласно фиг.2 и 4, на фиг.5 и 6 поясняется принцип действия простейшего из исполнений двигателя. Шаговый двигатель содержит немагнитный корпус из двух частей 1 и 2, между параллельными торцами которых закреплен П-образный магнитопровод 3, несущий обмотку управления из двух включенных согласно одинаковых катушек 4 и имеющий на концах по паре одинаковых зубцов-полюсов 5. На валу 6 в опорах вращения 7 установлен ротор 8 с четырьмя попарно одинаковыми зубцами 9 и 10. Фиксирующие ротор постоянные магниты 11 и 12 установлены напротив торцов зубцов ротора 9 и 10 в отверстиях 13 частей корпуса 1 и 2. В простейшем случае двигатель может быть выполнен с двумя магнитами. Один из магнитов установлен напротив торца зубца 9 ротора 8 с меньшей угловой протяженностью, а другой магнит установлен напротив торца зубца 10 ротора 8 с большой угловой протяженностью. Отверстия 13 для установки магнитов в частях корпуса 1 и 2 могут быть выполнены со стороны внешних по отношению к ротору торцов корпуса симметрично относительно оси вращения ротора и/или симметрично относительно торцов ротора. Магниты, для простоты, предпочтительно выполнить в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/5...1 и намагниченных вдоль оси цилиндра. При этом немагнитный промежуток, образованный между торцами магнитов 11, 12 и зубцами 9, 10 ротора 8, в 5...15 раз больше, чем радиальный зазор между ротором 8 и зубцами-полюсами 5 магнитопровода 3. В одной из модификаций двигателя зубцы 9 и 10 могут быть смещены в аксиальном направлении. В этом случае, по меньшей мере, по одному магниту 11 и 12 можно разместить параллельно напротив друг друга в частях 1 и 2 корпуса. При таком исполнении ротор может быть выполнен из двух одинаковых частей, каждая из которых имеет зубцы 9 и 10. При этом части ротора развернуты по отношению друг к другу на 1/4 оборота. Соотношение угловой протяженности зубцов 9 и 10 - 1:2, а впадины между зубцами - 2:1. Магниты 11, 12 и полюса 5 магнитопровода занимают угловую протяженность в половину угловой протяженности впадин между полюсами магнитопровода. Протяженность углового промежутка между краями полюсов и магнитов - половина протяженности полюсов. Двигатель работает следующим образом. При отсутствии тока в обмотке из катушек 4 зубцы 9 и 10 зафиксированы в положении, например, согласно фиг.2 относительно зубцов-полюсов 5 магнитопровода 3 благодаря, по меньшей мере, одной паре магнитов 11 и 12. При появлении тока в катушках 4 зубцы 10 и 9 ротора 8 стремятся занять положение согласно фиг.5, если исходным положением является положение ротора согласно фиг.2. Тогда по окончании импульса тока ротор перемещается в положение согласно фиг.6 под действием момента фиксации магнитов 11, 12. Из исходного положения ротора согласно фиг.6 следующее шаговое перемещение ротора происходит также, как описано выше. Размещение всего лишь одной пары магнитов в торцевых отверстиях, по меньшей мере, одной части корпуса позволяет уменьшить размер двигателя в плане. При этом за счет магнитов с высокой энергией (например, из самарий-кобальта) можно ограничить аксиальный размер магнита в пределах 1/5...1 от диаметра. При этом части корпуса с магнитами не будут выступать за толщину намотки катушек 4. Варьируя количество и взаиморасположение магнитов в отверстиях 13 частей корпуса 1 и 2, можно обеспечить изменение в широких пределах величины фиксирующего момента. За счет этого один и тот же двигатель может быть выполнен для работы с разным уровнем вращающего момента и потребляемого тока. Включение катушек последовательно или параллельно на разное напряжение также позволяет обеспечить унификацию. Размещение магнитов с внешней по отношению к торцам ротора стороны частей корпуса обеспечивает унификацию и исполнение двигателей с разным уровнем момента и потребления из одних и тех же деталей. В случае простейшего из вариантов реализации изобретения, который подробно описан в описании заявки, оба одинаковых магнита установлены на одной из частей корпуса со смещением друг относительно друга по окружности оси вращения ротора на четверть оборота, причем ось каждого из магнитов установлена в одной из плоскостей симметрии корпуса, в которой расположена ось вращения ротора.

Формула изобретения

1. Реактивный шаговый электродвигатель, содержащий немагнитный корпус из двух частей, между параллельными торцами которых закреплен несущий обмотку управления П-образный магнитопровод, имеющий на концах по паре одинаковых полюсов, ротор с четырьмя попарно одинаковыми зубцами, по меньшей мере, два одинаковых постоянных магнита, фиксирующих ротор, которые установлены в корпусе, отличающийся тем, что часть магнитов установлена напротив торцов зубцов ротора с меньшей угловой протяженностью, а часть магнитов установлена напротив торцов зубцов ротора с большей угловой протяженностью. 2. Шаговый электродвигатель по п.1, отличающийся тем, что магниты установлены симметрично относительно оси вращения ротора. 3. Шаговый электродвигатель по любому из пп.1 и 2, отличающийся тем, что магниты установлены симметрично относительно торцов ротора. 4. Шаговый электродвигатель по любому из пп.1-3, отличающийся тем, что магниты выполнены в виде цилиндров с соотношением размера вдоль оси к диаметру в пределах 1/5-1 и намагничены вдоль оси цилиндра. 5. Шаговый электродвигатель по любому из пп.1-4, отличающийся тем, что немагнитный промежуток между торцами магнитов и ротора в 5-15 раз больше радиального зазора между ротором и магнитопроводом. 6. Шаговый электродвигатель по любому из пп.1-5, отличающийся тем, что ротор выполнен с образованием зубцов разной угловой протяженности в аксиальном направлении. 7. Шаговый электродвигатель по любому из пп.1-6, отличающийся тем, что ротор в аксиальном направлении выполнен из двух частей, развернутых по отношению друг к другу на четверть оборота. 8. Шаговый электродвигатель по любому из пп.1-7, отличающийся тем, что части ротора одинаковы. 9. Шаговый электродивигатель по любому из пп.1-8, отличающийся тем, что, по меньшей мере, часть магнитов установлена со стороны внешних по отношению к ротору торцов частей корпуса. 10. Шаговый электродвигатель по любому из пп.1, 4 и 5, отличающийся тем, что оба магнита установлены на одной из частей корпуса со смещением друг относительно друга по окружности оси вращения ротора на четверть оборота, причем ось каждого из магнитов установлена в одной из плоскостей симметрии корпуса, в которой лежит ось.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

www.findpatent.ru