Системный анализ системы газотурбинного двигателя (стр. 1 из 7). Схема маслосистемы двигателя


Расчет конструктивно-силовой схемы и маслосистемы двигателя Д-30 | Авиация

МИНСКИЙ ГОСУДАРСТВЕННЫЙ ВЫСШИЙ АВИАЦИОННЫЙ КОЛЛЕДЖКафедра ТЭВС и ДКурсовой проект по дисциплине "Конструкция и прочность АД"На теме "Расчет КСС и маслосистемы Двигателя Д-30"Минск 2009

В данной работе описана конструкция двигателя и рассчитана маслосистема

Исходные данные: двигатель Д-30

Содержание1. Выбор конструктивно-компоновочной и силовой схемы, краткое описание проектируемого ГТД.1.1Кинематическая схема приводов двигателя.1.2. Выбор конструктивно-компоновочной схемы, краткое описание проектируемого ГТД1.3. Основные технические данные2. Определение долговечности радиально-упорного подшипника2.1 Определение гироскопического момента.2.2 Определение реакции опор КВД под действием гироскопического момента.2.3 Определение значения осевой силы действующей на подшипник передней опоры КВД.2.4 Выбор подшипника и определение его расчётной долговечности.3. Проверочный расчет камеры сгорания.3.1. Камера сгорания3.2. Расчет камеры сгорания4. Расчет на прочность рабочей лопатки турбины.4.1 Нахождение площадей характерных сечений лопатки турбины.4.2 Определение напряжений в лопатках от действия центробежных сил.4.3 Нахождение суммарных напряжений в сечениях лопаток.5. Определение критической частоты вращения вала турбины5.1. Гибкие и жесткие валы5.2. Опре¬деление критической частоты вращения вала турбины6. Системы проектируемого ГТД6.1. Система смазки6.1.1. Система смазки Д306.1.2. Нагнетающий масляный насос6.2. Система топливопитания6.2.1. Система топливопитания Д306.2.2. Расчет системы топливопитания6.3. Пусковая система6.3.1. Пусковая система Д306.3.2. Расчет пусковой системы7. Анализ основных параметров возникновения шума и меры борьбы с ним.Литература

Чертеж маслосистемы двигателя Д-30, КС, ТВД

Состав: Маслосистема, КС, ТВД, Пояснительная записка

Софт: AutoCAD 2014

vmasshtabe.ru

Системный анализ системы газотурбинного двигателя

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М. Є. Жуковського

«Харківський авіаційний інститут»

Кафедра вищої математики

Пояснювальна записка до курсового проекту

з дисципліни «Основи системного аналізу»

Системний аналіз масляної системи газотурбінного двигуна

ХАІ. 405. 440м. 10О. 6. 040303. 0704553

Виконавець студент гр. 440-м

Д. І. Корниенко

Керівник канд. техн. наук, доцент

Г. К. Бахмет

2010

Реферат

маслосистема двигатель газотурбинный

Курсовая работа состоит из 3 разделов, 9 иллюстраций, 1 таблицу, 4 источника литературы, 3 приложения. Объем работы 40 листов. Использовалось 4 источника литературы.

Цель работы: – использование системного анализа при исследовании масляной системы газотурбинного двигателя.

Объект исследования – масляная система газотурбинного двигателя.

В работе применены методы системного анализа: Структурный анализ системы, функциональный анализ, инфологический анализ системы.

Приведены расчетные алгоритмы установки. Дополнены приложениями.

Анализ системы проведен на основе современных достижений в технике, в работе описаны все имеющиеся схемы, используемые при проектировании двигателя.

При выборе схемы маслосистемы ГТД рекомендуется отдавать предпочтение замкнутой схеме с нерегулируемым давлением масла на входе в двигатель. Полно поточная схема позволяет спроектировать нагнетающий масляный насос с меньшим запасом по производительности. В целях строгой дозировки прокачки масла его подвод к узлам трения, включая смазку подшипников качения, выполняют через калиброванные струйные форсунки. Насосы, откачивающие масло из опор и агрегатов ГТД, должны в 2. . . 3 раза превосходить по производительности нагнетающие насосы.

Система применяется при работе ГТД

Откачка, Маслонасос, Теплоотдача, Трение, Смазка, Расчет теплоотдачи, Структурный анализ, Сетевая схема.

СОДЕРЖАНИЕ

Введение

1. Объект исследования

1.1 Схемы маслосистем

1.1.1 Маслосистема с регулированным давлением масла

1.1.2 Маслосистема с регулированным давлением масла

1.2 Дерево проблем, дерево целей

2. Анализ системы

2.1 Составляющие системы

2.2 Структурный анализ системы

2.3 Функциональный анализ

2.4 Инфологическое описание

Заключение

Список использованной литературы

Список сокращений

Приложения

Введение

В основе ГТД (газотурбинный двигатель) имеются системы обеспечения работы. Так при работе двигателя, который имеет огромное количество движущихся элементов, трущихся пар, выделяется тепло и снижается энергетический ресурс двигателя. Система подвода масла обеспечивает снижение потерь энергетического ресурса двигателя.

Маслосистемы ГТД представляют собой совокупность устройств и агрегатов, обеспечивающих:

- смазку трущихся поверхностей;

- отвод тепла, выделяющегося при трении и передаваемого в масло;

- защиту трущихся поверхностей от наклепа и коррозии;

- удаление продуктов износа из зоны трения трущихся пар.

На большинстве ГТД масло используется также для демпфирования опор роторов.

При необходимости, масло в ГТД может применяться и в качестве рабочего тела для различных механизмов, агрегатов и т. п. Иногда масло используется для обогрева отдельных элементов двигателя.

При работе ГТД в разных климатических условиях, маслосистема является важной составляющей при запуске двигателя, так как при запуске двигателя в низких температурах элементы двигателя деформируются и создают неплотности в полостях двигателя. Система подачи масла обеспечивает подогрев двигателя и осуществляет регулировку давления в полостях смазки двигателя, которую обеспечивает системы суфлирования и подачи масла.

Актуальность использования системного анализа маслосистемы двигателя проявляется в том, что результаты такого анализа позволяют повысить надежность и экономичность двигателей, увеличить их ресурс.

Так как в современное время разработали высоко скоростные и энергетически потребляющие двигатели, главной задачей становится приоритетом сохранение надежности и долговременное использование агрегатов система смазывания выделяется своей актуальностью и проблематикой анализа и проектирования.

Целью представленного курсового проекта и является использование системного анализа маслосистемы двигателя для изучения возможности повышения эффективности двигателей.

В первом главе работыприводится обзор литературы и других информационных источников по заданной теме, делаются выводы автором по использованию маслосистем, представлены построенное дерево проблем, дерево целей, определяется цель исследования.

Во втором главе работы содержится анализ предмета исследования. Для этого в главе определен объект исследования, приводятся доказательства того, что объект исследования является объектом с точки зрения системного анализа, определен предмет исследования, приводится структурный, функциональный анализ и информационный анализ исследуемого объекта.

По окончанию работы представлены полученные выводы по повышению точности измерения температуры.

1. Маслосистема как обьект анализа

Маслосистема ГТД представляет собой совокупность специальных устройств и агрегатов, обеспечивающих подачу масла в узлы трения двигателя для снижения потерь, мощности в них, уменьшения износа деталей, отвода тепловой энергии, выделяющейся при трении, защиты трущихся поверхностей от наклепа и коррозии, удаление твердых включений из зоны трения. Следовательно, основные задачи, стоящие перед маслосистемой ГТД это:

1. Уменьшение износа трущихся поверхностей

2. Уменьшение потерь на трение.

3. Охлаждение узлов трения.

Каждая из этих задач связана непосредственно с физическими (куда входят и тепловые) и химическими процессами работы ГТД.

Обзор схем маслосистем приводит к выводу, что такие системы могут быть:

- разомкнутые, когда масло подается только в узел с трущимися элементами.

- циркуляционная – когда происходит подача масла в элемент и откачка из него масла.

Рисунок 1Класификация типов маслосистем

1.1 Схемы маслосистем

Разомкнутая схема- применяются на двигателях с непродолжительной работой(двигателя беспилотных аппаратов, подьемные двигатели, турбокомпрессорные стартеры). В этом случае случае в качестве смазки можно использовать топливо.

Вывод : разомкнутые схемы маслосистем не могут приминятся в авиационных двигателях, которые требуют более тщательной смазки и защиты, для поддержания мощьности и продолжительности и высотности полета.

Циркуляционная схема –обеспечивает низкие безвозвратные потери масла и длительную непрерывную работу двигателя. Циркуляционные системы подразделяются на одноконтурные в которых циркуляция происходит по схеме «бак- двигатель-бак», и двуконтурные, в которых бак в тои или иной степени исключается из циркуляции масла. Любая из систем будет считатся открытой, если маслобак сообщается с атмосферой либо непосредственно, либо через суфлер двигателя. Сообшение верхней, расположенной над маслом, полости бака с атмосферой через суфлер обуславливается желанием снизить безвозвратные потери масла путем уменьшения его выброса в атмосферу в жидкой фазе. В открытых системах давление масла на входе в нагтетающий насос уменьшается с увеличением высоты полета, и поэтому их высотность относительно мала. Закрытые системы обладают большей высотностью и обеспечивают ускоренный прогрев масла при запуске двигателя. В закрытых системах внутри маслобака создается избыточное по отношению к атмосферному давление. Величина избыточного даввления поддерживается постоянной за счет установленного на маслобаке или трубопроводах масляной системы клапана.

В зависимости от величины давления подаваемого в систему нагнетания масла маслосистемы класифицируются на 2 варианта

· Регулированное давление масла.

· Нерегулированное давление масла.

1.1.1 Маслосистема с регулированным давлением масла

Преймушества :Подводит масло к узлам трения в полном обьеме также и в случае аварийных утечек из нее до тех пор, пока суммарная велечина прокачки и аварийных утечек не привысит подачу нагнетаюшего насоса. После этого начнется снижатся давление масла на входе, что привидет к срабатыванию сигнализатора мимального давления.

Недостаток : Производительность нагнетаюшего насоса на всех режима работы двигателя, превышает потребную, из-за чего значительную часть масла после выхода из насоса приходится возвращать обратно на вход в него, кроме номинального режима работы двигателя. То есть на малых режимах работы двигателя к трущимся поверхностям подается излишнее количество масла, что ухудшает характеристики маслосистемы.

Рисунок 2 Циркуляционная маслосистема с регулированым давлением масла.

Схема циркуляционной маслосистемы, рисунок 2 (регулированное давление масла): 1. Маслобак; 2. магистраль всасывающая; 3. нагнетающий маслонасос; 4. Фильтр тонкой очистки; 5. клапан редукционный; 6. датчик замеров давления; 7. Откачивающие маслонасосы; 8. Откачивающая магистраль; 9. Воздухоотделитель центробежный; 10. Теплообменник; 11. Полости (масляные) двигателя; 12. Суфлирующая магистраль. 13. суфлер центробежный; 14. клапан баростатический; 15. Клапан обратный; 16. Заборник масла маятниковый; 17. Воздухоотделитель статический; 18. Клапан перепускной.

1.1.2 Маслосистема с нерегулированным давлением масла

Преймушества: величина давления масла зависит от частоты вращения ротора ГТД, она всегда удовлетворяет действительную поребность узлов трения в нем, а запас нагнетаюшего насоса насоса по производительности при этом незначителен.

mirznanii.com

Большая Энциклопедия Нефти и Газа, статья, страница 1

Маслосистема

Cтраница 1

Маслосистема, включающая в себя оборудование и арматуру, обеспечивает подачу масла турбинного Т22 ГОСТ 32 - 74 для охлаждения подшипников насоса и электродвигателя мощностью свыше 1000 кВт, а также зубчатого зацепления зубчатой муфты.  [1]

Маслосистема разделена на две независимые системы. Баки с первого по четвертый предназначены для чистого масла коробки перемены передач подъемных агрегатов, для промывочной жидкости и отработанного масла. Пятый бак предназначен только для масла гидросистемы подъемных агрегатов.  [2]

Маслосистема - один из самых ответственных узлов.  [3]

Маслосистема разделена на две независимые системы. Баки с первого по четвертый включительно предназначены для чистого масла коробки передач подъемных агрегатов, промывочной жидкости и отработанного масла, пятый - только для масла гидросистемы подъемных агрегатов. Баки заправляют насосами маслосистемы или средствами стационарной заправки ГСМ.  [4]

Маслосистема - принудительная циркуляционная, обеспечивает подачу масла к подшипникам корпусов компрессора, редукторов и приводного электродвигателя, на зубчатые передачи редукторов, зубчатые муфты, в узлы защиты и торцевые уплотнения. Конструктивное исполнение привода главного смазочного насоса аналогично приводу компрессора К-380-103-1. Также предусмотрены два пусковых смазочных насоса с приводом от асинхронных двигателей.  [5]

Маслосистема - открытая, циркуляционная, обеспечивает подачу масла к подшипникам корпусов, компрессора, редукторов и электродвигателя, на зубчатые передачи редукторов, на зубчатые соединительные муфты и в узлы защиты компрессоров.  [6]

Маслосистема - предназначена для смазки подшипников, гидромуфты и насоса, зубчатой пары, зубчатой муфты, соединяющей насос с гидромуфтой.  [7]

Маслосистема состоит из маслопровода с фильтром, установленным в нижней части корпуса привода, шестеренного насоса и напорного маслопровода, по которому масло под давлением подводится к масляной камере 17 для смазки ползунов. Подвод масла под давлением от шестеренного насоса к другим трущимся парам осуществляется по сверлениям в коленчатом валу и шатунам. Шестеренный насос, укрепленный на торцовой крышке корпуса привода со стороны глухого конца коленчатого вала, приводится во вращение от этого вала.  [8]

Маслосистема должна иметь запасной маслонасос. Блокировка двигателей маслонасосов с двигателем дробилки обеспечивает остановку машины при отказе маслонасосов, понижении уровня масла в отстойнике, понижении давления и повышении температуры масла. Маслопроводы после капитального ремонта или вновь устанавливаемые должны быть очищены от ржавчины, продуты сжатым воздухом, протравлены 20 % - ным раствором серной или соляной кислоты, промыты известковым раствором и чистой водой, а затем просушены и смазаны. После обкатки дробилки ( новой или капитально отремонтированной) масло подлежит замене, я вся маслосисте-ма - промывке. Нормальный уровень масла в баке составляет 3 / 4 его высоты, а наименьший / з высоты.  [9]

Маслосистема работает следующим образом: главный шестеренчатый маслонасос засасывает масло из масляного бака и через охладитель подает его к подшипникам компрессора и в редуктор. Отработанное масло свободно сливается обратно в масляный бак. Для обеспечения снабжения агрегата чистым маслом на пути его следования устанавливаются сетчатые фильтры. Для обеспечения смазки в период пуска и остановки компрессора агрегат комплектуется пусковым насосом, обычно шестеренчатого типа. На случай аварийного отключения электроэнергии главного двигателя компрессоры снабжаются резервными масляными насосами с приводом от специального источника питания. Резервные насосы включаются автоматически при аварийной остановке машины.  [10]

Маслосистема состоит из маслонасоса 1115 - 25 - 3 5 / 4, смонтированного на маслобаке, маслоохладителя, маслофильтра и арматуры. Маслонасос включается в работу перед запуском насосного агрегата. При достижении давления масла в системе 1 - Ю3 Па подается импульс на включение насоса. Масло турбинное 22 ГОСТ 32 - 74 применяется для смазки и охлаждения подшипников насоса и электродвигателя. Прокаченное через подшипники маслэ проходит через маслоохладитель, фильтр и поступает вновь на прием масляного насоса.  [12]

Общецеховая маслосистема ( рис. 3.32) предназначена для приема, хранения и предварительной очистки масла перед подачей его в расходную емкость цеха. На складе имеются в наличии емкости 2 для чистого и отработанного масла. Объем емкостей для чистого масла подбирают исходя из обеспечения работы агрегатов сроком не менее 3 месяцев. В помещении склада ГСМ устанавливают емкость для регенерированного масла и емкость для отработанного масла, установку для очистки масла типа ПСМ-3000-1, насосы для подачи масла к потребителям, а также систему маслопроводов с арматурой.  [13]

Маслосистема ГТУ выполняет функции смазки подшипников, уплотнения концевых выходов роторов, регулирования работы ГТУ, ее автоматического запуска и остановки, защиты при возникновении аварийной ситуации. Она состоит из маслобака ( у ГТ-750-6, ГТ-6-750, ГТК-Ю фундаментная рама одновременно-является маслобаком), маслонасосов, маслоохладителей, приборов уплотнения, регулирования и контроля за работой ГТУ. Маслопроводом согласно технологической схеме соединены все приборы.  [14]

Маслосистема редуктора обеспечивает подачу масла к подшипникам, зубчатым зацеплениям и шлицевым подвижным соединениям.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Системный анализ маслосистемы двигателя

Основные задачи, стоящие перед маслосистемой газотурбинного двигателя. Разомкнутая и циркуляционная схемы, маслосистема с регулированным и нерегулированным давлением масла. Составляющие системы, ее структурное, функциональное и инфологическое описание.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы

Использование системного анализа при исследовании масляной системы газотурбинного двигателя с целью изучения его эффективности. Схема маслосистемы с регулированным давлением масла. Структурный, функциональный анализ системы. Инфологическое описание.

курсовая работа [1,9 M], добавлена 04.05.2011

Расчет на прочность узла компрессора газотурбинного двигателя: описание конструкции; определение статической прочности рабочей лопатки компрессора низкого давления. Динамическая частота первой формы изгибных колебаний, построение частотной диаграммы.

курсовая работа [1,8 M], добавлена 04.02.2012

Описание конструкции, назначение и условия работы сварного узла газотурбинного двигателя. Выбор способа сварки и его обоснование, выбор сварочных материалов и режимов сварки. Выбор методов контроля: внешний осмотр и обмер сварных швов, течеискание.

курсовая работа [53,5 K], добавлена 14.03.2010

Выбор и обоснование параметров газотурбинного двигателя. Термогазодинамический расчет и обоснование параметров. Выбор степени двухконтурности, температуры газа перед турбиной. Согласование параметров компрессора и турбины. Формирование облика двигателя.

курсовая работа [2,5 M], добавлена 13.02.2012

Технические условия на сдачу двигателя в капитальный ремонт. Наружная мойка двигателя методом струйной очистки под высоким давлением. Разборка двигателя с применением многопозиционных механизированных инструментов. Виды дефектов и их характеристика.

отчет по практике [65,5 K], добавлена 24.02.2012

Выбор параметров двигателя. Температура газа перед турбиной. Коэффициенты полезного действия компрессора и турбины. Потери в элементах проточной части двигателя. Скорость истечения газа из выходного устройства. Термогазодинамический расчет двигателя.

курсовая работа [1,3 M], добавлена 10.02.2012

Компрессор авиационного газотурбинного двигателя: предназначение и характеристика. Расчет надежности рабочих лопаток компрессора при повторно-статических нагружениях. Дисперсия составляющих изгибающих моментов по главным осям инерции для газовых сил.

курсовая работа [367,7 K], добавлена 22.02.2012

Расчет основных показателей во всех основных точках цикла газотурбинного двигателя. Определение количества теплоты участков, изменение параметров для процессов и их работу. Расчет термического коэффициент полезного действия цикла через его характеристики.

курсовая работа [110,4 K], добавлена 19.05.2009

Структурные схемы системы автоматического регулирования частоты (САРЧ) вращения коленчатого вала двигателя внутреннего сгорания (ДВС). Конструктивная и функциональная схемы САРЧ ДВС. Принципы регулирования, уравнение переходного процесса двигателя.

контрольная работа [531,1 K], добавлена 07.01.2013

Проектирование проточной части авиационного газотурбинного двигателя. Расчёт на прочность рабочей лопатки, диска турбины, узла крепления и камеры сгорания. Технологический процесс изготовления фланца, описание и подсчет режимов обработки для операций.

дипломная работа [2,4 M], добавлена 22.01.2012

Размещено на http://www.allbest.ru/

Введение

В основе ГТД (газотурбинный двигатель) имеются системы обеспечения работы. Так при работе двигателя, который имеет огромное количество движущихся элементов, трущихся пар, выделяется тепло и снижается энергетический ресурс двигателя. Система подвода масла обеспечивает снижение потерь энергетического ресурса двигателя.

Маслосистемы ГТД представляют собой совокупность устройств и агрегатов, обеспечивающих:

- смазку трущихся поверхностей;

- отвод тепла, выделяющегося при трении и передаваемого в масло;

- защиту трущихся поверхностей от наклепа и коррозии;

- удаление продуктов износа из зоны трения трущихся пар.

На большинстве ГТД масло используется также для демпфирования опор роторов.

При необходимости, масло в ГТД может применяться и в качестве рабочего тела для различных механизмов, агрегатов и т. п. Иногда масло используется для обогрева отдельных элементов двигателя.

При работе ГТД в разных климатических условиях, маслосистема является важной составляющей при запуске двигателя, так как при запуске двигателя в низких температурах элементы двигателя деформируются и создают неплотности в полостях двигателя. Система подачи масла обеспечивает подогрев двигателя и осуществляет регулировку давления в полостях смазки двигателя. Которую обеспечивает системы суфлирования и подачи масла.

Актуальность использования системного анализа маслосистемы двигателя проявляется в том, что результаты такого анализа позволяют повысить надежность и экономичность двигателей, увеличить их ресурс.

Так как в современное время разработали высокоскоростные и энергетически потребляющие двигатели, главной задачей становится приоритетом сохранение надежности и долговременное использование агрегатов система смазывания выделяется своей актуальностью и проблематикой анализа и проектирования.

Целью представленного курсового проекта и является использование системного анализа маслосистемы двигателя для изучения возможности повышения эффективности двигателей.

В первом главе работы приводится обзор литературы и других информационных источников по заданной теме, делаются выводы автором по и с пользованию маслосистем, представлены построенное дерево проблем, дер е во целей, определяется цель исследования .

Во втором главе работы содержится анализ предмета исследования . Для этого в главе определен объект исследования, приводятся доказательства того, что объект исследования является объектом с точки зрения системного анализа . определен предмет исследования, приводится структурный, функциональный анализ и информационный анализ исследуемого объекта

По окончанию работы представлены полученные выводы по повышению точности измерения температуры .

Маслосистема ГТД представляет собой совокупность специальных устройств и агрегатов, обеспечивающих подачу масла в узлы трения двигателя для снижения потерь, мощности в них, уменьшения износа деталей, отвода тепловой энергии, выделяющейся при трении, защиты трущихся поверхностей от наклепа и коррозии, удаление твердых включений из зоны трения. Следовательно, основные задачи, стоящие перед маслосистемой ГТД это:

1. Уменьшение износа трущихся поверхностей

2. Уменьшение потерь на трение.

3. Охлаждение узлов трения.

Каждая из этих задач связана непосредственно с физическими (куда входят и тепловые) и химическими процессами работы ГТД.

Обзор схем маслосистем приводит к выводу, что такие системы могут быть:

- разомкнутые, когда масло подается только в узел с трущимися элементами.

- циркуляционная - когда происходит подача масла в элемент и откачка из него масла.

Рисунок 1. Классификация типов маслосистем

Разомкнутая схема - применяются на двигателях с непродолжительной работой(двигателя беспилотных аппаратов, подьемные двигатели, турбокомпрессорные стартеры). В этом случае случае в качестве смазки можно использовать топливо.

Вывод: разомкнутые схемы маслосистем не могут применятся в авиационных двигателях,которые требуют более тщательной смазки и защиты, для поддержания мощьности и продолжительности и высотности полета.

Циркуляционная схема - обеспечивает низкие безвозвратные потери масла и длительную непрерывную работу двигателя. Циркуляционные системы подразделяются на одноконтурные в которых циркуляция происходит по схеме «бак- двигатель-бак», и двуконтурные,в которых бак в тои или иной степени исключается из циркуляции масла. Любая из систем будет считатся открытой,если маслобак сообщается с атмосферой либо непосредственно, либо через суфлер двигателя. Сообшение верхней,расположенной над маслом,полости бака с атмосферой через суфлер обуславливается желанием снизить безвозвратные потери масла путем уменьшения его выброса в атмосферу в жидкой фазе. В открытых системах давление масла на входе в нагтетающий насос уменьшается с увеличением высоты полета, и поэтому их высотность относительно мала. Закрытые системы обладают большей высотностью и обеспечивают ускоренный прогрев масла при запуске двигателя. В закрытых системах внутри маслобака создается избыточное по отношению к атмосферному давление. Величина избыточного даввления поддерживается постоянной за счет установленного на маслобаке или трубопроводах масляной системы клапана.

В зависимости от величины давления подаваемого в систему нагнетания масла маслосистемы класифицируются на 2 варианта

· Регулированное давление масла.

· Нерегулированное давление масла.

Маслосистема с регулированным давлением масла

Преимушества: Подводит масло к узлам трения в полном обьеме также и в случае аварийных утечек из нее до тех пор, пока суммарная велечина прокачки и аварийных утечек не привысит подачу нагнетаюшего насоса. После этого начнется снижатся давление масла на входе, что привидет к срабатыванию сигнализатора мимального давления.

Недостаток: Производительность нагнетаюшего насоса на всех режима работы двигателя,превышает потребную,из-за чего значительную часть масла после выхода из насоса приходится возвращать обратно на вход в него,кроме номинального режима работы двигателя. То есть на малых режимах работы двигателя к трущимся поверхностям подается излишнее количество масла,что ухудшает характеристики маслосистемы.

Рисунок 2 Циркуляционная маслосистема с регулированым давлением масла. 1. Маслобак; 2. магистраль всасывающая; 3. нагнетающий маслонасос; 4. Фильтр тонкой очистки; 5. клапан редукционный; 6. датчик замеров давления; 7. Откачивающие маслонасосы; 8. Откачивающая магистраль; 9. Воздухоотделитель центробежный; 10. Теплообменник; 11. Полости (масляные) двигателя; 12. Суфлирующая магистраль. 13. суфлер центробежный; 14. клапан баростатический; 15. Клапан обратный; 16. Заборник масла маятниковый; 17. Воздухоотделитель статический; 18. Клапан перепускной.

Маслосистема с нерегулированным давлением масла

Преймушества: величина давления масла зависит от частоты вращения ротора ГТД, она всегда удовлетворяет действительную поребность узлов трения в нем, а запас нагнетаюшего насоса насоса по производительности при этом незначителен. Недостатки: в случае запуска двигателя при низких отрицательных температурах нагнетаемое масло обладает высокой вязкостью и в маслоситеме его давление может достигать величин,при которых в агрегатах и трубопроводах могут возникнуть чрезмерные напряжения.

Схема циркуляционной маслосистемы ( нерегулированное давление масла):

Рисунок 3 Схема циркуляционной маслосистемы с не регулированным давлением масла.

1. Забор масла из маслобака. 2. Блок маслонасосов. 3. клапан предохронительный. 4. фильтр. 5. сигнализатор максимального перепада давления на фильтре. 6. ТМТ(топливо масляный теплообменник). 7 Воздухомасляный теплообменник. 8. слив в маслобак. 9 Воздухоотделитель. 10. суфлер центробежный. 11. Датчик перепада давления между ступенями нагнетания и откачивания. 12. фильтр последнего шанса.

Преимущества маслосистемы с неурегулированным давлением масла по сравнению со схемой с регулируемым давлением масла:

1. Существенно меньший барботаж (перемешивания ) масла и, соответственно, меньшее тепловыделение.

2. Более эффективная по сравнению с маслосистемой с регулируемым давлением откачка масла на всех режимах работы двигателя.

3. Лучшие условия смазки узлов трения при низкотемпературном запуске двигателя.

Отсутствие редукционного клапана упрощает обслуживание маслосистемы Заключение: для дальнейшего анализа выбираем маслосистему с нерегулированным давлением масла. Применение, которых используется шире по сравнению с другими схемами маслосистем для двигателей последнего поколения.

При выборе схемы маслосистемы ГТД рекомендуется отдавать предпочтение замкнутой схеме с нерегулируемым давлением масла на входе в двигатель. Полно поточная схема позволяет спроектировать нагнетающий масляный насос с меньшим запасом по производительности.

В целях строгой дозировки прокачки масла его подвод к узлам трения, включая смазку подшипников качения, выполняют через калиброванные струйные форсунки.

Насосы, откачивающие масло из опор и агрегатов ГТД, должны в 2. 3 раза превосходить по производительности нагнетающие насосы.

Обзор литературы определил основные проблемы при проектировании маслосистемы.

Из рассмотренной проблематики представим дерево проблем:

Рисунок 4. Дерево проблем

Схема дерева составлена с учетом дерева целей:

Цель работы - использование системного анализа при исследовании масляной системы газотурбинного двигателя.

Объект исследования - масляная система газотурбинного двигателя.

2 . Анализ системы

Теплообменник

Используются для охлаждения масла. Применяются 2 видов теплообменников (далее ТМТ)[1]низкого или высокого давления, в первом случае топливо для охлаждения масла отбирается из топливной магистрали до топливного насоса, во втором за ним. ТМТ высокого давления отличаются компактностью, но, находясь под высоким давлением топлива, они должны обладать высокой прочностью и надежностью.

Когда хладоресурс топлива недостаточно,в маслосистеме дополнительно устанавливают ВМТ.

Выбор теплообменников для охложденния масла производится из условий обеспечения заданных температур масла на всех режимах работы ГТД.

В зависимости от места расположения теплообменника маслосистемы различают на системы с «горячим» и «холодным» баком. В маслосистеме с «горячим» баком устанавливается в магистрали подвода масла в двигатель, с «холодным» баком в магистрали откачки.

В маслосистеме с «горячим» баком благодаря рациональному и конвективному теплообмену масло передает окружающей среде ощутимую часть тепла, снижая тем самым нагрузку на теплообменник,что позволяет уменьшить его размеры.

Составляющие: 1. пучки труб - через которые топливо поступает в теплообменник, а горячее масло проходит по межтрубной полости. 2. Перегородка удлиняет путь масла,увеличивает его скорость и эффективность охлаждения. 3 Перепускной клапан который открывается при увеличении перепада давления в масляной полости свыше допустимого (засорение), ( при этом часть масла со входа сразу поступает на выход из теплообменника, предохраняя ТМТ от поломки). 4. Датчики температуры - установлен на выходе масла из теплообменника.

Маслобак

Составляющие: 1. Горизонтальная перегородка -отделяющий отсек отрицательных перегрузок от основного объема. При действии отрицательных перегрузок масло удерживается под перегородкой. 2. Заборный патрубок- при действии отрицательных перегрузок остается в масле и смазка двигателя не прекращается. 3. Заливная горловина- для подачи масла в маслобак. 4. Предохронительнный фильтр- для задержания посторонних предметов, также установлен на выходе маслобака. 5. Щтуцер -для обеспечения закрытой заправки маслобака авиационного двигателя. 6. Попловковый клапан - для автоматического прекращения закрытой заправки. 7. Предохранительный клапан защищает маслобак от разрушения при повышении давления суфлирования сверх допустимого. 8. Сливной кран предназначен для полного удаления масла; поэтому крепится в нижней части маслобака. 9. Датчик контроля уравня масла в маслобаке. 10. Минимальнный уровень масла. 11. Мерная линейка 12. Фланец-для минимального пенообразования масла при его возврате,направляется на стенки маслобака где оно стекает под небольшим углом. 13. Патрубок суфлирования. 14 Фланец - слив масла.

Маслобак предназначен для размещения масла. Из маслобака подается в маслосистему и возвращается в него после откачки.

Блок маслонасосов

Составляющие: 1. шестерни нагнетающей ступени переносит масло заполнившее впадины между зубьями во всываюшую полость переносится в полость нагнетания и выдавливается там при входе зубьев в зацепление. 2. Шестерни откачиваюших ступеней-осушествляет обратное действие элемента (1). 3. Вал приводной - связан с (1) и (2) и приводит их в движение. 4. Клапан стравливания воздуха -находится на линии нагнетания и исключает образование воздушных пробок. 5. Клапан редукционный- поддерживает заданное давление.

Предназначен для прокачки масла через двигатель для создания необходимой вязкости масла которое зависит от давления создаваемого блоком маслонасосов.

Клапан предохранительный

Защищает систему от высоких параметров давления(12,6-15,4кгс/см2 ) возвращает излишнее масло обратно на вход в насос.

Фильтр

Для очистки масла, удаление частиц работы трущихся пар. Фильтр устанавливаемый на выходе из откачивающей ступени, имеет повышенную тонкость фильтрации и называется фильтром тонкой очистки. Устанавливаемый после нагнетающей ступени фильтр выбирают таким образом, что бы тонкость его фильтрации полнопоточную очистку масла при низкотемпературном запуске(исключает перепуск масла мимо фильтра),поэтому его называют фильтром тонкой очистки.

Составляющие: 1. Полотна стекловолоконные. 2. Кусочки стеклянных волокон(зафиксированы между собой). 3. Сигнализатор флажковый -контролирует максимальный перепад давления в фильтре. 4. Датчик-сигнализатор перепада давления. 5 клапан отсечной. 6 клапан перепускной. 7. крышка фильтра. 8. корпус фильтра. 9. фильтроэлемент. 10. пробка сливная.

Воздухомасляный теплообменник

Охлаждает масло если нехватает хладоресурса у ТМТ. Масло в межтрубное пространство (1),и охлождается воздухом продуваемый через трубки (2). ВМТ устанавливается на пути потока воздуха в газовоздушном тракте ГТД.

Трубопровод Предназначен для связи с маслобаком для следуйшей циркуляций,является связуюшим между воздухоотделителем и маслобаком.

Воздухоотделитель: отделяет воздух от вспененного масла, которое образуется при смазывании и передач ГТД (раздробление масла- смешивание с воздухом). Что приводит ухудшению качества масла.

Составляющие: 1. Корпус. 2. Ротор отбрасывает масло поддействием центробежных сил. 3. Приводной вал приводит в действие (2). 4. Кольцевая щель. 5. Промежуточный корпус. 6. Штуцер-связывает воздухоотделитель с маслобаком. 7. Шариковый клапан - под действием давления воздуха и паров масла,открывается и выводит через радиальные отверстия во внутреннюю полость приводного вала и отводятся в полость коробки приводов.

Суфлер центробежный Применяют для уменьшения без отвратных потерь масла (каплеобразное состояние) которое содержится в масляных полостях при удалении паров масла и воздуха. А также стабилизирует давление в масляных полостях двигателя.

Составляющие: 1. Сегмент из пористого материала- для преобразования «разрыхленного» масла. 2. Отверстие- через них проходит масловоздушная смесь которая поступает в ротор. 3. Ротор-разделяет масловоздушную смесь на воздух и масло. 4. Окна ротора- воздух проходит во внутреннюю полость вала ротора и дальше - к выходу в атмосферу. 5. Выемки-для отброски масла по наружной стенке корпуса к внутреннему каналу в коробку (6). Приводов агрегатов.

Фильтр последнего шанса

Обеспечивает защиту жиклерных соединений

Исключает засорение жиклерных отверстий и защищают узлы трения от проникновения в них крупных частиц.

Датчик перепада давления между нагнетанием и откачкой масла Поддерживает постоянный перепад между магистралями нагнетания и откачки масла. маслосистема газотурбинный двигатель схема

Магнитный сигнализатор

Подают сигнал при загрязнении защитного фильтра

Фильтр защитный

Обеспечивают задержку крупных частиц

Состав системы:

1. Забор масла из маслобака. 2. Блок маслонасосов. 3. клапан предохранительный. 4. фильтр. 5. сигнализатор максимального перепада давления на фильтре. 6. ТМТ (топливо масляный теплообменник). 7. Воздухомасляный теплообменник. 8. слив в маслобак. 9. Воздухоотделитель. 10. суфлер центробежный. 11. Датчик перепада давления между ступенями нагнетания и откачивания. 12. фильтр последнего шанса. 13. Фильтр защитный. 14. Сигнализатор магнитный.

Рисунок 6. Структура системы

Эмерджентность:

С помощью регулирования давления масла и воздуха суфлированием укрепляет и уплотняет полости двигателя тем самым повышая его мощность и уменьшает потери масла и топлива.

Целостность:

Изменение фильтрующего матерьяла в фильтре грубой очистки, изменяет его пропускную способность,что изменяет время запуска двигателя. Изменение длинны перегородок в ТМТ влияет на скорость и охлаждение проходящего масла.

Уменьшение: потеря скорости и теплоотводности агрегата изменяет качество масла следовательно ухудшение работы двигателя. Увеличение: потеря в компактности агрегата что изменяет общие объемы системы. Что является не допустимым в в конструкции самолета.

Изоморфизм

Сходство объектов по строению или по форме просматривается в разновидностях фильтров,отличающимися только матерьялами которые используются в конструкции.

Изофункционализм

Просматривается в работе нагнетающей и откачивающей ступени маслонасоса. Ведущая шестерня блока насоса связана с приводным валом который приводит в движение шестерни откачивающей и нагнетающей ступени маслонасоса.

Аддитивность

Сумму изменений в системе просматривается если просуммировать свойства подсистем фильтрования и охлаждения. Значение суммы является важной в повышении качества масла после циркулировании в узлах смазывания.

Также аддитивность в подсистеме охлаждения; суммы ТМТ и ВМТ. ТМТ и ВМТ обеспечивают охлаждение масла. Так как ТМТ не обеспечивает полностью охлаждение масла.

Прогрессирующая систематизация:

В системе просматривается прогрессирующая систематизация. Это просматривается в работе блока маслонасосов, которые при увеличении давления регулируются датчиком перепада давления.

Элементный состав Смешанный. Представлены гомогенные элементы в различных агрегатах обладающие не изоморфизмом,не изофунциональностью. Но также есть и гетерогенные элементы на примере фильтров ФПШ.

Тип элементов

Энергетический. Блок маслонасосов преобразует энергию приводного вала в движение шестерней.

Тип связей

Вещественный. Перенос масла между элементам

Тип структуры

Смешанный: иерархичный, линейный.

Количество уровней: 4.

Ресурсы

Энергия приводного вала. Масло как рабочее тело циркуляции.

В системе выявлено 3 подсистемы: 1. Циркулирование масла 2. Фильтрация масла. 2. Охлаждение масла.

Подсистемы взаимосвязаны и подчинены выполнению прямых целей (циркулирование, фильтрация, охлаждение) и главной(смазывание, защита трущихся пар, охлаждение двигателя).

Рисунок 7. Функциональная схема

Маслосистема - Обеспечивает сохранение энергоресурса двигателя, обеспечить работу двигателя на всех режимах двигателя. Контроль летных способностей двигателя на разных режимах полета.

Система подвода масла - Обеспечивает подвод масла к трущимся парам, смазывая детали двигателя, при трении которых теряется общая мощность двигателя. Данная подсистема сохраняет энергоресурс двигателя.

Маслобак- Обеспечивает хранение масла. Определяет количество масла которое циркулирует в маслосистеме. Определяет напор масла для блока маслонасоса.

Блок маслонасосов - Обеспечивает давление масла. Шестеренчатые насосы компактны, обеспечивают высокую производительность, обладают достаточной всасывающей способностью, просты в производстве и надежны в эксплуатации. Величина создаваемого насосом давления зависит от вязкости масла, скорости вращения шестерен насоса, гидравлических сопротивлений системы.

Трубопровод слива масла - Обеспечивает перемещение масла из подсистемы охлаждения и очистки обратно в маслобак. Количество циркулируемого масла зависит от вязкости масла, диаметра трубопровода и давления откачки.

Система очистки и охлаждения - Определяет ресурс работы двигателя т. к в процессе работы трущихся пар идет выделения тепла которое влияет на расширение элементов двигателя а следовательно и износ трущихся пар. Подподсистема охлаждения отводит тепло которое выделяется при работе двигателя подводя к элементам трения охлажденное масло. Обеспечивает очистку масла после смазывания трущихся пар, определяя последующую защиту трущихся пар маслом. Зависит от вязкости масла, от пропускной способности трубопроводов, материалов фильтрования.

Подсистема фильтрации - Обеспечивает очистку масла после смазывания трущихся пар, определяя последующую защиту трущихся пар маслом. Зависит от вязкости масла, от пропускной способности трубопроводов, материалов фильтрования.

Грубый сетчатый фильтр -Обеспечивает фильтрацию масла на выходе из маслобака. Фильтрация масла зависит от вязкости масла и напора масла и давления нагнетающего насоса. Определяет пропускную способность нагнетающей ступени насоса.

Фильтр грубой очистки - Устанавливается после нагнетающей ступени насоса, определяет качество масла после нагнетающей ступени насоса,следовательно зашиту трущихся пар при смазывании. Влияет вязкость масла, температура масла, напор масла нагнетающей ступени масла насоса.

Фильтр защитный - Определяют ресурс работы узлов двигателя. Задерживают крупные частицы, размеры которых значительно больше зазоров в парах трения. Влияет вязкость масла, температура масла.

ФПШ (фильтр последнего шанса) -определяют ресурс работы жиклерных отверстий и подшипников. Задерживают крупные частицы, размеры которых значительно больше зазоров в парах трения. Влияет вязкость масла, температура масла. Тонкость очистки 200…300мкм.

Фильтр тонкой очистки -Определяет чистоту масла после фильтрации. Устанавливается на выходе откачивающей ступени маслонасоса. Влияет вязкость масла, температура масла(тонкость фильтрации, степень очистки масла от включений, пропускная способность, создаваемое сопротивление) влияет на (прочность и срок службы трущихся пар (подшипник)).

Подсистема охлаждения - Определяет ресурс работы двигателя т. к в процессе работы трущихся пар идет выделения тепла которое влияет на расширение элементов двигателя а следовательно и износ трущихся пар. Подподсистема охлаждения отводит тепло которое выделяется при работе двигателя подводя к элементам трения охлажденное масло.

ТМТ (топливомасляный теплообменник)-Определяет комфортное температурное состояние поверхностей трения обеспечивают подачей к ним охлажденного в ТМТ масла. В ТМТ используется хладоресурс топлива. Влияет давление подаваемого в него топлива и расположение маслобака (магистраль откачки «холодный бак»),качество масла после смазывания трущихся пар. Передает более низкую температуру топлива маслу которое находится в полостях ТМТ.

ВМТ (воздухомасляный теплообменник) - Обеспечивает охлаждение температуры масла. Определяет температурное состояние масла,которое подается после охлаждения в ТМТ масла. Влияет температура, подаваемая в агрегат, количество воздуха которое проходит через межтрубное пространство.

Воздухоотделитель - Обеспечивает отделение воздуха от масла после цикла смазывания. Влияет на защиту трущихся пар т. к вспененное масло плохо смазывает. Ступень откачки масла захватывает только малую часть масла, что влияет на эффективность работы всей системы. Зависит о вязкости масла и частоты работы ротора который влияет на создание центробежных сил в воздухоотделителе.

Система защиты - Обеспечивает надежность и предотвращение перепадов давления воздуха и масла которые возникают при теплоотдаче и движении трущихся пар,движения масла.

Предохранительный клапан - Возвращает излишки масла, обратно на вход в насос которое вытекает при воздействии давления, которое возникает при низкой температуре, засорении фильтра.

Сигнализатор перепада давления на фильтре - Подает сигнал при загрязнении фильтра. Давление возникающее в фильтре зависит от времени работы системы и интенсивности работы двигателя что отражается на пропускной способности фильтра.

Магнитный сигнализатор - сигнализирует о засорении защитного фильтра.

Датчик перепада давления между нагнетанием и откачкой - Обеспечивает регулировку ступени нагнетании и откачки. Необходимое большая производительность откачивающей ступени из-за захвата воздуха. Блок маслонасоса связана с приводным валом, и работа ступеней нагнетания и откачки имеют те же самые характеристики. Датчик перепада давления компенсирует необходимый ресурс нагнетающей ступени.

Суфлер центробежный - Обеспечивает регулировку давления воздуха и отводит отделенный воздух за борт. Который скапливается в масляных полостях подшипников, узлов двигателя.

Системоразрушающие факторы: Несоблюдение предписаний по использованию марки масел, интенсивная работа в длительные периоды(перегрев двигателя), несоблюдение режимов запуска двигателя, высокие температуры внешней среды.

Системообразующие факторы: Замена фильтрующих элементов, профилактика агрегатов системы, следование показателям датчиков и сигнализаторов. Обеспечение температурного диапазона работы масла(например: подогрев, при низких температурах окружающей среды).

Многофункциональность: Система обеспечивает кроме зашиты и смазывании трущихся пар, еще и суфлирование двигателя. Что повышает энергоресурс системы и двигателя и мощность двигателя.

Связи: энергетические(преобразование энергии приводного вала блоком маслонасосом, преобразование центробежных сил приводного вала воздухоотделителем),вещественные(циркулирование масла во всех элементах системы).

Ранг системы: Маслосиcтема обслуживает более сложную систему самолета ГТД. Обслуживание другой системы.

Вывод надежности: вполне надежна, если следовать установленным ограничения ресурса системы и ее элементов (например, фильтр, замена масла).

2 . 4 Инфологическое описание

Принцип работы: Из маслобака 1 через грубый сетчатый фильтр (не показан как элемент конструкции маслобака) масло поступает в нагнетающую ступень маслонасоса 2. При низкотемпературном запуске или при долговременной работе что ведет к засорении фильтра, возникает высокое давление в трубопроводах которые связывают маслобак и блок маслонасоса, из-за этого возникают излишки масла которые возвращаются обратно в бак клапаном холодного запуска 3. Через фильтр 4 масло подается на смазывание трущихся пар, непосредственно перед жиклерами смазки установлены фильтры последнего шанса 12, при засорении фильтра 4 возникает давление масла о котором сигнализирует датчик перепада давления 5, и далее ступенями откачки блока маслонасоса. Давление ступени откачки и нагнетания регулирует датчик перепада давления 11, т. к при работе ступени откачки маслонасос захватывает некоторое количество воздуха,в связи с этим давление откачки должно превышать над давлением нагнетания. Далее масло подается в топливомасляный теплообменник 6 и воздушно-масляный теплообменник 7 и по трубопроводу 8 слива масла через воздухоотделитель 9 возвращается в маслобак. Суфлер 10 отводит отделенный воздухоотделителем воздух в атмосферу.

После охлаждения и воздухоотдления масло проходит очистку защитным фильтром 13 ( не показан как элемент конструкции маслонасоса) и проверку на количество металлических частиц трущихся пар магнитным сигнализатором 14 ( не показан как элемент конструкции маслонасоса).

Элементы системы:

· Маслобак

· Блок маслонасоса

· Предохранительный клапан

· Фильтр грубой очистки

· Сигнализатор масксимального перепада давления на фильтре

· Топливомасляный теплообменник

· Воздушномаслянный теплообменник

Нанозащита двигателя от PRO TEC на 1 Avto TV

motorklin.flv

note2auto.ru

Маслосистема авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационных газотурбинных двигателей. При экстремальных условиях работы двигателя (например, при фигурных полетах самолета) вследствие роста гидравлического сопротивления в магистралях откачки, увеличения перемешивания масла с воздухом и интенсификации процесса растворения воздуха в масле, на входе откачивающих насосов образуется масловоздушная эмульсия с большим процентным содержанием в ней воздуха, что может привести к снижению напора и падению производительности откачивающего насоса, являющегося наименее надежным звеном маслосистемы. Баланс подачи и откачки масла в масляной полости, обслуживаемой проблемным насосом, нарушается, и она начинает переполняться маслом, которое быстро перегревается. Переполнение масляной полости маслом сопровождается его уходом из маслобака, что грозит потерей масла и появлению на двигателе режима «масляное голодание». Технический результат изобретения - возможность корректировки гидравлического сопротивления магистрали откачки масла проблемного откачивающего насоса, что позволяет восстановить баланс подачи и откачки масла в масляной полости, обслуживаемой этим насосом, и избежать появления дефектов на двигателе. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационных газотурбинных двигателей.

Известна маслосистема авиационного газотурбинного двигателя (ГТД), содержащая откачивающие насосы, всасывающие магистрали которых подключены к масляным полостям опорных подшипников роторов вентилятора, компрессора, турбины и коробок привода агрегатов, а магистрали откачки объединены в единую магистраль сброса масла в маслобак (см. книгу «Смазка авиационных газотурбинных двигателей», М.М.Бич, Е.В.Вейнберг, Д.Н.Сурнов. - М.: Машиностроение, 1979 г., стр.34, рис.3.1).

Известная маслосистема не обеспечивает надежную откачку масла из всех масляных полостей двигателя в экстремальных условиях его эксплуатации. На больших высотах полета, а также в условиях фигурных полетов самолета, или на режимах работы двигателя с максимальной частотой вращения ротора турбокомпрессора, один из откачивающих насосов маслосистемы может оказаться в более неблагоприятных условиях работы, чем остальные, например, из-за интенсивного перемешивания масла с воздухом в масляной полости, подключенной к нему, либо вследствие роста противодавления в магистрали откачки, что приводит к потере откачивающим насосом напора и падению его производительности. Баланс подачи и откачки масла в масляной полости, обслуживаемой этим насосом, нарушается, и она переполняется маслом, которое начинает перегреваться. Переполнение масляной полости маслом, сопровождающееся его уходом из маслобака, может привести к «масляному голоданию» двигателя и его поломке (прежде всего из-за заклинивания ротора турбокомпрессора).

Появлению откачивающего насоса с ухудшенными характеристиками (проблемного откачивающего насоса) - слабейшего звена системы откачки масла, способствует то обстоятельство, что в маслосистеме современного ГТД используется около десятка откачивающих насосов разной размерности, частоты вращения, запаса по производительности, напора, а также типа конструкции, выходные магистрали которых сообщены между собой через единую магистраль сброса масла в маслобак. Следует обратить внимание и на то, что масляные полости опорных подшипников ротора турбокомпрессора и коробок привода агрегатов имеют разную температуру масла, давление суфлирования и степень вспенивания в них масла, которые изменяются при выполнении самолетом фигурных полетов либо при возрастании частоты вращения ротора двигателя, и влияют на характеристики проблемного откачивающего насоса.

Раздельный отвод масла из магистралей откачки откачивающих насосов непосредственно в маслобак без использования объединенной магистрали сброса масла позволяет исключить взаимное влияние насосов друг на друга и предотвратить ухудшение характеристик откачивающего насоса (потеря напора и снижение производительности), являющегося слабейшим звеном в системе откачки масла, однако такое решение из-за усложнения конструкции маслобака и увеличения массы двигателя на авиационных ГТД не применяется.

Техническим результатом, на достижение которого направлено изобретение, является повышение надежности откачки масла из масляных полостей опорных подшипников ротора и коробок приводов агрегатов авиационного ГТД за счет возможности корректировки гидравлического сопротивления магистрали откачки масла откачивающего насоса с ухудшенными характеристиками.

Заявленный технический результат достигается тем, что в маслосистеме авиационного газотурбинного двигателя, содержащей откачивающие насосы, всасывающие магистрали которых подключены к масляным полостям опорных подшипников роторов вентилятора, компрессора, турбины и коробке приводов агрегатов, а магистрали откачки объединены в единую магистраль сброса масла в маслобак оканчивающуюся центробежным воздухоотделителем, согласно изобретению, по меньшей мере, магистраль откачки одного из откачивающих насосов параллельно подключена к маслобаку, минуя единую магистраль сброса масла в маслобак. Кроме того, в магистраль откачки откачивающего насоса, параллельно подключенную к маслобаку, минуя единую магистраль сброса масла в маслобак, последовательно установлен предохранительный клапан; в магистрали откачки откачивающего насоса, параллельно подключенной к маслобаку, минуя единую магистраль сброса масла в маслобак, установлен дополнительный центробежный воздухоотделитель.

Параллельное подключение к маслобаку магистрали откачки, по меньшей мере, одного из откачивающих насосов, минуя единую магистраль сброса масла в маслобак, позволит уменьшить скорость масла в ней, что приведет к снижению гидравлического сопротивления в магистрали откачки и будет способствовать восстановлению напора и росту производительности проблемного насоса.

Последовательная установка предохранительного клапана (нормально закрытого) в магистраль откачки откачивающего насоса, подключенную параллельно к маслобаку, минуя единую магистраль сброса масла в маслобак, позволит организовать перепуск масла только при необходимости.

Установка в магистраль откачки откачивающего насоса, подключенную параллельно к маслобаку, минуя единую магистраль сброса масла в маслобак, центробежного воздухоотделителя позволит сохранить качество очистки перепускаемого масла от воздуха.

На прилагаемой схеме изображена заявляемая маслосистема авиационного газотурбинного двигателя.

Маслосистема авиационного газотурбинного двигателя содержит масляные полости 1, 2, 3 подшипниковых опор вентилятора, компрессора, турбины и масляную полость 4 коробки приводов агрегатов (КПА). Каждая из масляных полостей 1, 2, 3, 4 подключена к входу своего откачивающего насоса, соответственно 5, 6, 7, 8. Магистрали откачки 9, 10, 11, 12 объединены в единую магистраль 13 сброса масла через центробежный воздухоотделитель 14 в маслобак 15. Магистраль откачки 12 откачивающего насоса 8 (наименее надежного элемента системы) параллельно подключена к маслобаку 15 через магистраль 16, в которую последовательно установлен предохранительный клапан 17, а на выходе из магистрали 16 установлен дополнительный центробежный воздухоотделитель 18. Также маслосистема оборудована нагнетающим насосом 19 с магистралями всасывания 20 и нагнетания 21. Для отвода воздуха из масляных полостей 1, 2, 3, 4 в маслосистеме предусмотрен центробежный суфлер 22, вход в который сообщен системой суфлирующих магистралей с масляными полостями 1, 2, 3, 4, а выход выведен в атмосферу.

Устройство работает следующим образом.

При работе двигателя масло из маслобака 15 по магистрали всасывания 20 попадает на вход нагнетающего насоса 19, а затем через магистраль нагнетания 21 подводится к масляным полостям 1, 2, 3, 4. Отработанное масло переправляется из масляных полостей 1, 2, 3, 4 с помощью откачивающих насосов 5, 6, 7, 8 через магистрали откачки соответственно 9, 10, 11, 12 в единую магистраль 13 сброса масла, которая через центробежный воздухоотделитель 14 сообщена с маслобаком 15. При росте частоты вращения роторов двигателя возрастает противодавление в единой магистрали 13. При экстремальных условиях работы двигателя (например, при фигурных полетах самолета) масло в масляных полостях 1, 2, 3, 4 интенсивно перемешивается с воздухом, в результате чего на входе откачивающих насосов 5, 6, 7, 8 образуется масловоздушная эмульсия с большим процентным содержанием в ней воздуха, что приводит к снижению напора и падению производительности откачивающего насоса, оказавшегося в наихудших условиях, например откачивающего насоса 8. Чтобы исключить переполнение масляной полости 4, обслуживаемой откачивающим насосом 8, срабатывает предохранительный клапан 17 и часть масла из магистрали откачки 12 по магистрали 16 перетекает через дополнительный центробежный воздухоотделитель 18 в маслобак 15, что приводит к снижению гидравлического сопротивления на выходе из откачивающего насоса 8 и восстановлению им напора и производительности. Перетекание масла из маслобака 15 в масляную полость 8 будет предотвращено. Воздух из масляных полостей 1, 2, 3, 4 через центробежный суфлер 22 будет выведен в атмосферу.

Реализация изобретения позволит, без переделки насосных агрегатов, исключить влияние проблемного насоса на баланс подачи и откачки в обслуживаемой им масляной полости, своевременно организуя перепуск отработанного масла в маслобак в обход единой магистрали сброса.

1. Маслосистема авиационного газотурбинного двигателя, содержащая откачивающие насосы, всасывающие магистрали которых подключены к масляным полостям опорных подшипников роторов вентилятора, компрессора, турбины и коробке приводов агрегатов, а магистрали откачки объединены в единую магистраль сброса масла в маслобак оканчивающуюся центробежным воздухоотделителем, отличающаяся тем, что, по меньшей мере, магистраль откачки одного из откачивающих насосов параллельно подключена к маслобаку, минуя единую магистраль сброса масла в маслобак.

2. Маслосистема газотурбинного двигателя по п.1, отличающаяся тем, что в магистраль откачки откачивающего насоса, параллельно подключенную к маслобаку, минуя единую магистраль сброса масла в маслобак, последовательно установлен предохранительный клапан.

3. Маслосистема газотурбинного двигателя по п.1, отличающаяся тем, что в магистрали откачки откачивающего насоса, параллельно подключенной к маслобаку, минуя единую магистраль сброса масла в маслобак, установлен дополнительный центробежный воздухоотделитель.

www.findpatent.ru

Масляная система. Техническое обслуживание маслосистемы двигателя

Похожие главы из других работ:

Использование двухступенчатого обратного осмоса для получения воды для инъекций

Система GMP

Международный стандарт GMP (good manufactured practice) включает в себя достаточно обширный ряд показателей, которым должны соответствовать npeдприятия, выпускающие ту или иную продукцию...

Исследование вибродемпфирующих покрытий

1.5.4 Масляная система

Данная система предназначена для приема, хранения, очистки и подачи масла к потребителям. В СЭУ масло используется для смазки трущихся деталей главных и вспомогательных механизмов, а также для отвода теплоты...

Методы проведения стандартных испытаний по определению показателей качества исходных материалов и готовых изделий

2. Автоматизированная система

Автоматизированная система - это система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая автоматизированную технологию выполнения установленных функций...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.1 МАГНИТОЭЛЕКТРИЧЕСКАЯ СИСТЕМА

Приборы этой системы (рис.3) содержат постоянный магнит - 1, к которому крепятся полюса - 2. В межполюсном пространстве расположен стальной цилиндр - 3 с наклеенной на него рамкой - 4. Ток в рамку подается через две спиральные пружины -5...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.2 ЭЛЕКТРОМАГНИТНАЯ СИСТЕМА

Приборы этой системы (рис.5) имеют неподвижную катушку - 1 и подвижную часть в виде стального сердечника - 2, связанного с индикаторной стрелкой - 3 противодействующей пружины - 4. Измеряемый ток, проходя по катушке...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.3 ЭЛЕКТРОДИНАМИЧЕСКАЯ СИСТЕМА

Эта система представляет собой две катушки (рис.7), одна из которых неподвижная, а другая - подвижная. Обе катушки подключаются к сети, и взаимодействие их магнитных полей приводит к повороту подвижной катушки относительно неподвижной [4]. Рис...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.4 ИНДУКЦИОНААЯ СИСТЕМА

Приборы индукционной системы получили широкое распространение для измерения электрической энергии. Принципиальная схема прибора приведена на рис.9. Электрический счетчик содержит магнитопровод - 1 сложной конфигурации...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.6 ЭЛЕКТРОСТАТИЧЕСКАЯ СИСТЕМА

Принцип действия основан на взаимодействии двух заряженных электродов, один из которых является подвижным. В электростатическом приборе измеряются силы, возникающие в электрическом поле, пропорциональные квадрату напряженности поля Е...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.7 ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

стандартизация сертификация физическая величина электрический Принцип действия приборов термоэлектрической системы основан на использовании электродвижущей силы, возникающей в цепи, состоящей из разнородных проводников...

Метрологическое обеспечение стандартизации, сертификации и качества измерения параметров или значений физических величин

2.8 ВИБРАЦИОННАЯ СИСТЕМА

Вибрационная система характеризуется применением ряда настроенных пластин...

Модернизация привода передаточной тележки склада

4.4 Бирочная система

Бирочная система - это система допуска к работам, связанным с эксплуатацией, техническим обслуживанием и ремонтом оборудования и механизмов с электроприводом, гидроприводом и пневмоприводном...

Орская ТЭЦ

5.2. Регулирование, защита и масляная система турбин

Регулирование и защита турбины типа ПТ - 65/75 - 130/13: 1. Турбина снабжена гидравлической системой регулирования, которая обеспечивает необходимое воздействие на регулирующие клапаны и поворотную диафрагму турбины...

Производство теплоизоляционных материалов

5.3.3 Масляная эмульсия

Назначение масляной эмульсии - придание водоотталкивающих свойств теплоизоляционному материалу. Масляная эмульсия поступает на завод в бочках или в термоизолированной цистерне с концентрацией 50%. 5.3...

Разработка конструкции приспособления для притира корпусных отверстий

3. Система ППР

...

Разработка открытого месторождения угля на участке №7 разреза "Восточный" Экибастузского каменноугольного бассейна

5. Система разработки

Выбор системы разработки зависит от горно-геологических и горнотехнических условий. Так как месторождение разрабатывается от лежачего бока (14о) к висячему (40о)...

prod.bobrodobro.ru

МАСЛОСИСТЕМА ДВИГАТЕЛЯ

СИСТЕМА СМАЗКИ И СУФЛИРОВАНИЯ

Маслосистема двигателя включает в себя верхний масляный агрегат, нижний масляный агрегат, магистральные трубопроводы, воздушно-масляный радиатор, масляный бак и расширительный бачек. *

Рис. 6.1. Схема масляной системы двигателя:

1 — масляный бак; 2 — масляный насос нагнетающий; 3 — масляный фильтр; 4 и 11 —запорные клапаны; 5 — редукционный клапан; 6 — манометр; 7 — радиатор; 8 , 9 , 10 , 13 , 14 и 15 — масляные насосы откачивающие; 12 — термометр; 16 — центробежный суфлер; 17 — расширительный бачок

Маслосистема обеспечивает постоянную подачу масла к подшипникам и к трущимся поверхностям деталей при работе двигателя для уменьшения трения и для отвода тепла. Для смазки применяется синтетическое масло Б-ЗВ, которое обладает хорошими смазывающими свойствами, высокой термохимической стабильностью, позволяющей работать при температурах масла выше 200° С, и обеспечивает запуск двигателя без подогрева масла при температуре окружающей среды до —40° С.

При работе двигателя масло из масляного бака 1 (рис. 6.1) вертолета по внешнему трубопроводу подводится к штуцеру в передней части корпуса коробки приводов. От штуцера по сверлению внутри корпуса коробки приводов масло подводится в заднюю часть коробки к фланцу крепления верхнего масляного агрегата и поступает на вход в нагнетающий масляный насос 2.

Нагнетаемое масляным насосом 2 масло проходит масляный фильтр 3, запорный клапан 4 по наружным трубопроводам, каналам в корпусах опор роторов двигателя и форсункам поступает к точкам смазки.

В нагнетающей магистрали системы смазки требуемое давление масла поддерживается

редукционным клапаном 5. Давление измеряется манометром 6 в трубопроводе подачи масла к корпусам опор роторов двигателя.

Масло от точек смазки откачивается нижним масляным агрегатом, который включает в себя пять откачивающих насосов 8, 9, 10, 13 и 14. Из полости коробки приводов масло откачивается шестым откачивающим насосом 15, расположенным в верхнем масляном агрегате.

*Воздушно-масляный радиатор, масляный бак и расширительный бачек входят в состав внешней маслосистемы

.

Из откачивающих насосов масло через запорный клапан 11 направляется в радиатор 7 и из него возвращается в масляный бак 1. Для предотвращения перетекания масла из бака в двигатель на стоянке в схеме предусмотрены два запорных клапана 4 и 11 в нагнетающей и откачивающей магистралях.

Температура выходящего из двигателя масла измеряется термометром 12 в магистрали отвода масла из нижнего масляного агрегата в радиатор.

В систему суфлирования двигателя входят центробежный суфлер 16, расположенный в коробке приводов, и расширительный бачок 17, установленный на вертолете.

studlib.info