Схема регулятора скорости вращения двигателя постоянного тока – для новичков в радиоделе. Схема регулятора двигателя


Регулятор оборотов коллекторного двигателя без потерь

Для выполнения многих видов работ по обработке древесины, металла или других типов материалов требуются не высокие скорости, а хорошее тяговое усилие. Правильнее будет сказать - момент. Именно благодаря ему запланированную работу можно выполнить качественно и с минимальными потерями мощности. Для этого в качестве приводного устройства применяются моторы постоянного тока (или коллекторные), в которых выпрямление питающего напряжения осуществляется самим агрегатом. Тогда для достижения требуемых рабочих характеристик необходима регулировка оборотов коллекторного двигателя без потери мощности.

Особенности регулирования скорости

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обобщенная схема регулятора

Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Разновидности коллекторных двигателей

Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться, для каких целей требуется сконструировать регулятор:

  • Если необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/мин. Для этого подойдёт упрощённая схема на 1 тиристоре или на паре транзисторов.
  • Если необходимо управлять скоростью от 0 до максимума, тогда придется использовать полноценные схемы преобразователей с обратной связью и жёсткими характеристиками регулирования. Обычно у мастеров-самоучек или любителей оказываются именно коллекторные двигатели с обмоткой возбуждения и тахогенератором. Таким мотором является агрегат, используемый в любой современной стиральной машине и часто выходящий из строя. Поэтому рассмотрим принцип управления именно этим двигателем, изучив его устройство более подробно.

Конструкция мотора

Конструктивно двигатель от стиральной машины «Индезит» несложен, но при проектировании регулятора управления его скоростью необходимо учесть параметры. Моторы могут быть различными по характеристикам, из-за чего будет изменяться и управление. Также учитывается режим работы, от чего будет зависеть конструкция преобразователя. Конструктивно коллекторный мотор состоит из следующих компонентов:

  • Якорь, на нем имеется обмотка, уложенная в пазы сердечника.
  • Коллектор, механический выпрямитель переменного напряжения сети, посредством которого оно передается на обмотку.
  • Статор с обмоткой возбуждения. Он необходим для создания постоянного магнитного поля, в котором будет вращаться якорь.

При увеличении тока в цепи двигателя, включенного по стандартной схеме, обмотка возбуждения включена последовательно с якорем. При таком включении мы увеличиваем и магнитное поле, воздействующее на якорь, что позволяет добиться линейности характеристик. Если поле будет неизменным, то получить хорошую динамику сложнее, не говоря уже о больших потерях мощности. Такие двигатели лучше использовать на низких скоростях, так как ими удобнее управлять на малых дискретных перемещениях.

Организовав раздельное управление возбуждением и якорем, можно добиться высокой точности позиционирования вала двигателя, но схема управления тогда существенно усложнится. Поэтому подробнее рассмотрим регулятор, который позволяет изменять скорость вращения от 0 до максимальной величины, но без позиционирования. Это может пригодиться, если из двигателя от стиральной машины будет изготавливаться полноценный сверлильный станок с возможностью нарезания резьбы.

Выбор схемы

Выяснив все условия, при которых будет использоваться мотор, можно начинать изготавливать регулятор оборотов коллекторного двигателя. Начинать стоит с выбора подходящей схемы, которая обеспечит вас всеми необходимыми характеристиками и возможностями. Следует вспомнить их:

  • Регулирование скорости от 0 до максимума.
  • Обеспечение хорошего крутящего момента на низких скоростях.
  • Плавность регулирования оборотов.

Рассматривая множество схем в интернете, можно сделать вывод о том, что мало кто занимается созданием подобных «агрегатов». Это связано со сложностью принципа управления, так как необходимо организовать регулирование многих параметров. Угол открытия тиристоров, длительность импульса управления, время разгона-торможения, скорость нарастания момента. Данными функциями занимается схема на контроллере, выполняющая сложные интегральные вычисления и преобразования. Рассмотрим одну из схем, которая пользуется популярностью у мастеров-самоучек или тех, кто просто хочет с пользой применить старый двигатель от стиральной машины.

Всем нашим критериям отвечает схема управления скоростью вращения коллекторным двигателем, собранная на специализированной микросхеме TDA 1085. Это полностью готовый драйвер для управления моторами, которые позволяют регулировать скорость от 0 до максимального значения, обеспечивая поддержание момента за счёт использования тахогенератора.

Особенности конструкции

Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

На рисунке ниже изображена типовая схема включения микросхемы.

Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:

  • Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:

  • Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

220v.guru

Регулятор оборотов коллекторного двигателя - как устроен, как сделать своими руками, инструкция со схемой

Как устроен регулятор оборотов дрели: схема

[скрыть]

  • Назначение регулятора оборотов
  • Использование дрели в качестве станка
  • Ремонт кнопки с регулятором оборотов
  • Регулятор оборотов для микродрели

Сегодня невозможно найти человека, который бы не знал о существовании электрической дрели. Многим приходилось пользоваться этим инструментом. Но как устроена эта незаменимая в хозяйстве вещь, известно далеко не каждому.

Виды дрелей.

Внутри корпуса дрели расположен электродвигатель, система его охлаждения, редуктор, регулятор оборотов дрели. О работе регулятора оборотов дрели стоит поговорить несколько подробнее. Все детали во время работы изнашиваются, особенно подвержена этому процессу кнопка включения дрели. А с ней непосредственно связана система регулировки оборотов.

Устройство плавного пуска дрели.

Регулятор оборотов современной электрической дрели располагается внутри кнопки включения прибора. Достичь таких малых размеров позволяет микропленочная технология, по которой он собран.

Все детали и сама плата, на которой расположены эти детали, отличаются малыми размерами. Основная деталь регулятора — симистор. Принцип его работы состоит в изменении момента замыкания цепи и включения симистора.

Происходит это так:

  1. После включения кнопки симистор получает на свой управляющий электрод напряжение, имеющее синусоидальную форму.
  2. Симистор открывается, и ток начинает течь через нагрузку.

При большей амплитуде управляющего напряжения симистор включается раньше. Амплитуда управляется с помощью переменного резистора, который соединен с пусковым курком дрели. Схема подключения кнопки в разных моделях может быть немного разной.

Только не стоит путать регулятор оборотов с устройством управления реверсом. Это совершенно разные вещи. Иногда они могут размещаться в разных корпусах.

Регулятор оборотов может предусматривать подключение конденсатора и обоих проводов от розетки.

Рисунок 1. Типовая схема регулятора оборотов дрели.

Ручная дрель может применяться нестандартно. На ее основе делают разнообразные станки: сверлильный, шлифовальный, циркулярный и другие. В таких станках функция регулирования оборотов является очень важной.

У большинства бытовых дрелей обороты регулируются кнопкой пуска аппарата. Чем сильнее она нажата, тем выше обороты. Но фиксируются они только на максимальных значениях.

Это в большинстве случаев может оказаться существенным недостатком.

Можно выйти из данной ситуации путем самостоятельного изготовления выносного варианта регулятора оборотов. В качестве регулятора вполне можно применить диммер, который обычно применяют для регулировки освещенности. Схема регулятора довольно проста и представлена на рис. 1.

Для его изготовления нужно к розетке присоединить провода разной длины. Длинный провод другим концом присоединяется к вилке. Остальное собирается по схеме. Рекомендуется использовать дополнительный автоматический выключатель, который отключит устройство в случае аварии.

Самодельный регулятор оборотов готов. Можно выполнить пробный пуск. Если он работает нормально, можно поместить его в подходящего размера коробку и закрепить на станине будущего станка в удобном месте.

Рисунок 2. Схема регулятора оборотов для микродрели.

Ремонт кнопки представляет собой довольно непростой процесс, требующий определенных навыков. При открытии корпуса некоторые детали могут просто выпасть и потеряться. Поэтому в работе нужна осторожность. В случае неполадок обычно выходит из строя симистор. Стоит эта деталь очень дешево. Разборка и ремонт происходят в следующем порядке:

  1. Разобрать корпус кнопки.
  2. Промыть и прочистить внутренности.
  3. Снять плату с находящейся на ней схемой.
  4. Выпаять сгоревшую деталь.
  5. Впаять новую деталь.

Разобрать корпус очень просто. Нужно отогнуть боковины и вывести крышку из фиксаторов. Делать все нужно аккуратно и осторожно, чтобы не потерять 2 пружинки, которые могут выскочить. Чистить и протирать внутренности рекомендуется спиртом.

Зажимы-контакты в форме медных квадратиков выдвигаются из пазов, плата легко снимается. Сгоревший симистор обычно хорошо виден. Осталось выпаять его и впаять на его место новую деталь. Сборка регулятора производится в обратном порядке.

Схема устройства ударной дрели.

Многим приходится сверлить печатные радиоплаты. Обычно для такой работы используется микродрель, изготовленная из различных деталей собственными руками. Для таких инструментов тоже можно сделать регулятор оборотов.

Схем для изготовления можно найти множество. Подобная схема регулятора оборотов представлена на рис. 2. Все детали довольно доступные. Микросхема LM317 устанавливается на радиатор для защиты ее от перегрева.

Конденсаторы обычные, электролитические, на 16 В.

Диоды марки 1N4007 можно менять на любые другие, выдерживающие ток 1 А. Светодиод АЛ307 может быть заменен любым другим. Вся схема собирается на стеклотекстолитовой плате. Резистор R5 может быть проволочный или другой мощностью, 2 Вт.

Блок питания на напряжение 12 В. При большем напряжении придется менять конденсаторы на схеме. Готовое изделие обычно сразу начинает работать. Частота вращения двигателя регулируется резистором Р1. Чувствительность к нагрузке устанавливается резистором Р2.

В современных приборах это устройство размещается в кнопке пуска. Самодельное приспособление можно разместить в любом подходящем корпусе. Схем изготовления существует очень много.

Источник: http://MoiInstrumenty.ru/stroitelnye/regulyator-oborotov-dreli-sxema.html

Регулятор частоты вращения коллекторного двигателя

Источник: http://sxema.ucoz.ua/load/skhemy/bytovaja_tekhnika/reguljator_chastoty_vrashhenija_kollektornogo_dvigatelja/27-1-0-99

Регулятор оборотов для болгарки: как уменьшить обороты и сделать плавный пуск

Электроинструмент в нашей мастерской занимает одно из главных мест. Все функции каждое электрическое устройство выполняет согласно техническим данным. Что хотелось бы еще? Очень хочется, чтобы инструмент подольше не выходил из строя или не ломался вообще. Как человек привыкает к другу – собаке, так он привыкает и к инструменту.

Один из основных инструментов – угловая шлифовальная машина, которую мы называем болгаркой. Это универсальный инструмент, который способен резать, шлифовать, очищать поверхность, пилить доски и еще ко многим операциям ее можно приспособить.

Плавный пуск и регулировка оборотов вращения + (Видео)

Плавный пуск электроинструмента – главный залог его долголетия. Вспомните, когда перегорает электрическая лампочка? Чаще всего в момент включения. Потому что после подключения к электрической сети резко возрастает нагрузка. Подработанные места спирали не выдерживают и она перегорает.

Такие же процессы протекают и в болгарке. В момент включения ток резко возрастает, потому что движущим силам надо не просто сдвинуть якорь с места, но еще и быстро набрать нужные обороты. Эффект от такого жесткого пуска может быть самый плачевный – обрыв обмотки.

Чтобы снизить вероятность выхода из строя инструмента из-за жесткого пуска необходимо доработать болгарку и снабдить ее небольшим встроенным устройством плавного пуска.

Еще одна доработка – регулятор вращения. Из собственной практики каждый знает, как неудобно работать с инструментом, который не имеет регулировки вращения. Если в электродрели нет такого приспособления, то трудно подобрать скорость вращения и подачу сверла. Это приводит либо к заклиниванию сверла, либо к его поломке.

Аналогично работает токарный станок, в котором существует целый набор специальных шестерен для регулировки вращения шпинделя. От этого во многом зависит не только сохранность резца, но и качество обработки материала.

Объединить в себе два достоинства – плавный пуск и регулировку оборотов вала можно с помощью электронной схемы. Ее вполне можно собрать своими руками и установить прямо в корпус машины. С такой схемой она будет плавно запускаться, не создавая перегрузок в обмотках и сети. И с этой же схемой появиться возможность регулировать обороты, чтобы подбирать режим работы с любым материалом.

Если резать металл со значительной толщиной и твердостью, то необходимо поддерживать большие обороты. Но при обработке поверхностей легкоплавких материалов большая скорость больше навредит, чем поможет делу. Ее надо уменьшить. На большой скорости опасно работать с камнем или кафелем. И здесь ее необходимо сбавить.

Даже при стачивании диска скорость вращения необходимо пропорционально изменять, потому что линейная скорость кромки диска будет уменьшаться. Не обойтись без регулятора оборотов, работая диском с алмазной насечкой, потому что при высокой температуре он очень быстро разрушается.

Все говорит о том, что, если болгарка не имеет регулятора оборотов, то его обязательно надо сделать и установить в машину.

Как изготовить регулятор оборотов своими руками + (Видео)

Чтобы не осложнять восприятие принципа работы сложными терминами, принципиальную работу схемы можно объяснить просто. В ней имеется чувствительный элемент, который считывает величину нагрузки. В зависимости от считанного значения этот элемент управляет запорным устройством.

Принцип действия аналогичен работе водопроводного крана. В данном случае вы являетесь чувствительным элементом, который управляет водопроводным краном. Поток воды в зависимости от необходимости становится то больше, то меньше. Тот же процесс происходит и с током.

Необходимо правильно понимать тот момент, что мы никак не сможем увеличить скорость вращения больше той, которая указана в характеристике болгарки. Обороты мы можем только понизить. Если максимальные обороты 3000, то диапазон, в котором мы сможем регулировать обороты, будет находиться ниже этого значения.

В простейшем варианте можно использовать схему регулятора на тиристоре. Он будет и чувствовать, и регулировать. Два в одном. Схема эта имеет всего пять деталей. Она очень компакта и легко разместится в корпусе. Такой регулятор не будет работать от нулевого значения оборотов, но это для болгарки и не нужно.

Если в работе нужны более низкие обороты, то необходимо применять другую схему на интегральной микросхеме, где запорным элементом будет симистор. Такая схема сможет регулировать обороты практически от нуля и до нужного значения.

И в той, и в другой схеме основная нагрузка ложится на запорный элемент. Он должен быть рассчитан на напряжение до 600 В и на ток до 12 А. Если ваша шлифовальная машина мощнее 1 кВт, то запорный элемент должен выдерживать нагрузку до 20 А.

Все детали схемы на тиристоре можно разместить на печатной плате или просто навесным монтажом. По второму варианту детали впаиваются на печатной плате. Печатная плата может изготавливаться разными методами.

Ее можно вытравить из фольгированного текстолита, можно даже вырезать резаком, но получится очень грубо. В принципе ее можно попросить изготовить знакомого радиолюбителя за весьма скромное вознаграждение.

В изготовленную печатную плату вставляются радиоэлектронные элементы. Их можно приобрести в специализированных магазинах или на радиорынках. Номиналы каждого не должны отличаться по номиналу и по расчетной мощности. Тиристор или симистор желательно устанавливать на теплоотводе – алюминиевом или медном радиаторе.

Когда готовая плата будет готова, то необходимо выбрать удобное место в корпусе болгарки для ее установки. Установить ее желательно так, чтобы было удобно пользоваться, и чтобы она не мешала в процессе работы.

Перед тем как установить схему в машину ее надо проверить. Для этого вместо болгарки на выход надо подключить обычную лампу накаливания. Подойдет экземпляр мощностью 60 – 40 Вт на 220 В. Работоспособность будет очевидна по изменению свечения накала лампочки.

Теперь остается вмонтировать устройство на выбранное место и произвести пробный пуск болгарки. Она перестанет во время пуска вырываться из ваших рук, а обороты будут плавно регулироваться вращением регулятора.

Источник: http://instrument-blog.ru/elektroinstrumenty/regulyator-oborotov-dlya-bolgarki.html

Регулятор оборотов электродвигателя постоянного тока 12В: схема своими руками

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора.

С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания.

Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора).  При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Порядок работы регулятора мотора описывает электросхема (рис. 1).  С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки.

Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора.

Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Принципиальная электрическая схема

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать.  На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото.

 Источник питания (батарея 9 вольт) подключается на финальном этапе сборки.

Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Основные компоненты конструкции представлены на фото.10 и включают: два  подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Источник: servodroid.ru Дополнительная статья ЧИТАТЬ

Источник: https://volt-index.ru/podelki-dlya-avto/regulyator-vrashheniya-dlya-motora.html

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Радиоаматор, 4/2008

  • LM324
  • NE555
  • Регулятор оборотов

Источник: http://fornk.ru/853-podborka-sxem-regulyatora-oborotov-dvigatelya-postoyannogo-toka/

Регулятор оборотов двигателя с реверсом

Источник: http://radioskot.ru/publ/reguljator_oborotov_dvigatelja_s_reversom/1-1-0-957

__________________________________________

Регулятор частоты вращения коллекторного двигателя

Как известно, нагрузочная характеристика (зависимость частоты вращения якоря от момента нагрузки) широко применяемых в бы­ту (в кухонных машинах, электроинструмен­тах, швейных машинах и т.д.) коллекторных двигателей с последовательным возбуждением резко нелинейна.

При работе двигателя на хо­лостом ходу, т.е. при отсутствии полезной ме­ханической нагрузки, частота вращения якоря максимальна. Приэтом возникает сильное воз­действие двигателя на механическую передачу от якоря к рабочему органу, что приводит к ее быстрому изнашиванию.

В то же время, частотой вращения коллек­торных двигателей довольно легко управлять изменением напряжения на них с помощью

; фазоимпульсноготиристорного [1] илисими-сторного [2J регуляторов. Однако регуляторы без обратной связи не позволяют автоматиче­ски поддерживать постоянной частоту враще­ния двигателя при изменении нагрузки.

Точнее всего поддерживать частоту враще­ния двигателя можно с помощью регуляторов с индуктивными или фотодатчиками [31, но их схемы достаточно сложны, а сопряжение дат­чиков с двигателями в домашних условиях предсташгает собой трудную конструкторскую задачу.

: Проще всего использовать для регулиров­ки тот факт, что при увеличении нагрузки происходит увеличение тока двигателя [4] и снижение напряжения на его якоре [5].

Схема двигателя с ОС по току наиболее проста. В то же время, этой схеме присущи некоторые недостатки. В цепи обратной свя­зи для конкретного двигателя и необходимо­го диапазона скоростей требуется подбор низкоомного резистора 2…6 Ом с довольно

большой мощностью—до 5… 10 Вт.

Падающее на резисторе напряжение 2…7 В требует для эффективной работы схемы управ­ления применения в регуляторе низковольтно­го стабилитрона на 5…8 В, что, в свою очередь, затрудняет надежную работу регулятора с ши­роко распространенными тиристорами КУ 201, КУ202, которые включаются при амплитудном значении импульса отпирающего напряжения на управляющем электроде равном 5… б В [6].

Устройство, схема которого приведена на рис.1, позволяет регулировать напряжение (и соответственно частоту вращения) в пределах от 80 до 190 В на коллекторном двигателе Ml спо-следовательным возбуждением и с симметрич» но подключенными к якорю полюсными ка­тушками статора. Сдругойстороны.цепьОСпо напряжению на якоре поддерживает постоян­ной (в определенных пределах) частоту враще-

ния двигателя при изменении нагрузки пу­тем изменения угла включения тиристора

V6.                                                   ;

В качестве двигателя использовался дви­гатель с потребляемой мощностью до 300 Вт, т.е. с полезной механической мощностью до 150…180 Вт.

Двигатель Ml питается от сети 220 В пуль­сирующим током через диодный мостик на диодах VI …V4 и тиристор V6. Диод У5 обес­печивает разряд индуктивностей статора и якоря двигателя при запертом тиристоре V6.

Питание+16 В схемы управления осуществ­ляется при помощи параметрического стаби­лизатора на резисторе R1 и стабилитронах V7, V8. Отпирающий тиристор V6 ключ собран на элементах V9, V10, R2, R5…R7, СЗ, V11.R11.

Элементы V9, VI О, R6, R7 представляют собой аналог однопереходного транзистора.

При за­ряде конденсатора СЗ и достижении напряже­ния, определяемого делителем R6 и R7, транзи-, сторы V9, VI0 переходят в проводящее состоя­ние, конденсатор СЗ разряжается и включает через резистор R2 тиристор V6.

Интегрирующие цепочки R3, RIO, C4 и R4, R16, С5 позволяют усреднять и запоминать значения напряжения, пропорциональные на­пряжению на якоре при открытом состоянии тиристора, которые используются для работы схемы управления при закрытом состоянии ти­ристора. Чем больше нагрузка на валу двигате­ля, тем больше падение напряжения на индук-тивностях LI, L2 и соответственно меньшена-пряжение на якоре, а значит, и меньше раз­ность потенциалов на базах транзисторов VI2, VI3 дифференциального каскада.

Ток транзистора VI2 становится больше, больше падение напряжения на резисторе

Rl 2, что приводит к увеличению тока заряда конденсатора СЗ и соответственно — к уменьшению угла включения тиристора V6 (т.е. увеличению времени открытого состоя­ния тиристора).

Как следствие этого увели­чивается напряжение на якоре двигателя.

Снижение частоты вращения при увеличе­нии нагрузки компенсируется, таким обра­зом, увеличением частоты вращения из-за повышения напряжения на якоре при рабо­те цепи обратной связи.

Резистор R5 задает минимальное напряже­ние на двигателе не более 50 В при отключен­ной обратной связи.

Помехоподавляющие конденсаторы G1, С2 — типа К73-17, K73-I5, МБМ и им подо­бные на напряжение не менее 400 В. Кон­денсаторы СЗ, С4 и С5 — аналогичных типов

на напряжение 63 В и 160 В соответственно.

Наладку схемы можно проводить измеряя напряжение на двигателе (диоде V5) вольтмет­ром переменного тока.

Подбором величины ре­зистора R8 при верхнем по схеме положении движка резистора R9 добиваются минимально­го напряжения 80 В на двигателе при отсутст­вии механической нагрузки. При установке ре­зистора R9 в нижнее положение на двигателе будет максимальное напряжение.

Коэффици­ент передачи цепи обратной связи подбирают резистором,R26 так, чтобы при увеличении механической нагрузки на двигатель напря­жение на нем увеличивалось.

ВНИМАНИЕ! Регулятор имеет непосредст-венныйконтактсэлектросетью. Поэтому при на­ладке и эксплуатации соблюдайте особую осто­рожность и выполняйте требования безопасно-

сти при работе с электроустановками.

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта.

Другим очень сильным эффектом, который можно использовать при работе со слайдером, – это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм.

Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора.

На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Схема регулятора

Схема очень простая и может быть легко собрана даже начинающими  радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:

Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:

Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:

В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие.

Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения — отключения схемы, так как двигатель у нас нагрузка индуктивная.

Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.

При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:

Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.

Видео работы

В скором времени, как будут приобретены недостающие части, в основном механика, приступлю к сборке устройства в корпусе. Статью прислал Алексей Cитков.

   Форум

agk-sport.ru

Простой регулятор оборотов электродвигателя от 6 до 25 вольт. Схема и описание

Этот простой и надежный регулятор оборотов электродвигателя подключается между источником питания и нагрузкой. Питание может поступать от батареи или AC/DC адаптера соответствующей нагрузки.

Нагрузкой может быть любой двигатель постоянного тока или лампа накаливания. Благодаря импульсной работе (ШИМ), схема работает почти без потери энергии. Транзистор управления не требует радиатора.

Схема регулятора идеально подходит для регулировки оборотов дрели для сверления плат. Во время малых оборотов обеспечивает работу дрели с относительно большим крутящим моментом.

Описание регулятор оборотов электродвигателя

Логические элементы DD1.1, DD1.2 используются в виде классического ШИМ генератора. Резистор R1 выполняет лишь защитную функцию. Частота генератора определяется емкостью С2 или С3 и сопротивлением потенциометра PR1 вместе с R2, R3.  Параллельно соединенные логические элементы DD1.3, DD1.4 управляют транзистором MOSFET (VT1).

При использовании в схеме транзистора MOSFET, резистор R4 не нужен и на его место устанавливается перемычка. Данный резистор (R4) предусмотрен только на тот случай, если вместо MOSFET будет установлен транзистор Дарлингтона структуры n-p-n, например, BD649. Тогда для ограничения тока базы резистор R4 должен иметь значение 1к...2,2к.

Потенциометр PR1 позволяет изменять коэффициент заполнения генерируемого сигнала в очень широких пределах, примерно от 1% до примерно 99%. Сигнал с генератора периодически открывает и закрывает транзистор VТ1, а средняя мощность, поступающая на нагрузку (разъем Z2), зависит от коэффициента заполнения сигнала. Таким образом, потенциометр PR1 позволяет осуществить плавную регулировку мощности, подаваемую на нагрузку.

Включенный „наоборот” диод VD4 незаменим при использовании индуктивной нагрузки (например, электродвигатель). Без диода VD4, в момент отключения, на стоке транзистора VT1 могут возникнуть импульсы, значительно превышающие допустимо значение для данного транзистора и это может вывести его из строя.

Благодаря импульсной работе, потери мощности на транзисторе VT1 невелики и поэтому не требует радиатора, даже при токах порядка нескольких ампер, то есть мощности нагрузки до 100 Вт. Следует иметь в виду, что устройство является регулятором мощности, а не стабилизатором оборотов двигателя, поэтому обороты двигателя зависят от его нагрузки.

ВНИМАНИЕ! Схема регулирует мощность в режиме пульсаций, подавая на нагрузку меандр. Такие импульсы могут быть источником электромагнитных помех. Для минимизации помех необходимо использовать по возможности короткие соединения между блоком и нагрузкой.

Соединительный шнур должен иметь вид витой пары (обычные два скрученные между провода). Также рекомендуется дополнительно подключить электролитический конденсатор (набор конденсаторов) емкостью 1000... 10000мк к разъему питания Z1.

В схеме предусмотрен дополнительный конденсатор C3, подключаемый с помощью перемычки J1. Включение этого конденсатора вызывает снижение частоты работы генератора с 700Гц до примерно 25Гц. Это полезно с точки зрения генерируемых электромагнитных помех.

Хотя в некоторых случаях снижение частоты может быть неприемлемо, например, это может привести к заметному мерцанию лампы. Тогда необходимо самостоятельно подобрать оптимальную емкость C3.

www.joyta.ru

РЕГУЛЯТОР ОБОРОТОВ ДВИГАТЕЛЯ 12 В

Во многих электронных схемах используются системы активного охлаждения с вентиляторами. Чаще всего их моторы управляются микроконтроллером или другой специализированной микросхемой, а скорость вращения регулируется с помощью ШИМ. Такое решение характеризуется не слишком хорошей плавностью работы, может привести к нестабильной работе вентилятора, а кроме того, создает много помех.

Для потребностей высококачественной аудиотехники разработан аналоговый регулятор оборотов вентилятора. Схема пригодится при строительстве усилителей НЧ с активной системой охлаждения и позволяет выполнить плавную регулировку оборотов вентиляторов в зависимости от температуры. Производительность и мощность зависит в основном от выходного транзистора, тесты проводились с выходными токами до 2 А, что позволяет подключить даже несколько больших вентиляторов на 12 В. Естественно можно применить это устройство и для управления обычными моторами постоянного тока, при необходимости повысив питающее напряжение. Хотя для совсем уже мощных двигателей придётся задействовать системы плавного пуска tehprivod.su/katalog/ustroystva-plavnogo-puska

Принципиальная схема регулятора оборотов мотора

Схема состоит из двух частей: дифференциального усилителя и стабилизатора напряжения. Первая часть занимается измерением температуры и обеспечивает напряжение, пропорциональное температуре, когда она превышает установленный порог. Это напряжение является управляющим для стабилизатора напряжения, выход которого контролирует питание вентиляторов.

Схема регулятора оборотов электродвигателя постоянного тока приведена на рисунке. Основа - компаратор U2 (LM393), работающий в этой конфигурации как обычный операционный усилитель. Первая его часть U2A работает как усилитель дифференциальный, чьи условия работы определяют резисторы R4-R5 (47k) и R6-R7 (220k). Конденсатор C10 (22pF) улучшает стабильность усилителя, а R12 (10k) подтягивает выход компаратора к плюсу питания.

На один из входов дифференциального усилителя подается напряжение, которое образуется через делитель, состоящий из R2 (6,8k), R3 (680 Ом) и PR1 (500 Ом), и фильтруется с помощью C4 (100nF). На второй вход этого усилителя поступает напряжение с датчика температуры, который в данном случае один из разъемов транзистора T1 (BD139), поляризованный небольшим током с помощью R1 (6,8k).

Конденсатор C2 (100nF) был добавлен, чтобы фильтровать напряжение с датчика температуры. Полярность датчика и делителя опорного напряжения задает стабилизатор U1 (78L05) вместе с конденсаторами C1 (1000uF/16V), C3 (100nF) и C5 (47uF/25V), предоставляя стабилизированное напряжение 5 В.

Компаратор U2B работает как классический усилитель ошибки. Он сравнивает напряжение с выхода дифференциального усилителя с выходным напряжением с помощью цепочки R10 (3,3k), R11 (47 Ом) и PR2 (200 Ом). Исполнительным элементом стабилизатора является транзистор T2 (IRF5305), база которого управляется делителем R8 (10k) и R9 (5,1k).

Конденсатор C6 (1uF) и C7 (22pF) и C9 (10nF) улучшают стабильность петли обратной связи. Конденсатор C8 (1000uF/16V) фильтрует выходное напряжение, он имеет значительное влияние на стабильность системы. Разъемом выхода - AR2 (TB2), а разъем питания - AR1 (TB2).

Благодаря применению выходного транзистора с низким сопротивлением в открытом состоянии, схема обладает очень малым падением напряжения - порядка 50 мВ при выходном токе 1 А, что не требует блока питания с более высоким напряжением для управления вентиляторами, работающие на 12 В.

В большинстве случаев в роли U2 можно применить популярный операционный усилитель LM358, правда несколько ухудшив выходные параметры.

Сборка регулятора

Монтаж следует начинать с установки двух перемычек, затем должны быть установлены все резисторы и мелкие керамические конденсаторы.

Далее устанавливаем переменные резисторы, стабилизатор и все разъемы, заканчивая большими электролитическими конденсаторами. Транзисторы T1 и T2 оставляем на самый конец.

В большинстве случаев оба эти элемента будут установлены снизу платы на ножках, изогнутых под углом 90 градусов. Такая укладка позволит их прикрутить непосредственно к радиатору (обязательно использовать изоляционные прокладки).

   Форум

   Обсудить статью РЕГУЛЯТОР ОБОРОТОВ ДВИГАТЕЛЯ 12 В

radioskot.ru

Схема регулятора скорости вращения двигателя постоянного тока – для новичков в радиоделе

Традиционная схема стабилизатора частоты вращения вала электродвигателя постоянного тока в переносных кассетных магнитофонах, реализованная на двух транзисторах или на транзисторной микросборке и одном транзисторе, применяется нашей промышленностью уже более 15 лет в неизменном виде Современные радиоэлементы позволяют построить более простые в схемотехническом отношении стабилизаторы частоты вращения, но обладающие более совершенными характеристиками

Рис 331 Схема стабилизатора

В предлагаемом варианте стабилизатора использовано всего шесть радиоэлементов (не считая электродвигателя), но удалось добиться более высокой стабильности работы при изменении температуры окружающей среды и напряжения источника питания Диапазон питающих напряжений для данной схемы составляет 6..20 В При необходимости сместить диапазон регулирования скорости в область малых оборотов вала электродвигателя следует изменить полярность включения стабилитрона или заменить его другим, с меньшим напряжением                                                                                                                                    стабилизации

Величина сопротивления резистора R3 зависит от сопротивления цепи якоря (Rя) применяемого двигателя н примерно равна 1,5 Rя Вместо микросхемы К140УД6 проверялась работа К140УД7 Транзистор КТ815А можно заменить транзисторами КТ815 и КТ817 с любым буквенным индексом Подстроечный резистор R1 типа CП5-2

П ЛЕОНЕНКО, г Кемерово, Радио

Как и в предыдущей главе, начнём рассказ с рассмотрения работы схемы

У коллекторных двигателей постоянного тока скорость вращения вала определяется, как правило, напряжением на двигателе Напряжение на двигателе и потребляемый им ток определят некоторое эквивалентное сопротивление, которое будет отличаться от измеренного омметром сопротивления обмотки двигателя Если у вас есть конкретный моторчик, для которого вы намерены создать схему  стабилизации, то можно провести  измерения и  определиться  с параметрами моделирования Если нет, то можно выбрать их «наугад», а позже привести к конкретному виду

С распределения напряжений в схеме и начнём

Обозначение резисторов на схеме ниже я не сохранил Двигатель заменил резистором R2 И, поскольку программа позволяет добавить много измерительных приборов, в количестве вольтметров я себя не ограничивал

Рис 332 Распределение напряжений в схеме

Рабочее напряжение стабилитрона КС133А – это 33В Если напряжение на двигателе стало больше, возрастает ток через стабилитрон, увеличивается падение напряжения на резисторе R2 При этом напряжение на выходе операционного усилителя уменьшается, что приводит к уменьшению тока базы транзистора VT1 и уменьшению напряжения на эмиттере транзистора, а, следовательно, на двигателе При уменьшении напряжения процессы проходят в обратном направлении Изменяя напряжение питания, можно получить следующие результаты:

Рис 333 Напряжения на двигателе при разных напряжениях питания

Напряжение на двигателе, измеряемое вольтметром Pr1 изменяется незначительно при существенном изменении напряжения питания

Эквивалентное сопротивление двигателя (ток через моторчик) будет зависеть от нагрузки на валу двигателя Ток будет возрастать с возрастанием нагрузки Возрастающий ток увеличит падение напряжения на резисторе R1 Что увеличит падение напряжения на резисторе R4 и приведёт к увеличению напряжения на выходе операционного усилителя, то есть, к увеличению напряжения на двигателе А это, в свою очередь, должно увеличить скорость вращения вала, замедлившегося от увеличения нагрузки на валу Увеличение нагрузки на валу я буду моделировать уменьшением сопротивления R2 с 30 до 20 Ом

Рис 334 Изменение напряжения на двигателе при изменении нагрузки

Резисторы R1 и R2 мы можем рассматривать как резисторы отрицательной обратной связи, а резисторы R5 и R4 как резисторы положительной обратной связи Отрицательная обратная связь должна следить за напряжением на двигателе при изменении питающего напряжения, а положительная менять напряжение на двигателе при изменении нагрузки на валу

Разобрав на модели работу схемы, постараемся реализовать подобную или похожую схему на микроконтроллере Вновь скажу, что менять операционный усилитель на микроконтроллер, я особенного смысла не вижу Но считаю, что полезно это выполнить хотя бы за компьютером

Итак Микроконтроллер устройство в своей основе цифровое Поэтому можно использовать такой принцип регулировки напряжения на двигателе:

Как и в других случаях с переменным напряжением, напряжение на двигателе будет действующим В данном случае средним за период колебаний

Уменьшая длительность импульса с высоким уровнем напряжения, увеличив при этом длительность импульса с низким уровнем напряжения, мы получим уменьшение среднего напряжения И наоборот

Такой принцип регулирования напряжения на двигателе наилучшим образом подходит для цифрового устройства

Конечно, как и в случае аналогового управления, схема пополнится управляющим транзистором

Рис 335 Принцип регулировки напряжения на коллекторном двигателе

Воспроизвести такое напряжение с помощью программы не составляет труда Мы собирали такую программу для генератора прямоугольных импульсов Ту часть аналоговой схемы, которая следит за напряжением питания, можно пока оставить без внимания: микроконтроллер лучше питать стабилизированным напряжением

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

nauchebe.net

Схема регулятора оборотов микродрели(двигателя)

Схема регулятора оборотов микродрели

Очень часто при работе и просверливания отверстий в плате, мы то откладываем микродрель,то обратно берем ее в руки и продолжаем сверлить.Но зачастую двигатели греются на высоких оборотах, и в руку уже труднее взять.

Изза вибрации часто она может соскользнуть с платы,и сделать шлейф.Для этих целей предлогаю собрать регулятор оборотов своими руками.

Принцип работы следующий, когда нагрузка небольшая, то небольшой и ток проходи,и обороты понижены,как только нагрузка возрастает,обороты повышаются.

 

 

Схема устройства:

Огромный плюс устройства в том что двигатель работает в облегченном режиме,и меньше изнашиваются контактные щетки.

Это главный ответ на вопрос как сделать что бы при сверлении обороты повышались

Печатная плата

Радиодетали для регулятора

Микросхему LM317 необходимо установить на радиатор в избежание перегрева. Установка куллера нетребуетсяКонденсаторы электролитические на номинальное напряжение 16В. Диоды 1N4007 можно заменить на любые другие рассчитанные на ток не менее 1А. Светодиод АЛ307 любой другой. Печатная плата выполнена на одностороннем стеклотекстолите. Резистор R5 мощностью не менее 2Вт, или проволочный.

БП должен иметь запас по току, на напряжение 12В. Регулятор работоспособен при напряжении 12-30В, но свыше 14В придется заменить конденсаторы на соответствующие по напряжению.Готовое устройство после сборки начинает работать сразу.

Налаживание и мелочи в работе

Резистором P1 выставляем требуемую частоту вращения на холостом ходу. Резистор P2 служит для установки чувствительности к нагрузке, им выбираем нужный момент увеличения оборотов. Если увеличить емкость конденсатора C4, то увеличится время задержки высоких оборотов или если двигатель работает рывками. Я увеличил емкость до 47uF.Двигатель для устройства не критичен. Только необходимо чтобы он был в хорошем состоянии. Я долго мучился, уже подумал, что у схемы был глюк, что она непонятно как регулирует обороты, или уменьшает обороты во время сверления. Но разобрал двигатель, прочистил коллектор, подточил графитовые щетки, смазал подшипники, собрал. Установил искрогасящие конденсаторы. Схема заработала прекрасно.Теперь не нужен неудобный выключатель на корпусе микродрели.

radiostroi.ru

Схемы регуляторов » Электродвигатели. Статьи по ремонту. Схемы включения

Принцип действия трехфазного асинхронного двигателя
Пуск звезда-треугольник трехфазного электродвигателя
Раздел: Схемы регуляторов
При использвании электродвигателей больших мощностей с высокими пусковыми токами, для снижения пускового тока применяется схема управления электродвигателя "звезда-треугольник", в которой запуск происходит с низкими пусковыми токами "схема подключения звезда" и через определенное время переключение в нормальный режим работы "схема подключения треугольник". Рассмотрим эту схему подробнее.
Раздел: Схемы регуляторов Продолжение тут
РЕГУЛИРОВКА ОБОРОТОВ ЭЛЕКТРОДВИГАТЕЛЕЙ
Раздел: Схемы регуляторов
С вопросом регулировки оборотов приходится сталкиваться при работе с электроинструментом, приводом швейных машин и прочих приборов в быту и на производстве. Регулировать обороты, просто понижая питающее напряжение, не имеет смысла — электродвигатель резко уменьшает обороты, теряет мощность и останавливается. Оптимальным вариантом регулировки оборотов является регулирование напряжения с обратной связью по току нагрузки двигателя
Раздел: Схемы регуляторов Продолжение тут
Регулятор оборотов электродрели своими руками
Раздел: Схемы регуляторов
Для высококачественного сверления отверстий в печатных платах необходима электродрель с регулятором частоты вращения и крутящего момента. Транзисторные регуляторы имеют, как правило, низкий КПД, что ведет к увеличению размеров и массы трансформатора питания и теплоотвода. В этом отношении более выгодны тринисторные устройства, поскольку потери энергии в тринисторе, работающем в ключевом режиме, незначительны. По этой причине отпадает необходимость в отводе от него тепла.
Раздел: Схемы регуляторов Продолжение тут
Ремонт и проверка работоспособности коллекторных электродвигателей стиральных машин.
Раздел: Схемы регуляторов
В современных стиральных машинах используются несколько типов приводных двигателей: коллекторные, асинхронные, а также с прямым приводом барабана — они отличаются по принципу работы и по конструкции. Для обеспечения работы асинхронного двигателя требуется фазосдвигающий конденсатор — подобная схема включения двигателя используется в большинстве старых моделей СМ. В современных машинках для управления асинхронным двигателем используется сложная электронная система управления, поэтому его проверка без специального стенда (или «тестовой» СМ) вызывает определенные затруднения. Еще большие проблемы вызывает проверка двигателей с прямым приводом (например, они используются в машинах LG DirectDrive). Их трудно проверить отдельно, так как они являются частью конструкции бака. К тому же, для этих двигателей также необходима сложная система управления.
Раздел: Схемы регуляторов Продолжение тут
Как должна происходить разборка электродвигателя
Раздел: Схемы регуляторов
Перед снятием шкивов, полумуфт, шестерен и других соединительных деталей с вала машины следует вывернуть стопорный винт или выбить шпонку, фиксирующие соединительную деталь с валом. Место посадки заливают керосином или антикоррозионной жидкостью для устранения коррозии в месте контакта. При снятии этих деталей используют двух- или трехлапчатые съемники (переносные ручные или гидравлические).
Раздел: Схемы регуляторов Продолжение тут
Системы плавного пуска высоковольтных электродвигателей на основе устройств серии УППВЭ
Раздел: Схемы регуляторов
Системы плавного пуска (СПП) предназначены для плавного пуска как одного, так и группы высоковольтных синхронных и асинхронных электродвигателей насосов, компрессоров, вентиляторов, воздуходувок и др. производственных механизмов.
Раздел: Схемы регуляторов Продолжение тут
Электрическая схема пуска трехфазного электродвигателя
Раздел: Схемы регуляторов
Трехфазный электродвигатель при пуске контактами магнитного пускателя подключается к трёхфазной сети переменного тока напряжением 380 вольт. На рис 1. показан вариант схемы пуска с питанием катушки магнитного пускателя переменным током напряжением 220 вольт. Напряжение снимается с двух проводов: любого фазного провода и нейтрального провода (на схеме рис.1 провода "C" и "N").
Раздел: Схемы регуляторов Продолжение тут
Устройство асинхронного электродвигателя
Раздел: Схемы регуляторов
Асинхронный электродвигатель имеет две основные части – статор и ротор. Статором называется неподвижная часть машины. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротором, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
Раздел: Схемы регуляторов Продолжение тут
ЭЛЕКТРОДВИГАТЕЛЬ БЕСКОНТАКТНЫЙ МОМЕНТНЫЙ ДБМ254-120-57
ШИМ-регуляторы оборотов маломощных коллекторных электродвигателей
Раздел: Схемы регуляторов
Регулировать частоту вращения маломощного коллекторного электродвигателя (ЭД) можно, включая последовательно с ним резистор. Однако такой вариант дает низкий КПД, не дает возможности делать плавную регулировку (переменные резисторы в несколько десятков Ом не распространены).
Раздел: Схемы регуляторов Продолжение тут

eldvigateli.narod.ru