Принцип и схема работы двигателя постоянного тока с параллельным возбуждением. Схема двигателя постоянного


Какие существуют схемы подключения электродвигателей постоянного тока

В домашнем хозяйстве редко встретишь мотор, работающий на постоянном токе. Зато они всегда устанавливаются в детских игрушках, которые летают, ездят, шагают и т.д. Всегда они стоят в автомобилях: в различных приводах и вентиляторах. В электротранспорте чаще всего используют тоже их.

Другими словами, применяются двигатели постоянного тока там, где требуется достаточно широкий диапазон регулирования скорости и точность ее поддержания.

Электродвигатели постоянного тока

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры.  Индуктор, состоящий из добавочных и главных полюсов, и станины,  предназначен  для создания  магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к  рабочей обмотке, образуют магнитную систему.  Коллектор – это насаженный на вал двигателя цилиндр, собранный  из изолированных друг от друга медных пластин. К его выступам припаиваются  концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему  обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря  происходит  изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности  щеток распределяет неравномерно ток, что приводит к искрению.

Частота вращения  – одна из важнейших его характеристик. Ее регулировать можно тремя способами:  изменяя поток возбуждения, изменяя величину подводимого напряжения к двигателю, изменяя сопротивление в якорной цепи.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения  регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах. 

Торможение электрического двигателя постоянного тока

Для торможения  электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им  механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной  момент на валу.

Преимущества двигателей постоянного тока

Сравнивая их с асинхронными моторами, нужно отметить отличные пусковые качества, высокую (до 3000 об/мин) частоту вращения, а также хорошую регулировку. Из недостатков отметить можно? Сложность конструкции, низкую надежность, высокую стоимость и затраты на ремонт и обслуживание.

Принцип действия ДПТ

ДПТ, как и любой современный мотор, работает на основе «Правила левой руки», с которым все знакомы еще со школы и  закона Фарадея. При подключении тока к нижней обмотке якоря в одном направлении, а к обмотке верхней – в другом, якорь начинает вращаться, а уложенные в его пазах проводники – выталкиваться магнитным полем статора или обмоток корпуса двигателя постоянного тока. Вправо выталкивается нижняя часть, а влево – верхняя. В результате якорь вращается до тех пор, пока его части не поменяются местами. Чтобы добиться непрерывного вращения, необходимо полярность обмотки якоря регулярно менять местами. Как раз этим и занимается коллектор, коммутирующий при вращении обмотки якоря. На коллектор от источника  подается напряжение через пару прижимных щеток из графита.

Принципиальные схемы ДПТ

Двигатель переменного тока подключается просто, в отличие от ДПТ. Обычно у таких двигателей высокой и средней мощности имеются отдельные выводы в клеммной коробке (от обмотки и якоря). На  якорь обычно подается полное напряжение, а на обмотку —  ток, регулировать который можно реостатом или  напряжением переменным. От величины тока, имеющегося на обмотке возбуждения, прямопропорционально зависят обороты двигателя переменного тока.

В зависимости от того, какая используется схема подключения электродвигателя постоянного тока, двигатель электрический может быть постоянного тока, разделяют на самовозбуждающиеся  и с независимым возбуждением (от отдельного источника).

 

Схема для  подключения двигателя с возбуждением параллельным

Она аналогична предыдущей, но не имеет отдельного источника питания. 

Когда требуется большой пусковой ток, применяют двигатели с возбуждением последовательным: в городском электротранспорте (троллейбусах, трамваях, электровозах). 

Токи обоих обмоток в этом случае одинаковы. Недостаток – требуется постоянная нагрузка на вал, поскольку при ее уменьшении на 25%, резко увеличивается частота вращения и происходит отказ двигателя.

Есть еще моторы, которые крайне редко используются — со смешанным возбуждением. Их схема представлена ниже. 

Электродвигатель постоянного тока с параллельным возбуждением

Под понятием «возбуждение» понимают создание в электрических машинах магнитного поля, которое необходимо, чтобы заработал двигатель. Схем возбуждения несколько:

  • С независимым возбуждением (питание обмотки происходит от постороннего источника).
  • Электродвигатель постоянного тока с параллельным возбуждением (источник питания  обмотки возбуждения и  якоря  включены параллельно) – шунтовые.
  • С последовательным возбуждением (обе обмотки включены последовательно) – сериесные.
  •  Со смешанным возбуждением – компаундные.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли  бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий  в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления  СИФУ.
  • Регулятора
  • Защиты.

 

Где купить электродвигатель

Многие компании с мировыми именами выпускают сегодня электродвигатель постоянного тока 220 В. Купить его можно в интернет — магазинах, менеджеры которых предоставят исчерпывающую онлайн информацию, касающуюся выбранной модели. Большой выбор моделей таких двигателей на сайте  http://ru.aliexpress.com/w/wholesale-brushless-dc-motor.html, в каталоге которого можно ознакомиться со стоимостью моделей, их описанием и пр. Если даже в каталоге нет интересующего двигателя, можно заказать его доставку.

motocarrello.ru

32. Основные схемы включения дпт. Независимое возбуждение. Схемы подключения двигателей постоянного тока

Как подключить двигатель постоянного тока?

Двигатели постоянного тока используется в промышленности лишь в том случае, когда требуется регулировать скорость вращения очень точно. В данной публикации подробно рассмотрим методы подключения, а также принцип работы двигателя постоянного тока.

Стоит отметить, что данная статья является ознакомительной. Она предоставляет лишь поверхностную информацию в отношении подключения электрического двигателя.

Как работает электрический двигатель?

Ниже будут представлены два элемента, без которых электрический двигатель существовать не может:

  • статор;
  • ротор.

Статор – неподвижная часть электрического двигателя. В нем располагаются пазы, куда и укладывается электрическая обмотка. В зависимости от количества витков изменяются технические характеристики двигателя.

Ротор – это подвижная часть электрического двигателя. Стоит отметить огромную важность воздушного зазора между статором и ротором. И речь идет не только о том, чтобы ротор вращался свободно.

Именно в воздушном зазоре возникает магнитный поток, который начинает вращать ротор.

Различные схемы подключения обмоток

Существует несколько различных систем подключения: с независимым возбуждением, с последовательным возбуждением, с параллельным возбуждением, смешанная.

В зависимости от этих типов подключения будут зависеть пусковые характеристики двигателя постоянного тока.

В завершение следует несколько слов сказать и о сфере применения двигателей постоянного тока. Дело в том, что ДТП является наиболее популярным электрическим двигателем. Он широко используется не только в промышленности, но и в быту.

Вряд ли стоит объяснять, что любой двигатель может быть превращен в генератор. Генераторы постоянного тока используется в автомобилях. Кроме того, практически все малогабаритные двигатели, которые используются в быту от аккумулятора, представляют собой не что иное, как двигатель постоянного тока.

Как уже было сказано выше, широкое распространение двигатель постоянного тока получил за счет того, что имеется простая возможность регулировки скорости его вращения. Осуществляется это при помощи изменения сопротивления якоря.

Смотрите также:

Канал «Советы электрика» расскажет о принципах функционирования двигателя постоянного тока:

По материалам: http://www.servomh.ru/elektrodvigateli/postoyannogo-toka

euroelectrica.ru

32. Основные схемы включения дпт. Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Схема параллельного возбуждения

Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений

33. Характеристика дпт с независимым возбуждением.

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Рисунок 1

Механическая характеристика двигателя постоянного тока независимого возбуждения (дпт нв)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

где: n0 — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n0 (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в

xn----7sbeb3bupph.xn--p1ai

Двигатель постоянного тока: принцип работы, общее устройство

В тех приводах, где необходим широкий диапазон регулировки скоростей используется электрический двигатель постоянного тока. Он позволяет с высокой точностью поддерживать скорость вращения и осуществлять необходимые регулировки.

Устройство электродвигателей постоянного тока

В основе работы данного вида двигателей лежит электромагнитная индукция. Если проводник, по которому протекает электрический ток, поместить в магнитное поле, то, согласно правила левой руки, на него будет воздействовать определенная сила.

Когда проводник пересекает магнитные силовые линии, в нем производится наведение электродвижущей силы, направленной в сторону, противоположную движению тока. В результате, получается обратное противодействие. Происходит преобразование электрической мощности в механическую с одновременным нагреванием проводника.

Вся конструкция устройства состоит из якоря и индуктора, между которыми находится воздушный зазор. Индуктор создает неподвижное магнитное поле и включает в себя полюса главные и добавочные, закрепляемые на станине. Обмотки возбуждения располагаются на главных полюсах и создают магнитное поле. Добавочные полюса содержат специальную обмотку, улучшающую условия коммутации.

В состав якоря входит магнитная система. Ее основными элементами являются рабочая обмотка, укладываемая в пазы, отдельные металлические листы и коллектор, с помощью которого к рабочей обмотке подводится постоянный ток.

Коллектор изготавливается в виде цилиндра и насаживается на вал электродвигателя. К его выступам припаиваются концы якорной обмотки. Электрический ток снимается с коллектора при помощи щеток, закрепленных в специальных держателях и зафиксированных в определенном положении.

Основные процессы: пуск и торможение

Каждый двигатель постоянного тока осуществляет два основных процесса пуск и торможение. В самом начале пуска якорь находится в неподвижном состоянии, напряжение и сила, противоположная ЭДС, равны нулю. При незначительном сопротивлении якоря, значение пускового тока превышает номинальное, примерно в 10 раз. Во избежание перегрева обмотки якоря при пуске, применяются специальные пусковые реостаты. При мощности двигателей до 1-го киловатта, осуществляется прямой запуск.

В электродвигателях постоянного тока применяется несколько способов торможения. При динамическом торможении обмотка якоря замыкается коротко, либо с помощью резисторов. Этот способ обеспечивает наиболее точную остановку. Рекуперактивное торможение является наиболее экономичным. Здесь происходит изменение направления ЭДС на противоположное.

Торможение противовключением производится изменением полярности тока и напряжения в якорной обмотке, что позволяет создать эффективный тормозящий момент.

Как работает двигатель постоянного тока

electric-220.ru

Двигатель постоянного тока с параллельным возбуждением

Существует несколько возможных разновидностей построения эл моторов, работающих от источника постоянного напряжения. Принцип их действия одинаков, а отличия заключаются в особенностях подключения обмотки возбуждения (ОВ) и якоря (Я).

Свое название эл двигатель постоянного тока с параллельным возбуждением получил потому, что его обмотка Я и ОВ соединяются друг с другом именно таким образом. Электродвигатель такой разновидности обеспечивает нужные режимы, превосходя изделия последовательного и смешанного типов тогда, когда требуется практически постоянная скорость его функционирования.

ОГЛАВЛЕНИЕ

  • Построение двигателя и область его применения
  • Поведение электромотора при изменении нагрузок
  • Разновидности подходов к регулированию частоты вращения
  • Двигатель с независимым возбуждением
  • Заключение

Построение двигателя и область его применения

Схема электродвигателя рассматриваемого типа изображена ниже.

  • общий ток, потребляемый эл мотором от источника, составляет I = IЯ + IВ, где IЯ, IВ – токи через якорь, обмотку возбуждения, соответственно;
  • одновременно IВ не зависит от IЯ, то есть не зависит от нагрузки.

Устройство применяется тогда, когда пуск не требует обеспечения высокого момента, то есть когда режимы эксплуатации приводных механизмов не предполагают создание больших стартовых нагрузок. Это типично для станков и вентиляторов.

Для практики ценны такие полезные тяговые параметры подобных эл механизмов как

  • устойчивость работы при колебаниях нагрузки;
  • высокая экономичность из-за того, что IЯ не протекает через ОВ.

Пуск при недостаточном моменте обеспечивается переходом на схему смешанного типа.

Поведение электромотора при изменении нагрузок

Механическая характеристика показывает устойчивость работы электромотора в широком диапазоне изменения нагрузок, описывая зависимость момента, создаваемого эл двигателем, от скорости функционирования вала.

Тяговые характеристики механизма рассматриваемого типа позволяют сохранить величину момента при значительных изменения количества оборотов. Обычно тяговые параметры агрегата должен обеспечивать уменьшение этого параметра не более чем на 5 %. Несложное исследование демонстрирует: тормозные параметры из-за обратимости процессов оказываются аналогичными. Эти положения распространяются также на случай применения смешанного возбуждения.

Говоря иными словами, для такого эл мотора характерна жесткая характеристика. Такой характер работы считается важным преимуществом агрегата рассматриваемого типа.

Разновидности подходов к регулированию частоты вращения

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка...

Принцип действия параллельного включения обмоток обеспечивает плавный пуск в сочетании с  большим диапазоном изменения оборотов в процессе работы с помощью реостатов. Они же обеспечивают нормальный пуск двигателя ограничением тока.

Для агрегатов параллельного типа используются способы управления скоростью функционирования изменением:

  • магнитного потока главных полюсов;
  • сопротивления цепи якоря;
  • подаваемого на него напряжения.

Объектом воздействия являются обмотка возбуждения, обмотка якоря, его рабочее напряжение.

Изменение магнитного потока осуществляется с помощью последовательного реостата RР. При увеличении его сопротивления ОВ пропускает меньший ток, что сопровождается уменьшением магнитного потока. Внешним проявлением такого действия становится наращивание оборотов Я на холостом ходу. Исследование показывает, что происходит увеличение угла наклона характеристики.

Второй принцип основан на включении в цепь питания якоря дополнительного последовательного регулировочного реостата. При увеличении его сопротивления скорость вращения Я уменьшается, тогда как его естественная механическая характеристика приобретает больший наклон. Из-за последовательного включения с основной обмоткой реостата дополнительного сопротивления, на котором рассеивается значительная мощность, происходит заметное падение экономичности.

Третий принцип сопровождается определенным усложнением схемных решений и требует применения отдельного регулируемого источника питания с сохранением возможности раздельного регулирования. В случае его применения в реальных условиях возможно только уменьшение частоты вращения вала.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения реализует третий подход к регулированию и интересен тем, что ОВ и М питаются от разных источников, схема его представлена ниже.

Обмотки простейшего электромотора параллельного независимого возбуждения

Для моторов в данном конструктивном исполнении Iв устанавливается неизменным, а меняется только напряжение, приложенное к М. Это сопровождается изменением числа оборотов на холостом ходу, но жесткость характеристики изменений не претерпевает.

Принцип работы такого агрегата за счет независимого функционирования двух источников оказывается более сложным. Однако, его применение дает такие важные для практики преимущества как

  • плавное экономичное управление скоростью функционирования с большой глубиной;
  • пуск мотора при пониженном напряжении без реостата.

В случае, если пуск происходит на нормальном напряжении, реостат ограничивает величину Iв.

Исследование показывает, что максимальное количество оборотов ограничено только сопротивлением М, а минимальное — условиями отвода выделяемого тепла в процессе работы.

Характеристики в части энергопотребления и скорости срабатывания управляющей системы улучшаются в случае последовательного включения с М различных тиристорных регуляторов. Для установки числа оборотов вала и их стабилизации в процессе приведения в движение различных механизмов находят применение различные способы. Их общим характерным признаком является включение тиристорного регулятора в цепь частотной отрицательной обратной связи. Пуск такого агрегата требует реализации специальных процедур.

Заключение

Двигатель с параллельным возбуждением является очень гибким приводным механизмом и может использоваться в очень большом количестве областей там, где не требуются большие моменты при старте. Имеет несложные и надежные цепи регулирования скорости вращения, отличается простотой запуска.

electricvdele.ru

Возбуждение двигателя постоянного тока

Наличие обмотки возбуждения (ОВ) у двигателя постоянного тока позволяет осуществлять различные схемы подключения. В зависимости от того как включена ОВ, различают двигатели с независимым возбуждением, с самовозбуждением, которое делится на последовательное, параллельное и смешанное.

Двигатель с независимым возбуждением

В ДПТ с независимым возбуждением обмотку возбуждения подключают к отдельному источнику питания (рис. 1). Это может быть связано с различными напряжениями возбуждение Uв и напряжения цепи якоря U. При данной схеме подключения ОВ не имеет электрической связи с обмоткой якоря. Для уменьшения потерь в ОВ, и создания необходимой МДС необходимо уменьшить ток возбуждения, увеличив число витков. Обмотку возбуждения выполняют из малого числа витков, так чтобы ток Iв составлял 2…5% от Iя. Выбор данной схемы возбуждения для двигателя зависит от свойств электропривода. 

ДПТ с параллельным возбуждением

По сути, схема подключения ОВ с параллельным возбуждением(рис.2) аналогична схеме с независимым возбуждением. Свойства двигателя при подключении по обеим схемам одинаковы. Плюсом данного вида подключения является то, что отпадает необходимость в отдельном источнике питания. 

ДПТ с последовательным возбуждением

При подключении по данной схеме ОВ соединена последовательно цепи якоря (рис.3), при этом ток якоря равен току возбуждения. В связи с этим ОВ изготавливают из провода толстого сечения. Данную схему используют, если требуется обеспечить большой пусковой момент. При уменьшении нагрузки на валу меньше 25% от номинальной, частота вращения резко увеличивается и достигает опасных для двигателя значений. Характеристика ДПТ с последовательным возбуждением “мягкая”.

ДПТ со смешанным возбуждением

ДПТ со смешанным возбуждением (рис.4) имеет две ОВ, одна из которых соединена последовательна, а другая параллельно якорной цепи. При согласном соединении обмоток с увеличением нагрузки на валу растёт магнитный поток, что приводит к уменьшению частоты вращения. При встречном соединении суммарный магнитный поток с увеличением нагрузки уменьшается, что приводит к резкому увеличению частоты вращения. Это приводит двигатель к нестабильному режиму работы, поэтому последовательную обмотку выполняют из малого числа витков, чтобы при увеличении нагрузки магнитный поток снижался незначительно, тем самым стабилизируя работу двигателя.

  • Просмотров: 1021
  • Похожие публикации

    electroandi.ru

    Схема электродвигателя постоянного тока

    Электродвигатель постоянного тока - проблема выбора 
    Электродвигатель постоянного тока, как известно, работает на основе использования принципа магнитной индукции. При этом основное и важнейшее преимущество электродвигателя постоянного тока заключается в возможности плавной регулировки в нем скорости вращения в различных диапазонах с высокой точностью.

    Вследствие этого данный тип электродвигателя приобрел широкое распространение на рельсовом и безрельсовом электрифицированном транспорте, в подъемных кранах, на прокатных станах, в устройствах автоматики и т. п. И, хотя сфера распространения электродвигателя постоянного ока выглядит достаточно внушительной, нельзя не заметить, что данный тип электродвигателя применяют только там, где применение другого типа двигателя - переменного тока невозможно или крайне нецелесообразно. Отсюда неудивительно, что в среднем, на каждые 70 двигателей переменного тока сегодня приходится всего лишь 1 электродвигатель постоянного тока.

    Этот момент, кстати, так же резко снижает и выбор производителей данного типа электродвигателей на мировом рынке. Тем более, если мы говорим о качественном выборе. И здесь выбор электродвигателей постоянного тока от такого известного европейского производителя как T-T Electric может оказаться порой реально безальтернативным.

    Разумеется, лишь в том случае, если Вам нужен именно электродвигатель постоянного тока. Но как понять, что этот именно тот выбор? Как же здесь не ошибиться?

    Для этого давайте рассмотрим устройство электродвигателя постоянного тока, проанализируем схему электродвигателя постоянного тока и принципы его работы.

    Отличия электродвигателей постоянного и переменного тока

    На сегодняшний день фактом является то, что довольно длительное противостояние двух видов тока, развернувшееся в мировой экономике и производстве в конце XIX - начале ХХ веков, привело к практически безоговорочной победе двигателя переменного тока и постепенной капитуляции электродвигателя постоянного тока.

    Причины здесь многогранны и связаны как отчасти с относительной дороговизной электродвигателя постоянного тока, необходимостью его постоянного ремонта, так и с факторами прогресса самих "переменников" активно отвоевывающих все новые и новые ниши у электродвигателя постоянного тока. За электродвигатели переменного тока говорит простота их технологичной конструкции, высокие энергетическим показателям, надежность и стабильность работы.

    Однако электродвигатели постоянного тока до сих пор также активно совершенствуются, здесь все также разрабатываются новые модели. И они все еще активно используются на производстве и в быту. Для того, чтобы понять, что это так достаточно просто пройтись по каталогу продукции T-T Electric, представленному на нашем сайте.

    При этом основное технологическое отличие электродвигателя постоянного тока от двигателя переменного тока заключается наличие у первого коллектора - устройства переключающего обмотки во время вращения, и представляющего собой выведенные на изолированную часть вала начала и концы обмоток ротора двигателя. Тем самым устройство электродвигателя постоянного тока таково, что выводы якоря и выводы обмоток возбуждения здесь выводятся, как правило, на свои клеммы в клеммной коробке двигателя. На якорь поступает полное напряжение питания, в то время как на обмотку возбуждение регулируемый ток, например, от реостата, а в современных приводных системах, с платы обмотки возбуждения. Причем именно благодаря изменению силы этого тока и происходит вращение двигателя. Принцип работы здесь такой - чем больше ток на обмотке якоря, тем выше скорость двигателя.

    Правда стоит заметить, что у электродвигателей переменного тока также бывают выводы роторных обмоток, но в отличие от устройства электродвигателя постоянного тока, здесь они представляют из себя три сплошных кольца, на которые через коллекторный аппарат постоянно подаются фазовые напряжения.

    Типы электродвигателя постоянного тока
    В зависимости от подключения обмотки якоря и обмотки возбуждения двигатели постоянного тока делятся на электродвигатели с независимым возбуждением - обмотка возбуждения питается от своего источника, и с самовозбуждением - параллельное возбуждение, последовательное возбуждение и смешанное.

    В промышленности применяются двигатели с независимым возбуждением. В этих двигателях обмотка возбуждения питается от независимого источника напряжения. Обмотки якоря и возбуждения независимы друг от друга.

    Схема подключения двигателя с последовательным возбуждением, по сути, является аналогом схемы с независимым возбуждением. Разница в том, что и якорь, и обмотка возбуждения (через сопротивление) подключены к одному источнику питания.

    Двигатели с такой схемой подключения применяются в системах с четким механическими характеристиками, как-то: станки, вентиляторы и т.п.

    Моторы постоянного тока с последовательным возбуждением применяется в тех случаях, когда необходим большой пусковой ток, а, следовательно, и момент, а также мягкая механическая характеристика.

    Двигатели с таким способом подключения применяются на транспорте: электровозы, трамваи, троллейбусы. По этой схеме обмотка якоря и возбуждения подключены последовательно.

    Если подать напряжение на двигатель, то токи в обмотках будут одинаковы. Основной недостаток этих двигателей заключается в том, что при уменьшении нагрузки на валу двигателя до 25% от номинального значения, происходит резкое увеличение оборотов двигателя, чреватое для двигателя постоянного тока. Поэтому для предотвращения этого недостатка двигатель все время приходится нагружать.

    Очень редко применяется схема подключения двигателя со смешанным возбуждением. В этой схеме одна обмотка возбуждения включена последовательно, а другая параллельно якоря.

    Таким образом на сегодняшний день существует множество вариантов исполнения электродвигателей постоянного тока, однако наиболее распространенным является двигатели с независимым возбуждением, подключаемые через особые приводы постоянного тока обеспечивающие не только рекуперацию энергии, но и точное поддержание скорости и стабильный момент на валу во всем диапазоне регулирования скорости.

    Приводы такого типа широко представлены на данном сайте: это приводы постоянного тока серии DCS550 и приводы постоянного тока серии DCS800.

     

    t-telectric.ru

    Работа и схемы электродвигателей постоянного тока

    Моторы, работающие на постоянном токе редко встречаются в домашнем хозяйстве. Но они всегда стоят во всех детских игрушках, работающих от батареек, которые ходят, бегают, ездят, летают и т.

    п. Двигатели постоянного тока (ДПТ) устанавливаются в автомобилях: в вентиляторах и различных приводах. Они почти всегда используются на электротранспорте и реже в производстве.

    Преимущества ДПТ по сравнению с асинхронными моторами:

    • Хорошо поддаются регулировке.
    • Отличные пусковые свойства.
    • Частоты вращения могут быть более 3000 об/мин.

    Недостатки ДПТ:

    1. Низкая надежность.
    2. Сложность изготовления.
    3. Высокая стоимость.
    4. Большие затраты на обслуживание и ремонт.

    Далее Я постараюсь кратко и доступно в одной статье изложить схемы, принципы работы, регулировки и реверса двигателей постоянного тока.

    Принцип действия электродвигателя постоянного тока

    Устройство двигателя аналогично синхронным двигателям переменного тока. Повторяться не буду, если не знаете, тогда смотрите в этой нашей статье.

    Любой современный электромотор  работает на основе закона магнитной индукции Фарадея и «Правила левой руки».  Если к нижней части обмотки якоря подключить электрический ток в одном направлении, а к верхней- в обратном- он начнет вращаться. Согласно правилу левой руки, проводники, уложенные в пазах якоря, будут выталкиваться магнитным полем обмоток корпуса ДПТ или статора.

    Нижняя часть будет выталкиваться вправо, а верхняя – влево, поэтому якорь начнет вращаться до момента пока части якоря не поменяются местами. Для создания непрерывного вращения необходимо постоянно менять местами полярность обмотки якоря. Чем и занимается коллектор, который при вращении коммутирует обмотки якоря.  Напряжение от источника тока подается на коллектор при помощи пары прижимных графитовых щеток.

    Принципиальные схемы электродвигателя постоянного тока

    Если двигатели переменного тока довольно просто подключаются, то с ДПТ все сложнее. Вам необходимо знать марку мотора, и затем в интернете узнавайте про его схему включения.

    Чаще всего у средних и мощных моторов постоянного тока есть в клеммной коробке отдельные выводы от якоря и от обмотки возбуждения (ОВ). Как правило, на якорь подаётся полное напряжение электропитания, а на обмотку возбуждения -регулируемый ток реостатом или переменным напряжением. От величины тока ОВ и будут зависеть обороты ДПТ. Чем он выше, тем быстрее скорость вращения.

    В зависимости от того как подключен якорь и ОВ, электродвигатели бывают с независимым возбуждением от отдельного источника тока и с самовозбуждением, которое может быть параллельным, последовательным и смешанным.

    На производстве применяются двигатели с независимым возбуждением ОВ, которая подключается к отдельному от якоря источнику питания.  Между обмотками возбуждения и якоря нет электрической связи.

    Схема подключения с параллельным возбуждением по своей сущности аналогична схеме с независимым возбуждением ОВ. С той лишь разницей, что отпадает необходимость в использовании отдельного источника питания.  Двигатели при включении по обоим этим схема обладают одинаковыми жесткими характеристиками, поэтому применяются в станках, вентиляторах и т. п.

    Моторы с последовательным возбуждением применяются, когда необходим большой пусковой ток, мягкая характеристика. Они применяются а трамваях, троллейбусах и электровозах. По этой схеме обмотки возбуждения и якоря подключаются между собой последовательно.  При подаче напряжения токи в обоих обмотках будут одинаковы. Главный недостаток заключается в том, что при уменьшении нагрузки на вал меньше 25% от номинала, происходит резкое увеличение частоты вращения, достигающее опасных для ДПТ значений. Поэтому для безотказной работы необходима постоянная нагрузка на вал.

    Иногда применяются ДПТ со смешанным возбуждением, при котором одна обмотка ОВ соединяется последовательно якорной цепи, а другая параллельно.  В жизни редко встречается.

    Реверсирование двигателей постоянного тока

    Что бы изменить направление вращение ДПТ с последовательным возбуждением необходимо поменять направления тока в ОВ или обмотке якоря. Практически, это делается изменением полярности: меняем плюс с минусом местами. Если же поменять одновременно полярность в цепях возбуждения и якоря, тогда направление вращения не изменится. Аналогично делается реверс и для моторов, работающих на переменном токе.

    Реверсирование ДПТ с параллельным или смешанным возбуждением лучше производить изменением направления электрического тока в обмотке якоря. При разрыве обмотки возбуждения, ЭДС достигает опасных величин и возможен пробой изоляции проводов.

    Регулирование оборотов двигателей постоянного тока

    ДПТ с последовательным возбуждением проще всего регулировать переменным сопротивлением в цепи якоря. Регулировать можно только на уменьшение числа оборотов в соотношении 2:1 или 3:1. При этом происходят большие потери в регулировочном реостате (R рег). Данный метод используется в кранах и электрических тележках, у которых бывают частые перерывы в работе. В других случаях используется регулировка оборотов вверх от номинала при помощи реостата в цепи обмотки возбуждения, как показано на правом рисунке.

    ДПТ с параллельным возбуждением так же можно регулировать частоту оборотов вниз при помощи сопротивления в цепи якоря, но не более 50 процентов от номинала. Опять же будет нагрев сопротивления из-за потерь электрической энергии в нем.

    Увеличить же обороты максимум в 4 раза позволяет реостат в цепи ОВ. Самый простой и распространенный метод регулировки частоты вращения.

    На практике в современных электромоторах данные методы регулировки из-за своих недостатков и ограниченности диапазона регулирования редко применяются. Используются различные электронные схемы управления.

    olimp23.com