Реверс электроходов, имеющих асинхронные и синхронные двигатели. Синхронные асинхронные двигатели


принципы работы и различия в характеристиках

Электродвигатели — машины, превращающие энергию электричества в механическую. Преобразованная энергия приводит во вращательное движение ротор двигателя, передающий вращение через трансмиссию непосредственно на вал исполнительного механизма. Основными типами электродвигателей являются синхронный и асинхронный двигатели. Различия между ними определяют возможности использования в различных устройствах и технологических процессах.

Принципы работы

Все электродвигатели имеют неподвижный статор и вращающийся ротор. Разница между асинхронным и синхронным двигателями состоит в принципах создания полюсов. В асинхронном электродвигателе они создаются явлением индукции. Во всех других электродвигателях используются постоянные магниты или катушки с током, создающие магнитное поле.

Особенности синхронных двигателей

Ведущие агрегаты синхронной машины — якорь и индуктор. Якорем является статор, а индуктор располагается на роторе. Под действием переменного тока в якоре образуется вращающееся магнитное поле. Оно сцепляется с магнитным полем индуктора, образованным полюсами постоянных магнитов или катушек с постоянным током. В результате этого взаимодействия энергия электричества преобразуется в кинетическую энергию вращения.

Ротор синхронной машины имеет частоту вращения такую же, как у поля статора. Достоинства синхронных электродвигателей:

  • Конструктивно используется и как двигатель, и как генератор.
  • Частота вращения, не зависящая от нагрузки.
  • Большой коэффициент полезного действия.
  • Малая трудоёмкость в ремонте и обслуживании.
  • Высокая степень надёжности.

Синхронные машины широко используются как электродвигатели большой мощности для небольшой скорости вращения и постоянной нагрузки. Генераторы применяются там, где требуется автономный источник питания.

Имеются у синхронной машины и недостатки:

  • Требуется источник постоянного тока для питания индуктора.
  • Отсутствует начальный пусковой момент, для запуска требуется применение внешнего момента или асинхронного пуска.
  • Щётки и коллекторы быстро выходят из строя.

Современные синхронные агрегаты содержат в индукторе дополнительно к обмотке, питаемой постоянным током, ещё и пусковую короткозамкнутую обмотку, которая предназначена для пуска в асинхронном режиме.

Отличительные черты асинхронных двигателей

Вращающееся магнитное поле статора асинхронного двигателя наводит индукционные токи в роторе, которые образуют собственное магнитное поле. Взаимодействие полей приводит ротор во вращение. Частота вращения ротора при этом отстаёт от частоты вращения магнитного поля. Именно это свойство отражено в названии двигателя.

Асинхронные электродвигатели бывают двух типов: с короткозамкнутым и с фазным ротором.

Бытовые приборы, такие как вентилятор или пылесос, обычно снабжены двигателями с короткозамкнутым ротором, который представляет собой «беличье колесо». Все стержни замыкаются приваренными с обеих сторон дисками. Взаимодействие магнитного поля статора с наведёнными токами в роторе образовывает электромагнитную силу, которая действует на ротор в направлении вращения поля статора. Крутящий момент на валу электродвигателя создаётся всеми электромагнитными силами от каждого проводника.

В электродвигателе с фазным ротором применяется тот же статор, что и для мотора с короткозамкнутым ротором. А в ротор добавляются обмотки трёх фаз, соединённые в «звезду». К ним можно при пуске двигателя подключать реостаты, регулирующие пусковые токи. С помощью реостатов можно регулировать и частоту вращения двигателя.

Достоинствами асинхронных двигателей можно назвать:

  • Питание непосредственно от сетей переменного тока.
  • Простоту устройства и сравнительно невысокую стоимость.
  • Возможность использования в бытовых приборах с применением однофазного подключения.
  • Низкое потребление энергии и экономичность.

Серьёзные недостатки — сложная регулировка частоты вращения и большие теплопотери. Для предотвращения перегрева корпус агрегата делается ребристым, и на вал электродвигателя устанавливается крыльчатка для охлаждения.

Отличие в характеристиках электродвигателей

Конструктивные особенности и рабочие характеристики электродвигателей имеют решающее значение при выборе агрегатов. От этого зависит проектирование трансмиссий и всех силовых узлов механизмов. При выборе двигателя нужно опираться на общность и главные отличия в свойствах машин:

  • Главное отличие синхронного от асинхронного двигателя заключается в конструкции ротора. Он представляет собой постоянный или электрический магнит. У асинхронника магнитные поля в роторе наводятся с помощью электромагнитной индукции.
  • У синхронных двигателей частота вращения вала постоянна, у асинхронников она может изменяться при изменении нагрузки.
  • У синхронников отсутствует пусковой момент. Для входа в синхронизацию требуется применять асинхронный пуск.

Синхронный и асинхронный электродвигатели находят каждый своё применение. Синхронные двигатели рекомендуется использовать везде при высоких мощностях, где присутствует непрерывный производственный процесс и не нужно часто перезапускать агрегаты или регулировать частоту вращения. Они используются в конвейерах, прокатных станах, компрессорах, камнедробилках и т. д. Современный синхронный электродвигатель имеет такой же быстрый запуск, как и асинхронный, но он меньше и экономичнее, чем асинхронный, равный по мощности.

Асинхронные электродвигатели с фазным ротором применяются там, где нужен большой пусковой момент и частые остановки агрегатов. Например, в лифтах и башенных кранах. Асинхронные электродвигатели с короткозамкнутым ротором получили широкое применение из-за простоты устройства и удобства в эксплуатации.

Используя достоинства разных агрегатов и то, чем отличается синхронный двигатель от асинхронного, можно делать обоснованный выбор того или иного мотора при проектировании машин, станков и другого оборудования.

220v.guru

Чем отличается синхронный двигатель от асинхронного

Двигатель является устройством, преобразующим энергию в механический тип работы. Только зная функции и технические характеристики мотора, можно правильно резюмировать, чем отличается синхронный двигатель от асинхронного вида устройства.

Принцип работы синхронных и асинхронных моторов

Функционирование синхронных электродвигателей базируется на взаимодействии полюсов статора и индуктора. В пусковой момент происходит ускорение мотора до показателей вращательной скорости магнитного потока. В таких условиях устройство действует в синхронном режиме, а магнитными полями образуется особое пересечение, в результате чего происходит синхронизация.

Синхронный двигатель

Синхронный двигатель в разрезе

Асинхронные моторы имеют частоту роторного вращения, отличную от частоты, с которой вращается магнитное поле, создаваемое в результате действия питающего напряжения. Такие двигатели не обладают автоматической регулировкой токового возбуждения.

Асинхронный двигатель

Асинхронный двигатель в разрезе

Основные отличия

Синхронный и асинхронный двигатели

Наличие обмоток на якоре является одним из основных отличий между двумя типами двигателей

Несмотря на внешнее сходство, асинхронные двигатели и устройства синхронного типа имеют несколько принципиальных отличий:

  • ротор асинхронных моторов не нуждается в токовом питании, а индукция полюсов зависит от магнитного поля статора;
  • ротор в синхронном двигателе обладает обмоткой возбуждения в условиях независимого питания;
  • обороты в асинхронном моторе под нагрузкой отстают по величине скольжения от вращений магнитного поля внутри статора;
  • обороты в синхронных двигателях соответствуют частоте «оборотов» магнитного поля в статоре и постоянны в условиях разных нагрузок.

Статоры в двигателях асинхронного и синхронного типа характеризуются одинаковым устройством и создают вращающееся магнитное поле.

Синхронные двигатели способны работать с одновременным совмещением функций мотора и генератора.

Такие устройства относятся к категории современных двигателей, обладающих высоким КПД и постоянной частотой вращения. Асинхронные моторы сложнее регулировать, а их коэффициент полезного действия недостаточно высокий. Тем не менее, второй вариант более доступен по цене.

Оцените статью: Поделитесь с друзьями!

vazweb.ru

Асинхронные и синхронные двигатели

⇐ ПредыдущаяСтр 17 из 18Следующая ⇒

Двигатели переменного тока (а.с. motor), как правило, применяются в тяжелых эксплуатационных условиях, однако они находят все большее распространение в системах промышленного управления, например в качестве сервомоторов. Некоторые преимущества двигателей переменного тока перечислены ниже:

экономичность;

надежная и простая конструкция;

высокая эксплуатационная надежность;

простое энергопитание;

отсутствие коммутатора;

практическое отсутствие дуговых явлений (поскольку нет коммутаторов).

Отрицательными чертами двигателей переменного тока являются более низкий момент начала движения, чем у двигателей постоянного тока, и более сложные цепи управления. Однако преимущества систем привода переменного тока таковы, что они успешно конкурируют с двигателями постоянного тока в роботах, манипуляторах и других промышленных системах силового привода.

Широкое применение двигателей переменного тока в качестве сервомоторов стало возможным по мере развития силовой электроники в сочетании с новыми методами управления. Применение микроэлектроники обеспечивает вполне приемлемое управление частотой питающего напряжения. Вращающий момент двигателя нельзя измерить так же просто, как у двигателей постоянного тока, однако существуют способы его оперативной (on-line) оценки. Из-за жестких временных требований для управления должны использоваться микропроцессоры со специальной архитектурой, обеспечивающей очень высокую скорость вычислений, - цифровые сигнальные процессоры (Digital Signal Processors — DSP).

У асинхронного (индукционного) двигателя магнитное поле статора не постоянно, в отличие от двигателя постоянного тока. В простейшей (двухполюсной) машине имеются три статорные обмотки, расположенные вокруг статора под углом 120° друг относительно друга. Когда по ним подается трехфазное переменное напряжение, результирующий магнитный поток статора вращается с частотой приложенного наложения. Поскольку к обмотке ротора не подводится никакого внешнего питания (она короткозамкнута), то нет необходимости в щеточных коммутирующих устройствах.

Вращающееся поле статора пересекает обмотки ротора и индуцирует в них ток. Результирующий поток ротора взаимодействует с вращающимся потоком статора и создает вращающий момент в направлении вращения поля статора. Этот момент и есть рабочий момент двигателя. Из-за потерь на трение ротор не может даже на холостом ходу достичь так называемой синхронной частоты вращения, т. е. точного значения частоты вращения поля статора. Вращающий момент образуется именно из-за разности частот вращения ротора и поля статора. Относительная разность частот вращения называется скольжением ротора (slip)

 

где ωs - частота вращения поля статора (синхронная частота), а ωm — частота вращеия ротора. Очевидно, что при s= 0 вращающий момент равен нулю.

Ротор синхронного двигателя движется синхронно с вращающимся магнитным полем, создаваемым обмотками статора (статор синхронного двигателя в принципе такой как у асинхронного). В отличие от асинхронного, обмотки ротора синхронного двигателя возбуждаются от внешнего источника постоянного тока. Полюса возникающего магнитного поля ротора занимают фиксированное положение относительно вращающегося поля статора и вращаются вместе с ним; следовательно, скорости вращения ноля статора и ротора идентичны и скольжение равно нулю. Синхронные двигатели часто используются в тех случаях, когда необходима постоянная скорость вращения при переменной нагрузке. В сочетании с современными преобразователями частоты синхронные двигатели могут работать с переменной скоростью вращения. Большое распространение приобретают синхронные двигатели с постоянными магнитами. Шаговые двигатели можно рассматривать как специальный тип синхронного двигателя.

Управляющие клапаны

Управляющий клапан (control valve) состоит из тела клиновидной или цилиндрической формы (иногда называется тарелкой), закрепленного на стержне (штоке), который движется вверх и вниз относительно цилиндрического седла. Стержень обычно перемещается под давлением сжатого воздуха на поршень или диафрагму с пружиной. Пружина может либо открывать, либо закрывать клапан в зависимости от того, какое положение требуется в случае прекращения подачи сжатого воздуха. Иногда для управления потоком используется электрический или гидравлический привод. Конструкции тела и седла клапана различаются в зависимости от требований к соотношению между производительностью и потерями напора на клапане, типа жидкости и расхода при разных положениях штока.

Размер клапана обычно выбирают в соответствии с параметрами трубопровода, в котором он устанавливается. Выбор формы клапана и сочетания размеров седла и тела (тарелки) требует оценки следующих факторов.

Потери напора (pressure drop). Большие потери напора на клапане могут затруднить движение штока. Специальная конструкция клапана заставляет поток двигаться в противоположных направлениях через два запирающих элемента, тем самым уравновешивая силы. Необходимость снижения потерь напора может потребовать применения различных типов клапанов, например типа "бабочка" (butterfly valve).

Максимальный расход (maximum flowrate). Это требование сводится к сочетанию максимального расчетного расхода с максимальной зоной управления. Последняя должна в идеале составлять 30-50 % от расчетного расхода. Иногда неопытные специалисты задают эту величину на уровне 10 %, что заметно ухудшает рабочие характеристики.

Управляемость (rangeability). Это отношение расходов при двух различных положениях штока. Оно в основном связано с конструкцией тела и седла и зависимости от потерь напора от расходных характеристик, которые, в свою очередь, связаны характеристиками нагнетающего насоса. Управляемость должна обеспечивать номинальный диапазон расходов с соответствующими зонами управления (желательно 30-50 %) по обе стороны диапазона.

Чувствительность (sensitivity) связана с управляемостью и величиной управляющего воздействия, необходимого для управления с заданной точностью. Иногда большой клапан обеспечивает номинальный расход, а малый, установленный параллельно, обеспечивает необходимую чувствительность.

Линейность (linearity). Желательно, чтобы в контуре управления существовала линейная зависимость между выходами регулятора и датчика, т. е. в цепочке «клапан - процесс - датчик". Если контур управления не обладает линейной зависимостью выходных и входных величин, ее можно обеспечить выбором характеристик клапана, а иногда и датчика. Качество управления при отсутствии линейности и может оказаться низким, или потребуется реализация специальных способов управления.

Гистерезис (hysteresis). Это обычная проблема управляющих клапанов, возникающая из-за процессов сухого трения (прилипания) в месте прилегания запорного элемента клапана к седлу, а также потерь напора на клапане. Как правило, гистерезис является причиной небольших постоянных колебаний в контуре управления, для борьбы с которыми можно применять устройства точного позиционирования клапана. Это специальное устройство управления с большим коэффициентом усиления, которое обеспечивает нужное положение штока клапана. В этом случае управляющий компьютер не осуществляет точного контроля за открытием клапана, а только вырабатывает опорные значения для устройства позиционирования клапана.

 

Рис. 9.2. Характеристики клапанов

 

Управляемость клапана можно определить на основании расчета двух расходов, равных, например, 15 и 85 % от максимального расхода. В этом случае необходим знать функцию f(х), которая характеризует клапан. Клапаны поставляются со следующими характеристиками:

f(х) = х - линейная,

f(х) = sqrt (x) - соответствующая квадратному корню,

f(x) - А↑(х-1) - равного процентного отношения (где конструктивная постоянная А обычно лежит в пределах от 20 до 50).

Эти зависимости показаны на рис. 9.2. Следует отметить, что идеальный клапан равного процентного отношения не закрывается полностью. На практике их проектируют таким образом, чтобы получить линейную характеристику при очень малых открытиях и следовательно, они закрываются полностью.

 

ОБЪЕКТЫ УПРАВЛЕНИЯ

 

Читайте также:

lektsia.com

Как работают синхронные и асинхронные электродвигатели

При помощи вращающегося магнитного поля электрическая энер­гия преобразуется в механическую. Для этой цели служат электрические трехфазные двигатели — синхронные и асинхронные, из ко­торых наиболее распространены последние.

Асинхронный двигатель в разрезе

Асинхронный двигатель с фазным ротором в разрезе: 1 – станина, 2 – обмотка статора, 3 – ротор, 4 – контактные кольца, 5 – щетки.

Поместим во вращающееся магнитное поле замкнутый виток в виде прямоугольной рамки (рис. 1а).

При вращении поля проводники рамки пересекаются линиями магнитной индукции, в силу чего в них наводится э. д. с. Направле­ние э. д. с. определено по правилу правой руки и отмечено на рисунке крестиком и точкой.

Применяя правило правой руки, нужно учитывать относительное движение проводников рамки против вращающегося поля. Под дей­ствием э. д. с. в рамке образуется ток такого же направления. Но проводники с током в магнитном поле испытывают действие электро­магнитных сил, направленных в соответствии с правилом левой руки. Относительно оси рамки электромагнитные силы образуют момент, под действием которого рамка вращается в сторону вращения поля.

Скорость рамки всегда меньше скорости поля n < n0 (рамка «сколь­зит» относительно поля). Благодаря скольжению в рамке наводится э. д. с, образуются ток и электромагнитные силы.

Асинхронный и синхронный двигатели

Рисунок 1 а)асинхронный двигатель, б)синхронный двигатель.

Скольжение оценивается величиной в процентах:

S= [(n0 – n) : n0] x 100

Вращение рамки со скоростью поля невозможно, так как при n = n0 поле не пересекает проводников рамки, не наводится э. д. с, отсутствуют ток и электромагнитные силы.

Электрические двигатели, работающие по этому принципу, назы­вают асинхронными.

Если вместо короткозамкнутой рамки в магнитном поле поместить постоянный магнит или электромагнит с постоянным током в его обмотке, то благодаря взаимодействию вращающегося поля с полем постоянного магнита образуется вращающий момент, также направ­ленный в сторону вращения поля (рис. 1 б).

Постоянный магнит в постоянном магнитном поле стремится за­нять положение, при котором ось полюсов магнита в направлении от южного полюса к северному совпадает с направлением внешнего поля. Постоянный магнит «увлекается» за вращающимся полем, т. е. вращается в ту же сторону и с той же скоростью, что и поле:

n = n0

Электрические двигатели, работающие по такому принципу, назы­вают синхронными.

Поделитесь полезной статьей:

Top

fazaa.ru

Реверс электроходов, имеющих асинхронные и синхронные двигатели

Пуск и реверс синхронного двигателя осуществляется в асинхронном режиме, в виду чего работа синхронных и асинхронных гребных электродвигателей при пуске и реверсе аналогична. Основное различие заключается в том, что если данные процессы для асинхронного двигателя заканчиваются выведением его на естественную (асинхронную) характеристику, то синхронный двигатель их асинхронного режима еще должен перейти в синхронный, что производится при подаче возбуждения в обмотку ротора двигателя. Поэтому пуск и реверс рассмотрим для ГЭУ с синхронными гребными электродвигателями.Пуск гребного электродвигателя. При пуске гребного электродвигателя, мощность которого примерно равна мощности питающих генераторов, напряжение главной цепи в результате реакции статора генераторов резко снижается. При этом асинхронный момент двигателя, пропорциональный квадрату напряжения. может настолько уменьшиться, что не окажется в состоянии преодолеть момент сопротивления винта и разогнать двигатель до асинхронной скорости. Для увеличения пускового и максимального моментов двигателя применяют перевозбуждение (форсировку возбуждения) генератора. В ГЭУ допускают увеличение тока возбуждения генераторов в 3—6 раз.Пусковые характеристики синхронного двигателя без форсировки возбуждения генератора (кривая 1) и с форсировкой (кривая 2) приведены на рис. 1.Двигатель под действием асинхронного момента разгоняется до подсинхронной скорости (0,95 nc), при которой включается возбуждение. и возникший при этом синхронизирующий момент втягивает двигатель в синхронизм. Асинхронный момент, развиваемый двигателем при подсинхронной скорости, называется входным, или подсинхронным. Для надежного вхождения двигателя в синхронизм необходимо, чтобы его подсинхронный момент на 25 % превышал момент сопротивления. Из рис. 1 видно, что это возможно лишь при форсировке возбуждения.

Рис. 1. Пусковые характеристики синхронного двигателя с форсировкой возбуждения и без нее.

Рис. 2. пуск гребного электродвигателя в ГЭУ переменного тока.

Чтобы уменьшить момент сопротивления винта, гребной электродвигатель пускают при пониженной частоте цепи главного тока fп, которая определяется наименьшей устойчивой скоростью первичных двигателей генераторов (рис. 2). Пуск гребного электродвигателя состоит из следующих операций:а) гребной двигатель подключают к генератору или к сборным шинам группы синхронизированных генераторов, работающих при пониженной частоте fп;б) производят форсировку возбуждения генераторов;в) после того, как гребной электродвигатель достигнет подсинхронной скорости, включают его возбуждение, в результате чего двигатель втягивается в синхронизм;г) уменьшают ток возбуждения генераторов до номинальной величины; при этом гребной электродвигатель вращается с синхронной скоростью nп, соответствующей частоте пуска fп (тока С).Дальнейший разгон двигателя производится повышением частоты генераторов. В ДЭГУ при этом должно быть обеспечено равномерное распределение нагрузки между параллельно работающими генераторами.Переход гребного электродвигателя из режима точки С в режим точки В происходит благодаря быстрому повышению скорости вращения первичных двигателей и увеличению частоты тока главной цепи от fп до fш, при которой гребной двигатель развивает скорость nш и номинальный момент на валу Мн. Затем, по мере постепенного разгона судна и соответствующего увеличения частоты генераторов, винт, работая, переходит со швартовной характеристики на промежуточные и, наконец, на основную характеристику в точку А, определяемую номинальными значениями скорости nн и момента Мн. При этом во избежание перегрузок гребного и первичных двигателей необходимо частоту увеличивать плавно, с тем чтобы винт разгонялся без резких колебаний момента нагрузки — по ломаной BDEHFKA.Рис. 3. Реверсивные характеристики винта (1 и 2) и гребного электродвигателя (3 и 4).

Реверс гребного электродвигателя. При реверсе, как и при пуске, гребной электродвигатель работает в асинхронном режиме при пониженном напряжении, а следовательно, при резко уменьшенном моменте на валу (рис. 3). Чтобы снизить момент сопротивления винта Мв, при котором двигатель должен входить в синхронизм, а также чтобы преодолеть максимальный вращающий момент винта МВmax для его затормаживания, реверс производят при минимальной частоте fр, получаемой путем уменьшения скорости первичных двигателей до минимальной устойчивой. Однако этого часто бывает недостаточно (кривая 3). Поэтому, как и при пуске, прибегают к форсировке возбуждения главных генераторов (кривая 4). Так как продолжительность реверса гребного электродвигателя мала по сравнению с продолжительностью реверса судна, будем считать, что пока двигатель затормаживается и разгоняется в противоположную сторону, судно по инерции движется в прежнем направлении со скоростью, которая предшествовала реверсу.Реверс гребных электродвигателей возможен двумя способами:а) электродвигатель включают в обычный для асинхронных двигателей режим противовключения;б) электродвигатель сначала включат в режим динамического торможения, затем останавливают механическим тормозом и, наконец, пускают в противоположном направлении.Первый способ предпочтительнее, поскольку он проще и не требует сложного распределительного устройства системы электродвижения. Ниже приведена последовательность такого реверса для ДЭГУ.1. Снимают возбуждение генераторов и электродвигателя и выключают реверсивный переключатель. Скорость первичных двигателей снижают до минимальной устойчивой. При этом винт затормаживается от nн до nБ (участок АБ).2. Реверсивным переключателем включают гребной электродвигатель в положение «Ход назад» (режим противовключения). Винт, затормаживаясь от точки Б по реверсивной характеристике 1, увеличивает вращающий момент до МВmax (режим гидротурбины). если включенный гребной двигатель развивает момент в соответствии с механической характеристикой 3, то в точке В моменты уравновешивают друг друга и наступает установившийся режим работы ГЭУ. Он продолжается до тех пор, пока не уменьшается скорость движения судна и винт не переходит на реверсивную характеристику 2. Это недопустимо затягивает реверс и вызывает перегрев машин ГЭУ. Чтобы предотвратить такой режим, возбуждение генератора включают с необходимой форсировкой, в результате которой гребной двигатель, работая по характеристике 4, сначала затормаживается до полной остановки (участок ГД), а затем, изменив направление вращения, разгоняется до подсинхронной скорости (участок ДЕ).3. При достижении электродвигателем подсинхронной скорости включается возбуждение (точка Е). Поскольку подсинхронный момент двигателя МЕ больше момента сопротивления винта МВ, двигатель входит в синхронизм (точка К).4. После вхождения двигателя в синхронизм ток возбуждения генераторов снижается до номинальной величины.5. Дальнейший разгон гребного двигателя, как и при пуске, осуществляется постепенным увеличением частоты тока главной цепи, т. е. увеличением скорости дизелей. При этом следует контролировать равномерность распределения нагрузки между параллельно с работающими генераторами и дизелями.В ТЭГУ процесс реверса отличается от описанного тем, что отпадает надобность в синхронизации генераторов и в контроле за распределением нагрузки между ними.

morez.ru

Синхронно-асинхронный двигатель

 

Изобретение относится к электротехнике, а именно к двухскоростным многофазным машинам переменного тока, и может быть использовано для привода различных машин и механизмов, требующего двухступенчатого регулирования скорости. Сущность данного изобретения состоит в том, что в статоре cинxpoннo-асинхронного двигателя размещена полюсопереключаемая многофазная обмотка с соотношением числа пар полюсов P1:P2 а на роторе - обмотка совмещенной конструкции, совмещающая трехфазную обмотку с Р = P1 высшей ступени скорости и обмотку возбуждения постоянного тока с числом пар полюсов Р = P2 низшей ступени скорости, которая соединена с возбудителем. Предложенный двухскоростной электродвигатель работает на высшей ступени скорости как асинхронный короткозамкнутый, а на низшей ступени скорости как синхронный, обладающий большой устойчивостью при колебаниях напряжения питания. Технический результат от использования данного изобретения состоит в обеспечении двухступенчатого регулирования скорости электродвигателя при его высокой перегрузочной способности на низшей ступени скорости. 2 ил.

Изобретение относится к многофазным электрическим машинам переменного тока и может быть использовано для привода различных машин и механизмов, требующего двухступенчатого регулирования скорости.

Известны примеры использования в полеводстве электротракторов, где в качестве тягового используется асинхронный электродвигатель с фазным ротором. На разных технологических операциях трактор должен иметь различную скорость передвижения и развивать различную мощность. Например, при пахоте трактор движется медленно и имеет высокую мощность, к тому же должен обладать высокой перегрузочной способностью; при разбрасывании сухих удобрений трактор движется быстрее и не развивает большой мощности. Для привода электротрактора наиболее эффективным может быть двухскоростной электродвигатель, работающий на высшей ступени скорости в режиме асинхронного короткозамкнутого электродвигателя, а на нижней ступени скорости в режиме синхронного двигателя, возбуждаемого постоянным током. Широко известны двухскоростные асинхронные двигатели с короткозамкнутым ротором (обмотка ротора типа "беличье колесо") с соотношением чисел пар полюсов 2:1 и постоянной мощностью на обоих ступенях. [Радин В. И. и др. Электрические машины: Асинхронные машины. Учеб. для электромех. спец. вузов - М.: Высшая школа, 1988]. Описанные двигатели не могут работать в режиме синхронного двигателя на низшей ступени скорости. Известны схемы совмещенных обмоток, создающих вращающие магнитное поле с числом пар полюсов P1 при питании многофазным током и неподвижную волну магнитодвижущей силы P2 при питании постоянным током. Такие обмотки применяются, в частности, в качестве статорных в совмещенных одномашинных асинхронно-синхронных преобразователях частоты. [Попов В.И. Электромашинные совмещенные преобразователи частоты. - М.: Энергия, 1980]. Однако преобразователь частоты не может использоваться как двухскоростной электродвигатель. Наиболее близким к заявляемому устройству является синхронизированный асинхронный двигатель, содержащий статор с многофазной обмоткой и ротор с многофазной обмоткой, подключенной к выпрямительному устройству, питаемому от обмотки возбудителя. [Акцептованная заявка ФРГ N 2143864, кл. 21 D2 17, 1973]. Недостатком этого двигателя является неспособность работать на двух ступенях скорости. Техническим решением задачи является, обеспечение двухступенчатого регулирования скорости электродвигателя, при высокоперегрузочной способности на низшей ступени скорости. Задача достигается тем, что статорная обмотка электродвигателя выполнена полюсопереключаемой с соотношением пар полюсов P1:P2, а обмотка ротора выполнена совмещенной, совмещающей многофазную обмотку с P=P1 и обмотку возбуждения постоянного тока с P=P2, подключенную к двум контактным кольцам для соединения с возбудителем. Новизна заявляемого предложения заключается в том, что статор с обмоткой выполняется традиционным для двухскоростного двигателя, а ротор с многофазной обмоткой выполняется совмещенного типа, причем на высшей ступени скорости обмотка является многофазной, а на низшей ступени при питании постоянным током или выпрямленным током создает намагничивающую силу, неподвижную относительно ротора, что позволяет электродвигателю работать на высшей ступени как асинхронный, а на низшей ступени как синхронный. По данным патентной и научно-технической литературы не обнаружена заявляемая совокупность признаков, что позволяет судить об изобретательском уровне предложения. На фиг. 1 представлена принципиальная схема предлагаемого устройства. Двигатель содержит двухскоростную многофазную обмотку - 1 на статоре с выводами 2. . . 10 для подключения к сети на различных ступенях скорости и ротор с обмоткой совмещенного типа - 11, которая выполнена как многофазная с двумя параллельными ветвями - 12 и 13 с раздельными нейтралями, причем нейтральные выводы присоединены к двум контактным кольцам для электрического соединения с возбудителем - 15, который может иметь традиционную конструкцию: статичную или с магнитным возбудителем и управляется собственными коммутационными аппаратами. Работу двигателя в статичном режиме рассмотрим на примере трехфазной машины, имеющей на статоре полюсопереключаемую обмотку - 1 с соотношением пар полюсов P1:P2 = 1:2 и роторную обмотку - 11, совмещающую обмотку переменного тока - 12 с P=P2 и обмотку возбуждения - 13 с P=P2, схема которой представлена на фиг. 2 (в связи с широкой известностью, схема полюсопереключаемой обмотки статора не приводится). Для работы на высшей ступени скорости клеммы - 8, 9, 10 подключают к трехфазному источнику (питающей сети), а клеммы - 2, 3, 4 и 5, 6, 7 закорачивают. Клеммы - 14 отключают от возбудителя. Статорная обмотка - 1 создает вращающиеся магнитное поле с P=Pi, которое наводит ЭДС и ток в обмотке ротора - 11, в результате чего ротор придет во вращение с некоторым скольжением. Двигатель работает как асинхронный; его трехфазная роторная обмотка является закороченной, а обе клеммы - 14 эквипотенциальны. При включении на нижнюю ступень скорости, клеммы - 2, 3, 4 подключаются к трехфазной сети, клеммы - 8, 9, 10 оставляют разомкнутыми, а клеммы - 5, 6, 7 соединяются с клеммами - 2, 3, 4, образуя схему "треугольник". Клеммы -14 подключают к источнику постоянного тока - возбудителю (возбудитель в рабочем состоянии). При этом статорная обмотка - 1 создает вращающуюся волну МДС с P=P2, а обмотка ротора - 11 создает волну МДС с P=P2 и неподвижную относительно ротора. Двигатель будет работать как синхронный. При регулировании тока возбуждения If можно существенно увеличить перегрузочную способность двигателя или минимизировать потребляемый из сети ток за счет доведения коэффициента мощности до единицы. Для запуска двигателя с работой на низшей ступени скорости, пуск осуществляется в две ступени: на первой ступени обмотки включаются аналогично пуску с P=P1, а при достижении полусинхронной скорости (контролируется дополнительными устройствами) обмотки статора переключают на схему с P=P2 и на обмотку ротора через клеммы - 14 подают ток возбуждения. Двигатель втягивается в синхронизм и далее работает в синхронном режиме. Известно множество полюсопереключаемых обмоток и множество схем совмещенных обмоток. Кроме традиционных, для таких обмоток применительно к предложенному устройству, должно соблюдаться следующее требование: обмотки должны удовлетворять дополнительному требованию совпадения чисел полюсов высшей и низшей ступеней статора с числами полюсов совмещенных обмоток ротора. Необходимо отметить, что контактные кольца не являются необходимой принадлежностью предложенного устройства. При использовании безконтактного возбудителя (например, с вращающимся выпрямителем) соединение обмотки ротора и возбудителя может быть прямым.

Формула изобретения

Синхронно-асинхронный двигатель, содержащий статор с многофазной обмоткой и ротор с многофазной обмоткой, отличающийся тем, что статорная обмотка электродвигателя выполнена полюсопереключаемой с соотношением пар полюсов P1 : P2, а обмотка ротора выполнена совмещенной, совмещающей многофазную обмотку с P = P1 и обмотку возбуждения постоянного тока с P = P2, которая соединена с возбудителем.

РИСУНКИ

Рисунок 1, Рисунок 2

Похожие патенты:

Изобретение относится к электротехнике, в частности к электрическим машинам

Изобретение относится к электромашиностроению, а именно к конструкциям роторов асинхронных торцевых двигателей, и может найти применение в механизмах с плоским конструктивным исполнением, например в подкассетных узлах лентопротяжных механизмов, работающих в пусковых и старт-стопных режимах

Изобретение относится к электрическим машинам и может быть использовано для привода общепромьшленных механизмов

Изобретение относится к электрическим малинам переменного тока

Изобретение относится к области электротехники и может быть использовано для мощных синхронных и асинхронных трехфазных электрических машин, имеющих параллельные ветви обмотки статора

Изобретение относится к электротехнике и касается особенностей выполнения асинхронных электрических машин, содержащих электрически проводящий ротор, выполненный с возможностью вращения относительно статора

Изобретение относится к области электротехники и может быть использовано при производстве асинхронных двигателей малой мощности

Изобретение относится к электротехнике и может быть использовано в высокоскоростных электроприводах переменного тока

Изобретение относится к электрическим машинам малой мощности, а Именно к тихоходным двигателям с электромагнитной редукцией

Изобретение относится к электрическим машинам малой мощности, а именно к асинхронным двигателям с электромагнитной редукцией скорости вращения

Изобретение относится к электрическим машинам

Изобретение относится к электрическим машинам, в частности к способам создания многофазного бегущего электромагнитного поля в электрических машинах переменного тока

Изобретение относится к электротехнике, а именно к двухскоростным многофазным машинам переменного тока, и может быть использовано для привода различных машин и механизмов, требующего двухступенчатого регулирования скорости

www.findpatent.ru

Асинхронные и синхронные двигатели

Вот это совершенно неожиданный поворот, для нашего блога. Но пора писать не только про розетки, светильники и другие электротехнические изделия. Пора поговорить о том, без чего наша жизнь не возможна, но это тоже имеет огромное отношение к электрике. Я бы даже сказал, что такие двигатели это очень большие подмастерья нашей жизни. Посудите сами, они используются настолько широко, что голова идет кругом. Вы можете встретить их почти в любой сфере жизни — от газонокосилок и лифтов, до гидроэнергетики. Сегодня я предлагаю начать разговор про асинхронные и синхронные двигатели. Плюс, нам с вами нужно разобраться в том, что такое магнитные поля, что такое статор и ротор, и еще много чего интересного.

На картинке выше изображено электромагнитное поле. Это фундаментальное физическое поле, на котором основана масса физических процессов, включая движущую силу синхронных и асинхронных двигателей. Оно взаимодействует с электрически заряженными частицами, а так же с телами имеющими собственные магнитные поля. Такое поле представляет собой смесь электрического и магнитного полей, которые являются одной сущностью, но в то же время могут порождать друг друга. Изучение физических свойств электромагнитного поля, это удел электродинамики. Нам с вами сейчас нужно знать лишь то, что это поток фотонов, который двигается в определенных пределах. И именно это поле, в конечном итоге заставляет крутиться двигатель.

Асинхронная машина — это двигатель, частота вращения ротора которого, медленнее нежели движение электромагнитного поля создаваемого статором. Это двигатель берет питание от электричества, и может быть как двигателем как и генератором. Но о режимах работы такой машины мы поговори позже, а пока перейдем к конструктиву. Асинхронная машина имеет в своей конструкции две основные части — статор и ротор. Статор — как правило неподвижная, внешняя часть двигателя. Ротор — внутренняя часть машины, которая вращается. Между статором и ротором всегда должен быть воздушный зазор, поэтому в двигателе есть много вспомогательных деталей. С помощью этих деталей обеспечивается возможность кручения ротора, жесткость конструкции, и так далее. Так как двигатели имеют либо одну, либо три фазы, обмотки статора, всегда соответствуют их числу. Очень редко асинхронные двигатели имеют многофазную обмотку, иногда число фаз доходит до десяти. Но такие двигатели имеют невероятно низкий коэффициент полезного действия, их используют только в тех местах, где нужны двигатели с легко управляемой, низкой частотой вращения. Число оборотов однофазной асинхронной машины может доходить до 3000 оборотов, трехфазной до 1000. Обмотка статора асинхронного двигателя, согласно количеству фаз, равномерно намотана на него. Так же статор имеет магнитопровод, который чаще всего собирается из очень тонких пластин, который сделаны из электрической стали. Магнитопровод по такому же принципу делается и в роторе, он максимально снижает потери электричества. Теперь о роторах, они бывают двух основных типов — фазный и короткозамкнутый. Разница непосредственно в обмотке ротора. Фазный ротор имеет трехфазную обмотку, выведенную на контактные кольца. Такой метод обмотки позволяет плавно регулировать скорость вращения. При короткозамкнутом методе обмотки, она выполняется из алюминиевых, медных или латунных стержней. Такой метод является более грубым в управлении.

Теперь о том, зачем же нужно было говорить про магнитное поле. Постараюсь рассказать то, что происходит в асинхронном двигателе в момент его работы. На обмотку статора подается напряжение. Это напряжение, как мы помним из статьи про трансформаторы,создает ток в обмотках ротора, и возникают два магнитных поля. Из-за того, что статор держится статичным начинает вращаться ротор, и вот двигатель работает. Стоит отметить, что для лучшего, направленного вращения, обмотки сдвинуты относительно друг друга на 120ᵒ. Мы с вами говорили, про то, что у асинхронной машины есть два режима работы — двигательный и генераторный. С двигателем все понятно, в этот момент просто вращается ротор, выполняя далее ту или иную работу. Двигателем машина считается, если скорость вращения ротора меньше скорости вращения электромагнитного поля. Если же благодаря помощи из вне разогнать ротор быстрее скорости вращения электромагнитного поля, то такая машина начнет генерировать энергию. Вот так работают асинхронные машины.

Сегодня мы с вами обсудили очень сложную тему простыми словами. Что мы имеем в итоге? Асинхронная машина— повсеместно используемый электрический двигатель, работающий за счет создания внутри электромагнитного поля. Теперь, конда вы будете на даче, косить газон с помощью электрического триммера, вы будете знать, что происходит в момент ее включения в ее двигателе. Но тогда возникает логичный вопрос: Если коса заведена, и ротор вращается, почему пока не нажмешь на кнопку, леска не начнет крутиться? Потому, что когда вы нажимаете на кнопку, происходит сцепление ротора двигателя и вала, который вращает леску. Так что кнопка — своего рода сцепление. 

До новых встреч.

fixup.ru