Синхронный двигатель — достоинства и недостатки. Синхронный двигатель недостатки


Каковы преимущества и недостатки синхронного двигателя по сравнению с асинхронным

Электромагнитный момент синхронного двигателя. Пуск синхронных двигателей.

Электромагнитный момент. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента Мвн. Максимум момента Мmax

соответствует углу ? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.

Если нагрузочный момент Мвн, приложенный к валу электродвигателя, станет больше Мmax, то двигатель под действием внешнего момента Мвн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток. Этот режим называется выпаданием из синхронизма, он является аварийным и не должен допускаться.

При работе машины в генераторном режиме (рис. 292, д и е) ротор под действием приложенного к валу внешнего момента Мвн смещается на угол ? по направлению вращения. При этом создаются электромагнитные силы, направленные против вращения, т. е. образуется тормозной электромагнитный момент М. Таким образом, при изменении значения и направления внешнего момента на валу ротора Мвн изменяется лишь угол ? между осями полей статора и ротора, в то время как в асинхронной машине в этом случае изменяется частота вращения ротора.

Пуск в ход и регулирование частоты вращения. Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска. Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка

Угловая и механическая характеристики синхронного двигателя

 

Каковы преимущества и недостатки синхронного двигателя по сравнению с асинхронным

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда

cos φ < 1.

Из-за малых потерь мощности в роторе, а также в обмотке статора при работе с высоким cos φ КПД синхронных двигателей оказывается больше, а масса и габаритные размеры меньше, чем у асинхронных двигателей.

Учитывая указанные достоинства синхронных двигателей, стараются везде, где это возможно, вместо асинхронных двигателей применять синхронные. Они применяются обычно в установках средней и большой мощности при редких пусках, в случаях, когда не требуется электрического регулирования частоты вращения. Синхронные двигатели используются, например, для привода насосов, компрессоров, вентиляторов, генераторов постоянного тока преобразовательных установок.

megaobuchalka.ru

Синхронный двигатель - достоинства и недостатки

Технологии 24 апреля 2013

Наибольшее распространение такая машина как синхронный двигатель получила в промышленности, где есть электроприводы, работающие на постоянных скоростях. Например, компрессоры с мощными двигателями, приводы насосов. Также синхронный двигатель является неотъемлемой частью и многих бытовых приборов, например, он есть в часах.

Принцип действия этой машины достаточно прост. Взаимодействие вращающегося магнитного поля якоря, создаваемого переменным током, и магнитных полей на полюсах индуктора, создаваемых постоянным током, и лежит в основе принципа работы такого электрического устройства как синхронный двигатель. Обычно индуктор расположен на роторе, а якорь – на статоре. Мощные двигатели в качестве полюсов используют электромагниты. Но есть и маломощный тип - синхронный двигатель с постоянными магнитами. Главное отличие  синхронных машин от асинхронных - конструкция статора и ротора.

Для разгона двигателя до уровня номинальной скорости часто используют асинхронный режим. В этом режиме обмотка индуктора накоротко замкнута. После того как двигатель выходит на номинальную скорость, выпрямитель питает постоянным током индуктор. Только в номинальной скорости синхронный двигатель может самостоятельно работать.

Такой двигатель имеет массу достоинств. Он на порядок сложнее асинхронной машины, однако это компенсируется рядом преимуществ. Один из главных плюсов - его возможность работать без потребления или отдачи реактивной энергии. При этом коэффициент мощности двигателя будет равен единице. При таких условиях синхронный двигатель переменного тока будет нагружать сеть исключительно активной составляющей. Побочным эффектом будет уменьшение габаритов двигателя (у асинхронного двигателя обмотка статора рассчитывается и на активный, и на реактивный токи). Однако синхронный двигатель может вырабатывать и реактивную энергию, работая в режиме перевозбуждения.

Синхронный электродвигатель гораздо менее чувствителен к скачкам и перепадам напряжения в сети. Также такие электрические машины имеют более высокую устойчивость к перегрузкам. За счет повышения токов возбуждения можно увеличить перегрузочную способность двигателя. Плюсом работы с синхронной машиной является также и постоянная номинальная скорость вращения при любой нагрузке (кроме перегрузок).

Несомненно, у такой машины как синхронный двигатель есть и свои слабые места. Они связаны с повышенными затратами и сложной эксплуатацией. Основной проблемой является процесс возбуждения электродвигателя и введения его в синхронизм. В настоящее время нашли распространение тиристорные возбудители, которые имеют гораздо более высокий коэффициент полезного действия, чем электромашинные возбудители. Однако их стоимость существенно выше. С помощью тиристорного коммутатора можно решить многие вопросы: оптимальное регулирование токов возбуждения, поддержка постоянного значения косинуса фи, контроль над напряжением на шинах, регулирование токов статора и ротора в аварийных режимах и при перегрузках.

Источник: fb.ru

Query failed: connection to localhost:9312 failed (errno=111, msg=Connection refused).

monateka.com

06 семестр / К экзамену-зачёту / Шпаргалки в DOC / 33-38

33. Достоинства и недостатки синхронного двигателя. Пуск синхронного двигателя.

Главное преимущество синхронного двигателя перед асинхронным - это обеспечение синхронной скорости вращения ротора при значительных колебаниях нагрузки.

Синхронные машины в принципе не имеют пускового момента и не могут самостоятельно разгоняться до синхронной скорости, т.к. при включении статора в сеть его магнитное поле и ротор вращаются с разными скоростями.В первый момент пуска двигателя вращающееся магнитное поле статора возникает практически мгновенно. Ротор же, обладая значительной инерционной массой, прийти в синхронное вращение сразу не сможет. Его надо "разогнать" до подсинхронной скорости каким-то дополнительным устройством.Долгое время роль разгонного двигателя играл обычный асинхронный двигатель, механически соединенный с синхронным. Ротор синхронного двигателя приводится во вращение до подсинхронной скорости. Далее двигатель сам втягивается в синхронизм. Обычно мощность пускового двигателя составляет 5-15 % от мощности синхронного двигателя. Это позволяет пускать в ход синхронный двигатель только вхолостую или при малой нагрузке на валу.Применение пускового двигателя мощностью, достаточной для пуска синхронного двигателя под нагрузкой делает такую установку громоздкой и дорогой.В последнее время использ. так называемая система асинхронного пуска синхронных двигателей. С этой целью в полюсные наконечники забивают стержни, напоминающие собою короткозамкнутую обмотку асинхронного двигателя (рис. 6.3.2.1).

В начальный период пуска синхронный двигатель работает как асинхронный, а в последующем - как синхронный. В целях безопасности обмотку возбуждения в начальном периоде пуска закорачивают, а на заключительном подключают к источнику постоянного тока.

35.Переходные процессы и выбор мощности двигателя.

От прав. выбора мощности ЭД зависят себестоимость, габариты, экономичность, надежность в эксплуатации и др.).Если нагрузка на электродвигатель стабильная, то определение его мощности ограничивается лишь выбором по каталогу:

Рн > Рнагр где Рн – мощ. выбираемого двиг.,Рнагр – мощ. нагрузки. Если же нагрузка на ЭД переменная, то необходимо иметь график нагрузки I = f(t).Плавную кривую заменяют ступенчатой линией, полагая, что за время t1 в двигателе течет ток I1, за время t2 - ток I2 и. т.д. (рис. 8.3.1 ).

Изменяющийся ток заменяют эквив. ему током Iэ, который за время одного цикла работы tц произв/ одинак тепловое действие с током, изменяющ. ступенями.

Номинальный ток ЭД должен быть равным или больше эквивалентного, т.е. Поскольку почти у всех двигателей вращающий момент прямо пропорционален току нагрузки М ~ Iн, то можно записать и выражение для эквивалентного вращающего момента:

Учитывая, что мощность Р = М, электродвигатель можно выбирать также по эквивалентной мощности:

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установивш. температуры, а за время перерыва в работе не охлаждается до температуры окружающей среды (рис. 8.3.2 ).Для этого режима вводится понятие относительной продолж. включения (ПВ). Она равна отношению суммы рабочего времени ко времени цикла tц, со-стоящего из времени работы и времени паузы tо:

Чем больше ПВ, тем меньше ном. мощность при, равных габаритах. След., двиг., рассчитанный на работу в течение 25% времени цикла при номинальной мощности, нельзя оставлять под нагрузкой 60% времени цикла при той же мощности. ЭД строятся для стандартных ПВ - 15, 25, 40, 60%, причем ПВ - 25%; принимается за ном. Двигатель рассчитывается на повторно кратковременный режим, если продолжительность цикла не превышает 10 мин. Если расчетные значения ПВ отличаются от стандартных, то при выборе мощности двигателя Рэ следует вносить поправку:

45.Простейшая схема управления двигателем постоянного тока, её основные элементы и их назначение.

34.Конструкция и принцип действия шагового двигателя, управление двигателем.

Шаговые двиг. служат для преобраз. импульсного или кодового сигнала в угловое перемещение. В последнее время в связи с развитием компьютерной техники и технологии их область применения постоянно расширяется. Шаговый ЭД - вращающийся ЭД с дискретными угловыми перемещениями ротора, осуществляемыми за счет импульсов сигнала управления. Шаговые, или импульсные, ЭД преобразуют электрические импульсы в фиксированные угловые перемещения - "шаги". Этот тип двигателя является машиной постоянного тока, хотя принцип действия его напоминает синхронный реактивный двигатель.Как видно из рис. 6.5.1, статор двигателя имеет шесть пар выступающих полюсов.

Каждые две катушки, расположенные на противоположных полюсах статора, образуют обмотку управления, включаемую, в сеть постоянного тока. Ротор - двухполюсный. Если подключить к источнику постоянного тока катушки полюсов 1 - 1', то ротор расположится вдоль этих полюсов. Если задействовать с помощью коммутатора катушки полюсов 2 - 2', а ка-тушки полюсов 1 - 1' обесточить, то ротор повернется и займет положение вдоль полю-сов 2 - 2'. Такой же поворот ротора произойдет, если включить в сеть катушки полюсов 3 - 3'. Так, шагами, ротор будет "следовать" за своей обмоткой управления.Ротор шагового двигателя занимает определенное фиксированное положение, соответствующее наибольшей магнитной проводимости относительно возбужденных статорных полюсов. Если отклонить ротор от этого равновесного положения на некоторый угол, то магнитная проводимость для потока уменьшится, силовые линии магн. поля деформируются, и возникнет синхронизирующий момент, возвращающий ротор в прежнее положение. Преимуществом шаговых двигателей является то, что в них совершенно отсутствует "самоход". Они поворачиваются и строго фиксируются с шагом, пропорциональ-ным числу полюсов на статоре. Это качество делает его незаменимым в особо точных механизмах (для привода часов, механизмов подачи ядерного топлива в реакторах, в станках с ЧПУ и т.д.).Управление шаговыми двиг. ведется с прим. различ. электронных устройств (триггеров Шмидта и др.).

37.Конструкция двигателя постоянного тока. Назначение и исполнение отдельных элементов конструкции.

ДПТ : неподвиж. статор. с полюсами + вращ. ротор (якорь) с коллектором. Статор – источник магн. поля и мех. остов машины, якорь- часть машины, в обмотке которой индуцируется ЭДС. Коллектор - для получ. на обмотке якоря эквивалентной выпрямленной ЭДС, кот. явл. источником пост. тока для внеш. цепи. Устройство статора: состоит из цилиндрической станины (корпуса), полюсов с обмоткой возбуждения и подшипниковых щитов. Станина - основа неподвиж. части машины, отливается или выполняется сварной из стали с большой магнитной проницаемостью, т.к. играет роль и магнитопровода. На внутр. стороне станины располаг. симметрично полюсы. В машинах малой и средней мощностей к цилиндрической танине с торцов крепятся подшипниковые щиты с подшипниками. В мощных машинах подшипники иногда выносятся на отдельные стояки.Основные полюсы с током в катушках обмотки создают в машине магнитное поле. Каждый полюс является электромагнитом, состоит из стального сердечника с полюсным наконечником (башмаком) и катушечной обмотки из изолированного медного провода. Обмотка основных полюсов составляет обмотку возбуждения машины.Добавочные полюсы устроены аналогично, но их сердечники чаще делаются из литой стали и имеют малую магнитную индукцию.Устройство якоря: Якорь (ротор) машины постоянного тока сост. из стального вала, стального сердечника, обмотки и коллектора.1. Сердечник якоря - цилиндрический барабан, в продольных наружных пазах которого размещается обмотка якоря. Для уменьшения потерь на вихревые токи (во время работы якорь вращается в постоянном и неподвижном магнитном поле статора) сердечник набирается из изолированных штампованных листов электротехнической стали. 2. Коллектор набирается из клинообраз. Сu пластин, которые изолируются друг от друга миканитом. В прорезь выступа коллекторной пластины впаиваются два конца соседних секций обмотки якоря.Современные машины имеют барабанный якорь с 2слойной обмоткой, которая по типу может быть петлевой (паралл), волновой (послед.) и комбинированной. 3. Обмотка якоря составляется из отдельных секций, концы которых припаиваются к пластинам коллектора. Секции имеют по два активных участка и могут состоять из 1, 2 или неск. витков. Секции обмотки укладываются в пазах барабана якоря в два слоя (один участок вверху одного паза, другой - внизу другого паза) и в опред. порядке, чтобы при вращ. якоря их участки всегда находились под разными полюсами статора (отстояли друг от друга примерно на одно полюсное деление т), т.е. чтобы индуцированные в них ЭДС действовали согласно и складывались.

1-станина. 2-полюсы с обмоткой возбуждения. Якорь состоит из: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5.

46.Реверсивная схема управления пуском двигателя постоянного тока.

studfiles.net

Синхронный двигатель — достоинства и недостатки

Наибольшее распространение такая машина как синхронный двигатель получила в промышленности, где есть электроприводы, работающие на постоянных скоростях. Например, компрессоры с мощными двигателями, приводы насосов. Также синхронный двигатель является неотъемлемой частью и многих бытовых приборов, например, он есть в часах.

Принцип действия этой машины достаточно прост. Взаимодействие вращающегося магнитного поля якоря, создаваемого переменным током, и магнитных полей на полюсах индуктора, создаваемых постоянным током, и лежит в основе принципа работы такого электрического устройства как синхронный двигатель. Обычно индуктор расположен на роторе, а якорь – на статоре. Мощные двигатели в качестве полюсов используют электромагниты. Но есть и маломощный тип синхронный двигатель с постоянными магнитами. Главное отличие  синхронных машин от асинхронных конструкция статора и ротора.

Синхронный электродвигатель гораздо менее чувствителен к скачкам и перепадам напряжения в сети. Также такие электрические машины имеют более высокую устойчивость к перегрузкам. За счет повышения токов возбуждения можно увеличить перегрузочную способность двигателя. Плюсом работы с синхронной машиной является также и постоянная номинальная скорость вращения при любой нагрузке (кроме перегрузок).

Несомненно, у такой машины как синхронный двигатель есть и свои слабые места. Они связаны с повышенными затратами и сложной эксплуатацией. Основной проблемой является процесс возбуждения электродвигателя и введения его в синхронизм. В настоящее время нашли распространение тиристорные возбудители, которые имеют гораздо более высокий коэффициент полезного действия, чем электромашинные возбудители. Однако их стоимость существенно выше. С помощью тиристорного коммутатора можно решить многие вопросы: оптимальное регулирование токов возбуждения, поддержка постоянного значения косинуса фи, контроль над напряжением на шинах, регулирование токов статора и ротора в аварийных режимах и при перегрузках.

autogear.ru

Достоинства и недостатки синхронных двигателей

Механика Достоинства и недостатки синхронных двигателей

просмотров - 152

Пуск синхронного двигателя

Синхронный двигатель не имеет начального пускового момента. В случае если его подключить к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды изменять свое направление, ᴛ.ᴇ. средний момент за период равняется нулю. При этих условиях двигатель не сможет прийти во вращение, так как его ротор, обладающий определœенной инœерцией, не может быть в течение одного полупериода разогнан до синхронной частоты вращения.

Следовательно, для пуска синхронного двигателя крайне важно разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронный.

Сегодня чаще всœего применяют следующие способы пуска:

1. Асинхронный пуск.

При этом способе синхронный двигатель пускают как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой, выполненной по типу "беличья клетка". Чтобы увеличить сопротивление стержней, клетку изготавливают из латуни. После разгона ротора до частоты вращения, близкой к синхронной, на обмотку возбуждения подается напряжение и постоянный ток, проходящий по ней, создает синхронизирующий момент, который втягивает ротор в синхронизм.

2. Пуск при помощи вспомогательного двигателя.

Ротор возбужденного двигателя приводится во вращение до синхронной скорости и с помощью синхронизирующего устройства подключается к сети. После этого вспомогательный двигатель отключают.

В качестве пускового двигателя обычно используют асинхронный двигатель с числом полюсов на два меньше, чем у синхронного.

Недостатком данного способа является невозможность пуска двигателя под нагрузкой, так как нерационально иметь пусковой двигатель большой мощности.

3. Частотный пуск.

При частотном пуске синхронного двигателя частота питающего напряжения плавно изменяется от нуля до номинальной. При этом ротор вращается синхронно с магнитным полем статора.

Недостатками частотного пуска являются высокая стоимость преобразователя частоты, а также крайне важность реализации сложных законов регулирования исходного напряжения и частоты в процессе разгона двигателя. Частотный пуск синхронных двигателœей применяется в приводах специальных установок.

Синхронные двигатели имеют следующие достоинства:

1. Возможность работы при cos φ=1; это приводит к улучшению cos φ сети, а также к сокращению размеров двигателя, так как его ток меньше тока асинхронного двигателя той же мощности. При работе с опережающим током синхронные двигатели служат генераторами реактивной мощности, поступающей в асинхронные двигатели, что снижает потребление этой мощности от генераторов электростанций.

2. Меньшую чувствительность к колебаниям напряжения, так как их максимальный момент пропорционален напряжению в первой степени, а не квадрату напряжения.

3. Строгое постоянство частоты вращения независимо от механической нагрузки на валу.

Недостатки синхронных двигателœей:

1. Сложность конструкции.

2. Сравнительная сложность пуска в ход.

3. Трудности с регулированием частоты вращения, ĸᴏᴛᴏᴩᴏᴇ возможно только путем изменения частоты питающего напряжения.

Указанные недостатки синхронных двигателœей делают их менее выгодными, чем асинхронные двигатели, при ограниченных мощностях до 100кВт.

При этом при более высоких мощностях, когда особенно важно иметь высокий cos φ и уменьшенные габаритные размеры машины, синхронные двигатели предпочтительнее асинхронных.

Читайте также

  • - Достоинства и недостатки синхронных двигателей

    Пуск синхронного двигателя Синхронный двигатель не имеет начального пускового момента. Если его подключить к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент... [читать подробенее]

  • - Достоинства и недостатки синхронных двигателей

    V-образные характеристики синхронного двигателя Сравним синхронные двигатели с асинхронными. Достоинства синхронного двигателя: 1) возможность работы с высоким, близким к 1, коэффициентом мощности и работы в режиме перевозбуждения, что позволяет увеличить cos&... [читать подробенее]

  • oplib.ru