Синусоидный двигатель


двигатель с синусоидным ротором авп - патент РФ 2341659

Изобретение относится к машиностроению, в частности к двигателям внутреннего сгорания (ДВС) и поршневым машинам. Двигатель с синусоидным ротором содержит корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания и каналы подачи и сброса рабочих газов. В цилиндрах установлены поршни со штоками, на которых установлены шестерни на подшипниках качения, взаимодействующие с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя. Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора. Зубчатая поверхность может быть расположена с наружной или с внутренней стороны ротора. Ротор может иметь три или более верхних и нижних мертвых точек. На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра теплорасширяющимися стержнями. Ротор имеет кольцевой выступ, с одной стороны которого расположена зубчатая поверхность, а с противоположной - гладкая поверхность, повторяющая синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным в сторону штока для прижатия штока поршня к телу ротора. Технический результат, получаемый от реализации предлагаемого решения, заключается в снижении боковых нагрузок поршней на стенки цилиндров, в снижении коэффициента трения за счет уменьшения количества подшипников скольжения, а также в увеличении числа рабочих тактов поршня за один оборот основного вала двигателя и в повышении надежности конструкции. 7 з.п. ф-лы, 2 табл., 6 ил.

Изобретение относится к машиностроению, в частности к двигателям внутреннего сгорания (ДВС) и машинам, содержащим цилиндропоршневую группу.

Широко известны ДВС с кривошипно-шатунным механизмом (КШМ).

Известен также роторный двигатель внутреннего сгорания, содержащий корпус, установленный в корпусе с возможностью вращения ротор, цилиндры, выполненные в теле ротора, размещенные в цилиндрах поршни, снабженные штоками, систему подачи рабочего тела, систему зажигания и систему выпуска отработанных газов (Патент Франции №2126632, кл. F01С 7/00, 1972).

Наиболее близким к предложенному является роторный двигатель внутреннего сгорания, выполненный в виде корпуса, внутри которого установлен вращающийся ротор, в теле ротора в радиальном направлении установлены цилиндры с поршнями, пальцы которых закреплены в профилированной канавке, выполненной по периферии упора, выполненного в виде эллипса и установленного внутри ротора. Корпус снабжен отверстиями и каналами для подачи и сброса рабочего газа, а также запальной камерой со свечей зажигания (Патент РФ №2044140 C1, F02В 55/00, опубл. 1995).

Недостатками этих известных двигателей являются:

а) не компенсирующиеся переменные по величине и направлению боковые нагрузки поршней на стенки цилиндров,

б) низкая надежность,

в) большое количество подшипников скольжения,

г) малое количество рабочих тактов поршня за оборот ротора или коленвала КШМ.

Техническая задача, на решение которой направлено изобретение, заключается в следующем: снижение боковых нагрузок поршней на стенки цилиндров, снижение коэффициента трения за счет снижения количества подшипников скольжения, увеличения числа рабочих тактов поршня за один оборот основного вала, исключение из конструкции КШМ и увеличение надежности конструкции.

Указанная задача решается тем, что в двигателе с синусоидным ротором, содержащем корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания со свечей зажигания или без таковой и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя, а синусоидный ротор имеет также гладкую поверхность, повторяющую синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока для прижатия штока поршня к телу ротора.

Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора.

В первом случае зубчатая поверхность может быть расположена с наружной стороны ротора или с внутренней стороны ротора.

Синусоидный ротор может иметь три или более верхних и нижних мертвых точек.

На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра теплорасширяющимися стержнями.

На фиг.1 изображена схема четырехцилиндрового ДВС с синусоидным ротором и наружными зубчатой и гладкой рабочими поверхностями, где поршни расположены снаружи ротора, а оси поршней перпендикулярны оси вращения ротора, с четырьмя ВМТ и НМТ, что позволяет за один оборот ротора каждому из четырех цилиндров произвести два рабочих хода.

На фиг.2 изображена схема шестицилиндрового ДВС с синусоидным ротором с внутренними зубчатой и гладкой рабочими поверхностями, где поршни расположены внутри полого ротора, а оси поршней перпендикулярны оси вращения ротора, с шестью ВМТ и НМТ, что позволяет за один оборот ротора каждому из шести цилиндров произвести три рабочих хода.

На фиг.3 изображена схема взаимодействия зубчатой рабочей поверхности синусоидного ротора с поршнем, в случае, когда оси поршней параллельны оси вращения ротора.

На фиг.4 изображен поршень с фрагментом штока и двумя разрезными стабилизирующими шарикоподшипниками.

На фиг.5 изображен разрез А-А фиг.4: сечение штока поршня без фрагментов тела поршня.

На фиг.6 изображен разрез Б-Б фиг.1: сечение соединения штока поршня с шестерней и ротора при помощи подпружиненного сферического ролика, которые взаимодействуют с зубчатой и гладкой поверхностями синусоидного ротора.

В таблице 1 показан цикл работы четырехцилиндрового ДВС за один оборот синусоидного ротора, где: РТ - рабочий такт, СБ - сброс отработанных газов, ПД - подача воздуха или воздушно-топливной смеси, СЖ - сжатие.

В таблице 2 показан цикл работы шестицилиндрового ДВС за один оборот синусоидного ротора.

Под синусоидным ротором в данной заявке понимается такой ротор, рабочая поверхность которого (в данном случае поверхность, огибающая зубья на рабочей зубчатой поверхности ротора) в сечении, перпендикулярном оси ротора, имеет выпукло-вогнутую линию в форме синусоиды, средняя линия которой изогнута по окружности.

Двигатель с синусоидным ротором АВП (фиг.1, 2) содержит корпус 1, в теле которого радиально расположены цилиндры 2 с поршнями 3, на штоках 4 которых установлены вращающиеся на подшипниках качения шестерни 5. На теле поршней 3 находятся стабилизирующие разрезные шарикоподшипники 6, которые поджимаются к цилиндрам 2 теплорасширяющимися стержнями 7. Также на теле поршней 3 находятся компрессионные кольца 8 и малосъемное кольцо 9. Тело поршня 3 имеет внутреннюю полость. Через отверстия 10 в теле поршня 3 и отверстия 11 в теле штока 4 происходит охлаждение тела поршня 3 и смазка зеркала цилиндра 2 парокапельной смазкой 12. Шток 4 поршня 3 имеет усиленную многогранную нижнюю часть 13, а также два фланца 14, закрепленные в теле поршня 3. Фланцы 14 имеют расположенные по окружности отверстия 15, которые служат для более качественного соединения поршня 3 с штоком 4. На основном валу 20 двигателя закреплен ротор 16, который имеет зубчатую 17 и гладкую 18 рабочие поверхности, имеющие профиль в виде синусоиды 19. Соединение штока 4 поршня 3 с телом синусоидного ротора 16 осуществляется пружинистой пластиной 21, которая закреплена на усиленной нижней части 13 штока 4 и имеет две оси 22, на которых вращаются шестерня 5, работающая по зубчатой поверхности 17, и сферический ролик 23 на подшипниках качения, имеющий гладкую поверхность 24, прижимающий шток 4 к телу ротора 16, работающий по гладкой поверхности 18 ротора 16, профиль которой в осевом сечении повторяет профиль ролика 23. Синусоидный ротор 16 имеет верхние 25 (ВМТ) и нижние 26 (НМТ) мертвые точки. Цилиндры 2 имеют камеру сгорания с каналами 27 подачи и сброса рабочих газов.

Двигатель работает следующим образом: рабочий такт начинается ниже ВМТ 25 синусоидного ротора 16 и завершается на НМТ 26, где начинается сброс отработанных газов через каналы 27 до следующей ВМТ. Затем до следующей НМТ происходит подача воздуха или воздушно-топливной смеси через каналы 27 до НМТ. В последующее движение до ВМТ происходит такт сжатия. В камере сгорания цилиндра 2 происходит зажигание топливной смеси, рабочий газ толкает поршень 3 в направлении к ротору 3, но так как его шток 4 с шестерней 5 не может перемещаться в этом направлении из-за профиля синусоидного ротора 16, шток 4 посредством шестерни 5 перемещается по зубчатой поверхности 17, вращая ротор 16, находящийся на основном валу 20. Таким образом работает каждый поршень 3. Рабочий такт происходит поочередно в каждом цилиндре 2. Количество рабочих тактов каждого поршня 3 за один оборот ротора 16 зависит от общего количества ВМТ и НМТ синусоидного ротора 16, что подтверждается таблицами 1 и 2.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Двигатель с синусоидным ротором, содержащий корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя, а синусоидный ротор имеет также гладкую поверхность, повторяющую синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока.

2. Двигатель по п.1, отличающийся тем, что оси цилиндров перпендикулярны оси синусоидного ротора.

3. Двигатель по п.2, отличающийся тем, что зубчатая поверхность расположена с наружной стороны ротора.

4. Двигатель по п.2, отличающийся тем, что зубчатая поверхность расположена с внутренней стороны ротора.

5. Двигатель по п.1, отличающийся тем, что оси цилиндров параллельны оси синусоидного ротора.

6. Двигатель по п.1, отличающийся тем, что синусоидный ротор имеет три или более верхних и нижних мертвых точек.

7. Двигатель по п.1, отличающийся тем, что на внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра.

8. Двигатель по п.7, отличающийся тем, что подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра тепло-расширяющимися стержнями.

www.freepatent.ru

Двигатель с синусоидным ротором авп

Изобретение относится к машиностроению, в частности к двигателям внутреннего сгорания (ДВС) и поршневым машинам. Двигатель с синусоидным ротором содержит корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания и каналы подачи и сброса рабочих газов. В цилиндрах установлены поршни со штоками, на которых установлены шестерни на подшипниках качения, взаимодействующие с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя. Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора. Зубчатая поверхность может быть расположена с наружной или с внутренней стороны ротора. Ротор может иметь три или более верхних и нижних мертвых точек. На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра теплорасширяющимися стержнями. Ротор имеет кольцевой выступ, с одной стороны которого расположена зубчатая поверхность, а с противоположной - гладкая поверхность, повторяющая синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным в сторону штока для прижатия штока поршня к телу ротора. Технический результат, получаемый от реализации предлагаемого решения, заключается в снижении боковых нагрузок поршней на стенки цилиндров, в снижении коэффициента трения за счет уменьшения количества подшипников скольжения, а также в увеличении числа рабочих тактов поршня за один оборот основного вала двигателя и в повышении надежности конструкции. 7 з.п. ф-лы, 2 табл., 6 ил.

 

Изобретение относится к машиностроению, в частности к двигателям внутреннего сгорания (ДВС) и машинам, содержащим цилиндропоршневую группу.

Широко известны ДВС с кривошипно-шатунным механизмом (КШМ).

Известен также роторный двигатель внутреннего сгорания, содержащий корпус, установленный в корпусе с возможностью вращения ротор, цилиндры, выполненные в теле ротора, размещенные в цилиндрах поршни, снабженные штоками, систему подачи рабочего тела, систему зажигания и систему выпуска отработанных газов (Патент Франции №2126632, кл. F01С 7/00, 1972).

Наиболее близким к предложенному является роторный двигатель внутреннего сгорания, выполненный в виде корпуса, внутри которого установлен вращающийся ротор, в теле ротора в радиальном направлении установлены цилиндры с поршнями, пальцы которых закреплены в профилированной канавке, выполненной по периферии упора, выполненного в виде эллипса и установленного внутри ротора. Корпус снабжен отверстиями и каналами для подачи и сброса рабочего газа, а также запальной камерой со свечей зажигания (Патент РФ №2044140 C1, F02В 55/00, опубл. 1995).

Недостатками этих известных двигателей являются:

а) не компенсирующиеся переменные по величине и направлению боковые нагрузки поршней на стенки цилиндров,

б) низкая надежность,

в) большое количество подшипников скольжения,

г) малое количество рабочих тактов поршня за оборот ротора или коленвала КШМ.

Техническая задача, на решение которой направлено изобретение, заключается в следующем: снижение боковых нагрузок поршней на стенки цилиндров, снижение коэффициента трения за счет снижения количества подшипников скольжения, увеличения числа рабочих тактов поршня за один оборот основного вала, исключение из конструкции КШМ и увеличение надежности конструкции.

Указанная задача решается тем, что в двигателе с синусоидным ротором, содержащем корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания со свечей зажигания или без таковой и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя, а синусоидный ротор имеет также гладкую поверхность, повторяющую синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока для прижатия штока поршня к телу ротора.

Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора.

В первом случае зубчатая поверхность может быть расположена с наружной стороны ротора или с внутренней стороны ротора.

Синусоидный ротор может иметь три или более верхних и нижних мертвых точек.

На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра теплорасширяющимися стержнями.

На фиг.1 изображена схема четырехцилиндрового ДВС с синусоидным ротором и наружными зубчатой и гладкой рабочими поверхностями, где поршни расположены снаружи ротора, а оси поршней перпендикулярны оси вращения ротора, с четырьмя ВМТ и НМТ, что позволяет за один оборот ротора каждому из четырех цилиндров произвести два рабочих хода.

На фиг.2 изображена схема шестицилиндрового ДВС с синусоидным ротором с внутренними зубчатой и гладкой рабочими поверхностями, где поршни расположены внутри полого ротора, а оси поршней перпендикулярны оси вращения ротора, с шестью ВМТ и НМТ, что позволяет за один оборот ротора каждому из шести цилиндров произвести три рабочих хода.

На фиг.3 изображена схема взаимодействия зубчатой рабочей поверхности синусоидного ротора с поршнем, в случае, когда оси поршней параллельны оси вращения ротора.

На фиг.4 изображен поршень с фрагментом штока и двумя разрезными стабилизирующими шарикоподшипниками.

На фиг.5 изображен разрез А-А фиг.4: сечение штока поршня без фрагментов тела поршня.

На фиг.6 изображен разрез Б-Б фиг.1: сечение соединения штока поршня с шестерней и ротора при помощи подпружиненного сферического ролика, которые взаимодействуют с зубчатой и гладкой поверхностями синусоидного ротора.

В таблице 1 показан цикл работы четырехцилиндрового ДВС за один оборот синусоидного ротора, где: РТ - рабочий такт, СБ - сброс отработанных газов, ПД - подача воздуха или воздушно-топливной смеси, СЖ - сжатие.

В таблице 2 показан цикл работы шестицилиндрового ДВС за один оборот синусоидного ротора.

Под синусоидным ротором в данной заявке понимается такой ротор, рабочая поверхность которого (в данном случае поверхность, огибающая зубья на рабочей зубчатой поверхности ротора) в сечении, перпендикулярном оси ротора, имеет выпукло-вогнутую линию в форме синусоиды, средняя линия которой изогнута по окружности.

Двигатель с синусоидным ротором АВП (фиг.1, 2) содержит корпус 1, в теле которого радиально расположены цилиндры 2 с поршнями 3, на штоках 4 которых установлены вращающиеся на подшипниках качения шестерни 5. На теле поршней 3 находятся стабилизирующие разрезные шарикоподшипники 6, которые поджимаются к цилиндрам 2 теплорасширяющимися стержнями 7. Также на теле поршней 3 находятся компрессионные кольца 8 и малосъемное кольцо 9. Тело поршня 3 имеет внутреннюю полость. Через отверстия 10 в теле поршня 3 и отверстия 11 в теле штока 4 происходит охлаждение тела поршня 3 и смазка зеркала цилиндра 2 парокапельной смазкой 12. Шток 4 поршня 3 имеет усиленную многогранную нижнюю часть 13, а также два фланца 14, закрепленные в теле поршня 3. Фланцы 14 имеют расположенные по окружности отверстия 15, которые служат для более качественного соединения поршня 3 с штоком 4. На основном валу 20 двигателя закреплен ротор 16, который имеет зубчатую 17 и гладкую 18 рабочие поверхности, имеющие профиль в виде синусоиды 19. Соединение штока 4 поршня 3 с телом синусоидного ротора 16 осуществляется пружинистой пластиной 21, которая закреплена на усиленной нижней части 13 штока 4 и имеет две оси 22, на которых вращаются шестерня 5, работающая по зубчатой поверхности 17, и сферический ролик 23 на подшипниках качения, имеющий гладкую поверхность 24, прижимающий шток 4 к телу ротора 16, работающий по гладкой поверхности 18 ротора 16, профиль которой в осевом сечении повторяет профиль ролика 23. Синусоидный ротор 16 имеет верхние 25 (ВМТ) и нижние 26 (НМТ) мертвые точки. Цилиндры 2 имеют камеру сгорания с каналами 27 подачи и сброса рабочих газов.

Двигатель работает следующим образом: рабочий такт начинается ниже ВМТ 25 синусоидного ротора 16 и завершается на НМТ 26, где начинается сброс отработанных газов через каналы 27 до следующей ВМТ. Затем до следующей НМТ происходит подача воздуха или воздушно-топливной смеси через каналы 27 до НМТ. В последующее движение до ВМТ происходит такт сжатия. В камере сгорания цилиндра 2 происходит зажигание топливной смеси, рабочий газ толкает поршень 3 в направлении к ротору 3, но так как его шток 4 с шестерней 5 не может перемещаться в этом направлении из-за профиля синусоидного ротора 16, шток 4 посредством шестерни 5 перемещается по зубчатой поверхности 17, вращая ротор 16, находящийся на основном валу 20. Таким образом работает каждый поршень 3. Рабочий такт происходит поочередно в каждом цилиндре 2. Количество рабочих тактов каждого поршня 3 за один оборот ротора 16 зависит от общего количества ВМТ и НМТ синусоидного ротора 16, что подтверждается таблицами 1 и 2.

1. Двигатель с синусоидным ротором, содержащий корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя, а синусоидный ротор имеет также гладкую поверхность, повторяющую синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока.

2. Двигатель по п.1, отличающийся тем, что оси цилиндров перпендикулярны оси синусоидного ротора.

3. Двигатель по п.2, отличающийся тем, что зубчатая поверхность расположена с наружной стороны ротора.

4. Двигатель по п.2, отличающийся тем, что зубчатая поверхность расположена с внутренней стороны ротора.

5. Двигатель по п.1, отличающийся тем, что оси цилиндров параллельны оси синусоидного ротора.

6. Двигатель по п.1, отличающийся тем, что синусоидный ротор имеет три или более верхних и нижних мертвых точек.

7. Двигатель по п.1, отличающийся тем, что на внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра.

8. Двигатель по п.7, отличающийся тем, что подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра тепло-расширяющимися стержнями.

www.findpatent.ru

Двигатель с синусоидным ротором авп

 

Полезная модель относится к машиностроению, в частности, к двигателям внутреннего сгорания (ДВС) и машинам, содержащим цилиндропоршневую группу. В двигателе с синусоидным ротором, содержащем корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания со свечой зажигания или без таковой и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя. Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора. В первом случае зубчатая поверхность может быть расположена с наружной стороны ротора или с внутренней стороны ротора. Синусоидный ротор может иметь три или более верхних и нижних мертвых точек. На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра тепло-расширяющимися стержнями. Синусоидный ротор имеет кольцевой выступ, с одной стороны которого расположена указанная зубчатая поверхность, а с противоположной - гладкая поверхность, повторяющая синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным в сторону штока для прижатия штока поршня к телу ротора. Технический результат, получаемый от реализации предлагаемого решения, заключается в снижении боковых нагрузок поршней на стенки цилиндров, в снижении коэффициента трения, за счет уменьшения количества подшипников скольжения, в увеличении числа рабочих тактов поршня за один оборот основного вала двигателя и в повышении надежности конструкции.

Полезная модель относится к машиностроению, в частности, к двигателям внутреннего сгорания (ДВС) и машинам, содержащим цилиндропоршневую группу.

Широко известны ДВС с кривошипно-шатунным механизмом (КШМ).

Известен также роторный двигатель внутреннего сгорания, содержащий корпус, установленный в корпусе с возможностью вращения ротор, цилиндры, выполненные в теле ротора, размещенные в цилиндрах поршни, снабженные штоками, систему подачи рабочего тела, систему зажигания и систему выпуска отработанных газов (Патент Франции №2126632 кл. F01С 7/00, 1972).

Наиболее близким к предложенному является роторный двигатель внутреннего сгорания, выполненный в виде корпуса, внутри которого установлен вращающийся ротор, в теле ротора в радиальном направлении установлены цилиндры с поршнями, пальцы которых закреплены в профилированной канавке, выполненной по периферии упора, выполненного в виде эллипса и установленного внутри ротора. Корпус снабжен отверстиями, и каналами для подачи и сброса рабочего газа, а также запальной камерой со свечей зажигания (Патент РФ №2044140. C1, F02В 55/00, опуб. 1995).

Недостатками этих известных двигателей являются:

а) не компенсирующиеся переменные по величине и направлению боковые нагрузки поршней на стенки цилиндров,

б) низкая надежность,

в) большое количество подшипников скольжения,

г) малое количество рабочих тактов поршня за оборот ротора или коленвала КШМ.

Техническая задача, на решение которой направлена ПМ, заключается в следующем: снижение боковых нагрузок поршней на стенки цилиндров, снижение коэффициента трения, за счет снижения количества подшипников скольжения, увеличения числа рабочих тактов поршня за один оборот основного вала, исключение из конструкции КШМ и увеличения надежности конструкции.

Указанная задача решается тем, что в двигателе с синусоидным ротором, содержащем корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания со свечой зажигания или без таковой и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя.

Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора.

В первом случае зубчатая поверхность может быть расположена с наружной стороны ротора или с внутренней стороны ротора.

Синусоидный ротор может иметь три или более верхних и нижних мертвых точек.

На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра тепло-расширяющимися стержнями.

Синусоидный ротор имеет кольцевой выступ, с одной стороны которого расположена указанная зубчатая поверхность, а с противоположной - гладкая поверхность, повторяющая синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока для прижатия штока поршня к телу ротора.

На фиг.1, изображена схема четырехцилиндрового ДВС с синусоидным ротором и наружными зубчатой и гладкой рабочими поверхностями, где

поршни расположены снаружи ротора, а оси поршней перпендикулярны оси вращения ротора, с четырьмя ВМТ и НМТ, что позволяет за один оборот ротора каждому из четырех цилиндров произвести два рабочих хода.

На фиг.2 изображена схема шестицилиндрового ДВС с синусоидным ротором с внутренними зубчатой и гладкой рабочими поверхностями, где поршни расположены внутри полого ротора, а оси поршней перпендикулярны оси вращения ротора, с шестью ВМТ и НМТ, что позволяет за один оборот ротора каждому из шести цилиндров произвести три рабочих хода.

На фиг.3 изображена схема взаимодействия зубчатой рабочей поверхности синусоидного ротора с поршнем, в случае, когда оси поршней параллельны оси вращения ротора.

На фиг.4 изображен поршень с фрагментом штока и двумя разрезными стабилизирующими шарикоподшипниками.

На фиг.5 изображен разрез А-А фиг.4: сечение штока поршня без фрагментов тела поршня.

На фиг.6 изображен разрез Б-Б фиг.1: сечение соединения штока поршня с шестерней и ротора при помощи подпружиненного сферического ролика, которые взаимодействуют с зубчатой и гладкой поверхностями синусоидного ротора.

В таблице 1 показан цикл работы четырехцилиндрового ДВС за один оборот синусоидного ротора, где: РТ - рабочий такт, СБ - сброс отработанных газов, ПД - подача воздуха или воздушно-топливной смеси, СЖ - сжатие.

В таблице 2 показан цикл работы шестицилиндрового ДВС за один оборот синусоидного ротора.

Под синусоидным ротором в данной заявке понимается такой ротор, рабочая поверхность которого (в данном случае поверхность, огибающая зубья на рабочей зубчатой поверхности ротора) в сечении, перпендикулярном оси ротора, имеет выпукло-вогнутую линию в форме синусоиды, средняя линия которой изогнута по окружности.

Двигатель с синусоидным ротором АВП (фиг.1, 2) содержит корпус 1, в теле которого радиально расположены цилиндры 2 с поршнями 3, на штоках 4 которых установлены вращающиеся на подшипниках качения шестерни 5. На теле поршней 3 находятся стабилизирующие разрезные шарикоподшипники 6, которые поджимаются к цилиндрам 2 тепло-расширяющимися стержнями 7. Также на теле поршней 3 находятся компрессионные кольца 8 и мало-съемное кольцо 9. Тело поршня 3 имеет внутреннюю полость. Через отверстия 10 в теле поршня 3 и отверстия 11 в теле штока 4 происходит охлаждение тела поршня 3 и смазка зеркала цилиндра 2 паро-капельной смазкой 12. Шток 4 поршня 3 имеет усиленную многогранную нижнюю часть 13, а также два фланца 14, закрепленные в теле поршня 3. Фланцы 14 имеют расположенные по окружности отверстия 15, которые служат для более качественного соединения поршня 3 с штоком 4. На основном валу 20 двигателя закреплен ротор 16, который имеет зубчатую 17 и гладкую 18 рабочие поверхности, имеющие профиль в виде синусоиды 19. Соединение штока 4 поршня 3 с телом синусоидного ротора 16 осуществляется пружинистой пластиной 21, которая закреплена на усиленной нижней части 13 штока 4 и имеет две оси 22, на которых вращаются шестерня 5, работающая по зубчатой поверхности 17, и сферический ролик 23 на подшипниках качения, имеющий гладкую поверхность 24, прижимающий шток 4 к телу ротора 16, работающий по гладкой поверхности 18 ротора 16, профиль которой в осевом сечении повторяет профиль ролика 23. Синусоидный ротор 16 имеет верхние 25 (ВМТ) и нижние 26 (НМТ) мертвые точки. Цилиндры 2 имеют камеру сгорания с каналами 27 подачи и сброса рабочих газов.

Двигатель работает следующим образом: рабочий такт начинается ниже ВМТ 25 синусоидного ротора 16 и завершается на НМТ 26, где начинается сброс отработанных газов через каналы 27 до следующей ВМТ. Затем до следующей НМТ происходит подача воздуха или воздушно-топливной смеси через каналы 27 до НМТ. В последующее движение до ВМТ происходит такт сжатия. В камере сгорания цилиндра 2 происходит

зажигание топливной смеси, рабочий газ толкает поршень 3 в направлении к ротору 3, но так как его шток 4 с шестерней 5 не может перемещаться в этом направлении из-за профиля синусоидного ротора 16, шток 4 посредством шестерни 5 перемещается по зубчатой поверхности 17, вращая ротор 16, находящийся на основном валу 20. Таким образом работает каждый поршень 3. Рабочий такт происходит поочередно в каждом цилиндре 2. Количество рабочих тактов каждого поршня 3 за один оборот ротора 16 зависит от общего количества ВМТ и НМТ синусоидного ротора 16, что подтверждается таблицами 1 и 2.

1. Двигатель с синусоидным ротором, содержащий корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя.

2. Двигатель по п.1, отличающийся тем, что оси цилиндров перпендикулярны оси синусоидного ротора.

3. Двигатель по п.2, отличающийся тем, что зубчатая поверхность расположена с наружной стороны ротора.

4. Двигатель по п.2, отличающийся тем, что зубчатая поверхность расположена с внутренней стороны ротора.

5. Двигатель по п.1, отличающийся тем, что оси цилиндров параллельны оси синусоидного ротора.

6. Двигатель по п.1, отличающийся тем, что синусоидный ротор имеет три или более верхних и нижних мертвых точек.

7. Двигатель по п.1, отличающийся тем, что на внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра.

8. Двигатель по п.7, отличающийся тем, что подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра теплорасширяющимися стержнями.

9. Двигатель по п.1, отличающийся тем, что синусоидный ротор имеет кольцевой выступ, с одной стороны которого расположена указанная зубчатая поверхность, а с противоположной - гладкая поверхность, повторяющая синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока.

poleznayamodel.ru

Двигатель с синусоидным ротором авп

Полезная модель относится к машиностроению, в частности, к двигателям внутреннего сгорания (ДВС) и машинам, содержащим цилиндропоршневую группу.

Широко известны ДВС с кривошипно-шатунным механизмом (КШМ).

Известен также роторный двигатель внутреннего сгорания, содержащий корпус, установленный в корпусе с возможностью вращения ротор, цилиндры, выполненные в теле ротора, размещенные в цилиндрах поршни, снабженные штоками, систему подачи рабочего тела, систему зажигания и систему выпуска отработанных газов (Патент Франции №2126632 кл. F01С 7/00, 1972).

Наиболее близким к предложенному является роторный двигатель внутреннего сгорания, выполненный в виде корпуса, внутри которого установлен вращающийся ротор, в теле ротора в радиальном направлении установлены цилиндры с поршнями, пальцы которых закреплены в профилированной канавке, выполненной по периферии упора, выполненного в виде эллипса и установленного внутри ротора. Корпус снабжен отверстиями, и каналами для подачи и сброса рабочего газа, а также запальной камерой со свечей зажигания (Патент РФ №2044140. C1, F02В 55/00, опуб. 1995).

Недостатками этих известных двигателей являются:

а) не компенсирующиеся переменные по величине и направлению боковые нагрузки поршней на стенки цилиндров,

б) низкая надежность,

в) большое количество подшипников скольжения,

г) малое количество рабочих тактов поршня за оборот ротора или коленвала КШМ.

Техническая задача, на решение которой направлена ПМ, заключается в следующем: снижение боковых нагрузок поршней на стенки цилиндров, снижение коэффициента трения, за счет снижения количества подшипников скольжения, увеличения числа рабочих тактов поршня за один оборот основного вала, исключение из конструкции КШМ и увеличения надежности конструкции.

Указанная задача решается тем, что в двигателе с синусоидным ротором, содержащем корпус, в котором расположены цилиндры, имеющие каждый камеру сгорания со свечой зажигания или без таковой и каналы подачи и сброса рабочих газов, в цилиндрах установлены поршни, на штоках которых установлены шестерни на подшипниках качения, которые взаимодействуют с зубчатой поверхностью синусоидного ротора, закрепленного на основном валу двигателя.

Оси цилиндров могут быть перпендикулярны или параллельны оси синусоидного ротора.

В первом случае зубчатая поверхность может быть расположена с наружной стороны ротора или с внутренней стороны ротора.

Синусоидный ротор может иметь три или более верхних и нижних мертвых точек.

На внешней боковой поверхности каждого поршня установлены подшипники качения с возможностью их поджатия к внутренней поверхности цилиндра. Причем подшипники выполнены разрезными и поджаты к внутренней поверхности цилиндра тепло-расширяющимися стержнями.

Синусоидный ротор имеет кольцевой выступ, с одной стороны которого расположена указанная зубчатая поверхность, а с противоположной - гладкая поверхность, повторяющая синусоидный профиль огибающей зубчатой поверхности, а шток каждого поршня связан с роликом, взаимодействующим с этой гладкой поверхностью и подпружиненным к ней и в сторону штока для прижатия штока поршня к телу ротора.

На фиг.1, изображена схема четырехцилиндрового ДВС с синусоидным ротором и наружными зубчатой и гладкой рабочими поверхностями, где

поршни расположены снаружи ротора, а оси поршней перпендикулярны оси вращения ротора, с четырьмя ВМТ и НМТ, что позволяет за один оборот ротора каждому из четырех цилиндров произвести два рабочих хода.

На фиг.2 изображена схема шестицилиндрового ДВС с синусоидным ротором с внутренними зубчатой и гладкой рабочими поверхностями, где поршни расположены внутри полого ротора, а оси поршней перпендикулярны оси вращения ротора, с шестью ВМТ и НМТ, что позволяет за один оборот ротора каждому из шести цилиндров произвести три рабочих хода.

На фиг.3 изображена схема взаимодействия зубчатой рабочей поверхности синусоидного ротора с поршнем, в случае, когда оси поршней параллельны оси вращения ротора.

На фиг.4 изображен поршень с фрагментом штока и двумя разрезными стабилизирующими шарикоподшипниками.

На фиг.5 изображен разрез А-А фиг.4: сечение штока поршня без фрагментов тела поршня.

На фиг.6 изображен разрез Б-Б фиг.1: сечение соединения штока поршня с шестерней и ротора при помощи подпружиненного сферического ролика, которые взаимодействуют с зубчатой и гладкой поверхностями синусоидного ротора.

В таблице 1 показан цикл работы четырехцилиндрового ДВС за один оборот синусоидного ротора, где: РТ - рабочий такт, СБ - сброс отработанных газов, ПД - подача воздуха или воздушно-топливной смеси, СЖ - сжатие.

В таблице 2 показан цикл работы шестицилиндрового ДВС за один оборот синусоидного ротора.

Под синусоидным ротором в данной заявке понимается такой ротор, рабочая поверхность которого (в данном случае поверхность, огибающая зубья на рабочей зубчатой поверхности ротора) в сечении, перпендикулярном оси ротора, имеет выпукло-вогнутую линию в форме синусоиды, средняя линия которой изогнута по окружности.

Двигатель с синусоидным ротором АВП (фиг.1, 2) содержит корпус 1, в теле которого радиально расположены цилиндры 2 с поршнями 3, на штоках 4 которых установлены вращающиеся на подшипниках качения шестерни 5. На теле поршней 3 находятся стабилизирующие разрезные шарикоподшипники 6, которые поджимаются к цилиндрам 2 тепло-расширяющимися стержнями 7. Также на теле поршней 3 находятся компрессионные кольца 8 и мало-съемное кольцо 9. Тело поршня 3 имеет внутреннюю полость. Через отверстия 10 в теле поршня 3 и отверстия 11 в теле штока 4 происходит охлаждение тела поршня 3 и смазка зеркала цилиндра 2 паро-капельной смазкой 12. Шток 4 поршня 3 имеет усиленную многогранную нижнюю часть 13, а также два фланца 14, закрепленные в теле поршня 3. Фланцы 14 имеют расположенные по окружности отверстия 15, которые служат для более качественного соединения поршня 3 с штоком 4. На основном валу 20 двигателя закреплен ротор 16, который имеет зубчатую 17 и гладкую 18 рабочие поверхности, имеющие профиль в виде синусоиды 19. Соединение штока 4 поршня 3 с телом синусоидного ротора 16 осуществляется пружинистой пластиной 21, которая закреплена на усиленной нижней части 13 штока 4 и имеет две оси 22, на которых вращаются шестерня 5, работающая по зубчатой поверхности 17, и сферический ролик 23 на подшипниках качения, имеющий гладкую поверхность 24, прижимающий шток 4 к телу ротора 16, работающий по гладкой поверхности 18 ротора 16, профиль которой в осевом сечении повторяет профиль ролика 23. Синусоидный ротор 16 имеет верхние 25 (ВМТ) и нижние 26 (НМТ) мертвые точки. Цилиндры 2 имеют камеру сгорания с каналами 27 подачи и сброса рабочих газов.

Двигатель работает следующим образом: рабочий такт начинается ниже ВМТ 25 синусоидного ротора 16 и завершается на НМТ 26, где начинается сброс отработанных газов через каналы 27 до следующей ВМТ. Затем до следующей НМТ происходит подача воздуха или воздушно-топливной смеси через каналы 27 до НМТ. В последующее движение до ВМТ происходит такт сжатия. В камере сгорания цилиндра 2 происходит

зажигание топливной смеси, рабочий газ толкает поршень 3 в направлении к ротору 3, но так как его шток 4 с шестерней 5 не может перемещаться в этом направлении из-за профиля синусоидного ротора 16, шток 4 посредством шестерни 5 перемещается по зубчатой поверхности 17, вращая ротор 16, находящийся на основном валу 20. Таким образом работает каждый поршень 3. Рабочий такт происходит поочередно в каждом цилиндре 2. Количество рабочих тактов каждого поршня 3 за один оборот ротора 16 зависит от общего количества ВМТ и НМТ синусоидного ротора 16, что подтверждается таблицами 1 и 2.

bankpatentov.ru

Синусный фильтр. Фильтры для частотных преобразователей

В заводских условиях большинство расходования тока идет на приводы, оснастки, насосов, вентиляторов, компрессоров, грузоподъемных блоков. Это оборудование запускается в работу двигателями, уменьшения расхода выходного напряжения. Крупные изготовители мира электротехники делают конструкции, которые преобразовывают частоту. Частотные преобразователи полезные электронные устройства, которые облегчают моменты запуска и эксплуатации двигателей. Преобразователи частоты влияют на мотор.

Конструкция преобразователя частоты имеет свои особенности. Напряжение на выходе и ток показывают несинусоидальный вид искажают его, имеют много помех, гармонических значений. Выпрямитель преобразователя частоты выходного напряжения, которые не управляется, расходует ток, подает в сеть питания высшие гармоники.

Инвертор преобразователя частоты образует спектр высоких гармоник с частотой от 150 килогерц до30 мегагерц. Работа обмоток двигателя с искажением тока несинусоидального вида дает образование отрицательных реакций, как пробой электрического выходного напряжения, тепловой пробой изоляционного материала обмоток двигателя, повышения износа изоляции, акустического шума двигателя.

Частотные преобразователи издают помехи в питающей сети, оказывают отрицательное влияние на электрооборудование этой сети. Чтобы ослабить это воздействие на двигатель, используют фильтры разного вида.

Фильтры делят на выходные и входные. Фильтры на входе играют роль подавления отрицательного влияния выпрямителя и инвертора, предназначены удалять помехи, которые создаются частотником и помехами снаружи. Входные фильтры – это дроссели сети, фильтры. Выходные фильтры: фильтры синфазных помех, двигательные дроссели, синус фильтры.

Дроссели в сети

Дроссель сети – это буфер с двумя сторонами между сетью снабжения энергией и преобразователем, делает защиту сети с частотой 250 герц, 350 герц, 550 герц. Моторные дроссели сети делают защиту инвертора от увеличенного напряжения сети и тока при переходе в сети и нагрузке преобразователя, при сильном перепаде напряжения сети, возникающего во время отключения двигателей большой мощности.

Дроссели в сети с определенным падением выходного напряжения служат для применения частотного преобразователя, который не делает регенерацию электрической энергии, освобождается при замедлении двигателя в систему питания. Дроссели сети с определенным напряжением на обмотках 4% служат для работы нескольких инверторов и автоматических трансформаторов с опцией восстановления энергии замедления двигателя в питании системы.

Дроссели сети применяют в случаях:

  • Наличие помех в сети механизмов.
  • Асимметрия потенциала фаз выше 1,8% от номинала.
  • Частотник соединен с сетью малого сопротивления.
  • Много инверторов подключено на одну линию.
  • В сети есть нелинейные элементы с искажениями.
  • В схеме есть конденсаторная батарея, которая увеличивает мощность сети.

Достоинства использования сетевых дросселей:

Фильтры ЭМИ

Корпус частотного преобразователя с двигателем – нагруженность величины к сети питания. Вместе с индуктивностью силовых кабелей возникают флуктуации частоты тока и потенциала, питания. Это негативно сказывается на эксплуатации разных видов. Фильтры нужны для создания совместимости преобразователя частоты с помехами.

Фильтры с тремя фазами снижают кондуктивные помехи в интервале частот от 150 килогерц до 30 мегагерц. Паразитные токи проходят по фильтру, и не выходят за границы. Устройства попадают под защиту от помех инвертора. Фильтр ЭМИ ставится поближе к входу преобразователя частоты. Иногда его встраивают в корпус частотника. Величина излучений волн зависит от кабелей питания. При установке преобразователя частоты нужно следовать рекомендациям производителя.

Конструктивные особенности и сфера фильтров

Фильтры dU/dt для низких частот, которые состоят из емкостей и дросселей. Индуктивности дросселей и емкостей обеспечивают снижение частот больше коммутации силовых значений преобразователя. Размер индуктивности катушки дросселя dU/dt колеблется до сотен микрогенри, величина емкости dU/dt равна нескольким десяткам нанофарад. С фильтром dU/dt снижается максимальное напряжение на контактах двигателя до 500 вольт/мкс, защищает обмотку мотора от пробоя током.

Фильтрующие элементы dU/dt ставятся ситуациях:

  • Прибор с управлением частоты производит рекуперативное замедление.
  • Механизм не приспособлен для преобразователя частоты.
  • Механизм со старым мотором, малой степенью изоляции, с мотором простого назначения, нестандартный.
  • Короткий кабель двигателя, менее 15 м.
  • Электромотор смонтирован в агрессивной обстановке или повышенных температурах.
  • На электродвигателях общего назначения с напряжением 690 вольт.

Фильтр оснащен небольшими данными емкости и индуктивности, потенциал на обмотках мотора представляет импульсы прямоугольной двухполярной формы, синус на графике отсутствует. Ток мотора имеет форму синусоиды. Фильтры применяются на коммутации частоты менее номинала, надо уходить от применения на коммутационной частоты более номинала, фильтр будет перегреваться. Фильтр называется дросселем мотора. Конструктивной особенностью дросселей моторов является отсутствие емкостей. Обмотки несут большую индуктивность.

Механизм синус-фильтров подобен фильтру dU/dt. Отличие в том, что есть моторные дроссели и емкости с номиналом выше, фильтр LC имеет резонанс меньше 50% от коммутационной частоты. Получается эффект подавления частот высоких и форма синус-фильтра в интервале от сотен микрогенри до десятков микрогенри, величина емкости синус-фильтра от микрофарад до сотен микрофарад. Габариты синус-фильтра большие, как самого частотника.

При использовании синус-фильтров не нужно применять моторы с изоляцией усиленной. Происходит снижение акустического шума от двигателя.

Наибольшая кабельная длина между инвертором и фильтром:

  • До мощности 7,5 киловатт – 2 м.
  • От мощности 7,5 до 90 киловатт – 5-10 м.
  • Выше 90 киловатт – 10-15 метров.

Конструктивные особенности и сфера использования фильтров помех

Фильтр помех – трансформатор с наконечником из феррита, обмотки это фазные провода кабеля. Фильтр снижает токи в моторном подшипнике, снижает излучения от кабеля мотора. 3 фазы идут в кольце. В этом же кольце идет и заземление.

Кольца из феррита ставятся на проводах двигателя. При нормальной работе температура колец не будет выше 70 градусов. В качестве длины кабеля двигателя — кабель с жилами формы сектора. Нам нужны только кабели с проводами формы круга.

При нескольких кабелях учитывается вся длина. Если двигателей много, на всех ставится комплект колец. Вибрация колец приводит к износу кольца, из-за постоянного трения. Кабель фиксируют специальными хомутами.

Выбор значений элементов синус-фильтра

Чтобы определить величину емкости и индуктивности фильтра надо провести расчет на наибольшей и наименьшей частотах:

  • Рассчитываем коэффициент гармонический напряжения на входе для нормальных параметров.
  • Подобие при коэффициентах гармоник выходного и входного напряжений.
  • Коэффициент передавания фильтра на 1-й гармонике активной нагруженности.
  • Интервал напряжения выходного фильтра.

По сопротивлению нагруженности, всей мощности ищут индуктивность и емкость фильтра. Из 2-х режимов выбирают максимальные напряжения выхода на всем интервале регулировки частоты. Далее, выбираем индуктивность и емкость фильтра, контролируем коэффициент гармоник потенциала выхода. Рассчитываем частоту резонанса фильтра. Расчеты делаются на компьютере в Mathcad.

Фильтры синуса на практике

Фильтры синусные поместятся в шкафу. Индуктивность выполняют дросселем на магнитном проводе. Применение реактора в воздухе в шкафу выгоднее, чем с магнитопроводом.

По методике сконструирован фильтр синусный для эксплуатации вместе с интервалом регулировки частоты выхода и с основной частотой инвертора, напряжение 3 кГц при нужном коэффициенте гармоник напряжения выхода не более 5% на интервале регулировки зависимости момента от частоты.

Фильтр-синус BLOCK

Это прибор из емкостей, дросселя, образующих цепочку с частотой резонанса менее, чем у инвертора. Создается хорошее сглаживание синуса тока, снижаются частоты.

С фильтрами BLOCK не нужна специальная изоляция, шумы от мотора и подшипников уменьшаются, снижается нагрев обмоток мотора, можно применять длинные кабели до 500 метров. Фирма BLOCK производит синусные фильтры до 250 киловатт, интервал частот до 150 герц.

Моторные дроссели и фильтры фирмы Skybergtech

Фирма в Чехии Skybergtech производит множество фильтров для инверторов и моторов. Она представляет фильтры А-класса и В-класса в интервале от 150 килогерц до 30 мегагерц с помехоподавлением. Имеются 1-фазные и 3-фазные варианты током от 3 до 2500 ампер на напряжение 12 вольт – 25 киловольт. Для особых случаев есть фильтры до 80 децибел от 0,01 до 1000 мегагерц.

Помехоподавительные фильтры представляются в изделиях фирмы Skybergtech 1-фазной серии SKY1FL и 3-фазной серии SKY3FL. Вид снаружи и характеристика частоты фильтров:

Для эксплуатации с несимметричной нагруженностью компания сделала фильтры SKY4FL. У них 4 катушки расположены на основном сердечнике и дают хорошее подавление помех при сильлной разбалансировке нагрузочных фаз. Подсоединяется фильтр по 5-проводной схеме и дает помехоподавление от 30 децибел в интервале от 150 килогерц до 30 мегагерц. Вид снаружи и схема фильтра SKY4FL1600C:

Фильтры подавления помех применяются не только для частотников, но и для различных устройств, регуляторов. 1-фазными и 3-фазными дросселями фирма предлагает марки SKY3TLT и SKYTLT. Они не имеют корпуса, вид индуктивной катушки, провод которой намотан на сердечнике Ш-образном.

Дроссели на постоянный ток фирма выставила также свою серию приборов. Инженеры имеют опыт применения магнитных материалов, делают дроссели для постоянного тока, с малыми габаритами и весом.

Для моторов фирма предлагает отдельную серию, у которой потери всего 2%. В нее входят 3-фазные на 230-400 вольт, 3-800 ампер. У малой длины кабеля и малой частоте прибора моторным дросселем берут фильтр du/dt. Фирма представила марку отдельную на 1200 ампер, 690 вольт. Ее можно применять с частотниками и с преобразователями напряжения, на основе разработок новейших технологий в сфере электротехники для производств.

chistotnik.ru

17. Асинхронник + частотник на низких оборотах: инспекция с осциллографом

Написано vsh, 28 March 2014 · 8190 просмотров Давно уже переделал трансмиссию сверлилки на меньшие обороты с бОльшим моментом. Были советы типа "поставь частотник и не мучайся", но я им не последовал. Поэтому (но не только) размещаю этот материал здесь, а не в "Электроприводе".

Многократно доводилось читать на форуме (в самых разных местах) о чудесных свойствах векторных частотников - могут мол де поддерживать момент обычных асинхронных трехфазных двигателей на самых-самых низких оборотах. Кто-то даже писал о сохранениии мощности (возможно, просто оговорился). Впрочем, в рекламе у продавцов можно, наверное, найти и не такое!.

Я не склонен верить в чудеса, зато вполне доверяю (школьной) физике, а она утверждает, что если ток в обмотках статора меняется медленно (низкая частота), вихревые токи в роторе генерируются плохо и момент у двигателя должен падать. По (полу)интуитивным соображениям момент пропорционален квадрату тока и обратно пропорционален частоте (при прочих равных). Профессиональных книг по асинхронным движкам не читал (и не хочется), так что особо не пинайте!

Если частотник питает двигатель просто тремя синусоидальными фазами пониженной частоты, то он может попытаться поднять ток для повышения момента, но при этом ограничен нагревом обмоток и (возможно) насыщением железа в статоре. Так что на этом пути никаких чудес не видно... А может там не банальные три фазы со сдвигом на 120 градусов а бог весть какие интересные напряжения? Внутри ведь МК, а он может многое! Надо бы слазить поглядеть с осциллографом!

Добрый человек с форума предоставил мне для обследования частотник (Lenze E82EV371) вместе с подходящим движком (180 Вт, 220 В, 1500 об/мин). Цифровой осциллограф (с аналоговым на низких частотах ничего не разглядеть) я тоже взял на время - у другого доброго человека - но уже не с форума .

Чтобы не повредить ненароком осциллограф запитал его через разделительный трансформатор. Лучше (в смысле ТБ) было бы запитать частотник, но тогда трансформатор нужен мощный, а я с трудом разыскал даже 30-ваттный ТА-33 (для осциллографа). Чтобы не мешала частота ШИМ (8 кГц) повесил на все три фазы RC фильтры (100кОм*10нФ=1 мс). В разрыв одной из фаз включил самопальный трансформатор тока (из ТН-33) с аналогичным фильтром после выходной обмотки. Нагрузку двигателю давал "от руки" - тормозил шкив Ф 70 мм, установленный на оси. Городить что-то более серьезное/точное сходу не захотелось, а потом выяснилось, что это и незачем. Вот так все это выглядело.Данные с осциллографа (два канала снимались одновременно) я перегонял в компьютер и уже там обрабатывал (для начала еще чуть подфильтровывал FFT) и рисовал окончательно.

На частоте 50 Гц картинка ничем не примечательна - хоть в нормальном, хоть в векторном режиме.Размах напряжения - максимально возможный - около 300 В. Это не 127В АС, но где-то около. Ток (без нагрузки) отстает по фазе почти на 1/4 периода, как и положено при почти полностью индуктивной нагрузке. Форма напряжения немного отличается от синусоиды (об этом потом).На частоте 5 Гц нормальный режим выглядит вот так,а векторный - вот такНа обеих осциллограммах в средней части двигатель нагружался. В нормальном режиме он остановился под небольшой нагрузкой, а в векторном продолжал вращаться.

Видно, что напряжение на двигателе в векторном режиме выше, чем в нормальном. Ток, тоже выше. Под нагрузкой о напряжение и ток возрастают. Возрастание и спад при наложении и снятии нагрузки происходят с ощутимым запаздыванием (картинки нет). Сдвиг между фазами (120 градусов) и частота никак не реагируют на наличие нагрузки (картинки нет). В векторном режиме (на частоте 5 Гц двигатель) двигатель быстро греется даже без нагрузки.

Вот табличка с параметрами тока и напряжения в разных режимах:В общем ясно: лучшее поддержание момента на низких оборотах в векторном режиме достигается простым увеличением тока обмоток (по крайней мере в данной модели частотника). Остается вопос: как регулятор узнает о возрастании нагрузки на валу. чтобы поднять напряжение? Попытался наводить Фурье-анализ на осциллограмму тока - искал комбинационные частоты (от пониженных оборотов). Ничего вразумительного не нашел. Опять же, для нормального анализа надо иметь хотя бы десяток периодов 5 Гц, а реакция частотника на нагрузку хоть и не мгновенная, но быстрей.

Попробовал посмотреть на поведение "косинуса фи" (обработка кривых тока и напряжения с предыдущего рисунка) - вот тут появление и сброс нагрузки виден достаточно неплохо.Эту информацию контроллеру получить несложно - наверняка в каждой из фаз есть датчики тока. Иначе контроллер не мог бы диагностировать обрыв фазы, замыкание и т.д..

Теперь пора разобраться со странноватой формой напряжения, причем еще и не зависящей ни от частоты, ни от нагрузки. Форма напряжения полностью определяется ШИМ , а значит контролируется МК. Зачем ему такая форма? А вот зачем: исходя из выпрямленных и сглаженных 220 В можно синтезировать синусоидальное напряжение с эффективным значением только 110 В - это абсолютный максимум без учета каких-либо потерь. А надо бы 127 - чтобы межфазное получилось 220. Если сделать верхушки уплощенными, эффективное напряжение возрастет. А если сделать форму такой, как на картинках выше - межфазное напряжение окажется идеально синусоидальным!Под красной (реальной) синусоидой на верхнем рисунке (50 Гц) расчетная (идеальная) скрылась так, что ее и не видно. На нижнем рисунке (на частоте 5 Гц) расчетной синусоиды нет - тоько реальная.

Почему так происходит? Потому что эта хитрая форма состоит только из основной частоты и третьей гармоники. Амплитуда и фаза третьей гармоники подобраны так. чтобы вершина получалась максимально плоской (полное использование питающего напряжения). При сдвиге фазы основной частоты на 1/3 периода третья гармоника сдвигается на целый период и при вычитании (расчете межфазного напряжения) пропадает. Если бы сдвиг фаз был не 120, а 90 градусов, то межфазное напряжение вышло бы куда более "корявым", чем напряжение отдельных фаз (пунктир на верхнем рисунке).

В результате экспертизы лично у меня сильно прибавилось понимания работы векторного частотника. А "векторная модель" - пусть остается тайной - пока не попадет в элементарные учебники.

Добавляю картинку подключения всего ко всему.

www.chipmaker.ru

Схема инвертора с чистой синусоидой

Оглавление: [скрыть]

  • Естественная и искусственная синусоида
  • Схема инвертора с чистым синусом
  • Дополнительный фильтр

Разработкой схем инвертора с чистой синусоидой заняты не только многие народные умельцы, но и научно-технические центры. Инверторы, или блоки бесперебойного питания, приобрели популярность с развитием компьютерных технологий. Сбои в программном обеспечении, потеря информации при внезапном отключении питания вынудили принять необходимые меры безопасности. Первые устройства выдавали импульсное напряжение прямоугольной формы — меандр. Они обеспечивали небольшой промежуток времени, в течении которого можно было сохранить информацию и выполнить штатное выключение компьютера. Дальнейшие разработки позволили создать усовершенствованные модели преобразователей.

Конструкция инвертора.

Увеличение емкости аккумуляторов, номинальной мощности инверторов позволило не только увеличить время работы компьютеров, но и применить ИБП для работы других устройств и приборов при перебоях в электроснабжении.

Первый опыт эксплуатации показал, что длительная работа оборудования на импульсном напряжении приводит к ускоренному износу и отказу техники. Определенные категории оборудования оказались не способными работать на напряжении, отличающемся от синусоиды. Мощность источников питания не позволяла подключать несколько устройств одновременно.

Возникла необходимость в инверторах с синусоидальной формой напряжения, способных выдержать нагрузку в несколько киловатт. Частичное решение проблемы было найдено. Производители предложили преобразователи с квази — синусом. Такая форма представляет собой синусоиду, состоящую из множества небольших ступенек.

Естественная и искусственная синусоида

Рисунок 1. Схема питания преобразователя.

Синусоидальная форма напряжения, вырабатываемая промышленными генераторами, создается вращением полюсов магнитного поля. Работа электродвигателей основана на создании электроэнергией вращающегося магнитного поля для воздействия на ротор. При форме напряжения, отличающейся от синусоиды, вращение ротора будет происходить неравномерно, с ускорением или замедлением, что отразится на техническом состоянии двигателя и рабочей части.

Использование напряжения искаженной формы пока не прошло достаточных испытаний на практике, поэтому использовать его для питания дорогостоящего оборудования без гарантий производителя нежелательно. Большинство ИБП предназначено для поддержания основных жизненно необходимых функций.

Сетевое напряжение не всегда имеет идеальную форму. Повышающие и понижающие трансформаторные станции, различные виды потребляющего оборудования создают определенные изменения в форму сетевого напряжения. Преобладающее использование индуктивных нагрузок без компенсационных конденсаторных установок создает в сети определенный сдвиг фаз, влияющий на форму синусоиды. Массовое подключение импульсных блоков питания также вносит свою долю искажений, несмотря на наличие фильтров.

Рисунок 2. Установка на выходе фильтра.

Получить чистый синус при использовании радиоэлектронных компонентов довольно сложно. Решение вроде бы лежит на поверхности. Прямоугольный импульс в упрощенном представлении состоит из гармонического ряда синусоид, первая из которых соответствует частоте импульсов. Требуется всего лишь установить на выходе соответствующий фильтр.

Эффективность эксплуатации такого устройства довольно низкая. Значительная часть энергии задержится на элементах фильтра и преобразуется в тепло. Вес и габаритные размеры преобразователя значительно возрастут. Выделить и использовать отфильтрованную энергию для зарядки также довольно сложно. Схема значительно усложнится, возрастет ее стоимость, снизится надежность.

Большинство экспериментаторов сходится во мнении, что модифицированная синусоида вполне приемлема для большинства бытовых и промышленных устройств, приборов.

Вернуться к оглавлению

Схема инвертора с чистым синусом

Питание преобразователя (рис.1) может быть от источника со сложной формой напряжения или постоянного тока. При использовании аккумулятора фильтр Ф и диодный мост М можно не устанавливать. Для работы низковольтной части схемы используется мост М1, собранный на маломощных диодах. Изготовить такую схему своими руками довольно сложно. У исполнителя должен быть определенный опыт выполнения подобных работ.

Рисунок 3. Подгонка катушек под напряжением 220 В.

Схема работает следующим образом. Задающий генератор на микросхеме D5 создает синусоидальный сигнал с частотой 50 Гц. Его схема представляет собой модифицированный вариант генератора Вина. Изменения внесены для увеличения надежности схемы и уменьшения потребления энергии. Контроллеры D1, D2 модулируют синусоидальный сигнал. Для модуляции на микросхемах используются различные входы: прямой и инвертирующий. Поэтому одна сторона запускается при положительной волне, вторая — при отрицательной. С контроллеров выходной сигнал поступает на микросхемы D3, D4, формирующие сигнал для управления транзисторами.

Силовая часть собрана по принципу мостовой схемы. Нагрузка подключается в одну диагональ моста, питающее напряжение — в другую. При прохождении одного из полупериодов ток проходит от минусовой клеммы через VT4, обмотку L1, нагрузку, VT1, плюсовую клемму источника питания. При другом полупериоде работают транзисторы VT2, VT3.

Защита по превышению максимально допустимого тока собрана на резисторах R17-19, R22 и диодах VD11,12. При превышении падения напряжения на резисторах в силовой цепи разница поступает на соответствующие контакты D1, D2, и схема прекращает работу.

Вернуться к оглавлению

Дополнительный фильтр

Схема чистой синусоиды.

Имеющийся в наличии преобразователь с прямоугольным импульсным напряжением можно модернизировать, установив на выходе фильтр (рис.2), отсеивающий высшие гармоники. Точный расчет и тщательное изготовление деталей помогут снизить потери на фильтре до минимума.

При изготовлении следует учитывать, что устройство используется для силовых цепей. Все элементы и комплектующие должны выдерживать максимально допустимый ток.

В состав входят два LC контура с резонансной частотой 50 Гц. В одном из них емкость с индуктивностью подключены последовательно, во втором — параллельно. Дроссели для контуров рассчитываются и изготавливаются идентично, конденсаторы также должны иметь одинаковые параметры. Оптимальная емкость для конденсаторов 100 мкФ, допустимое напряжение не меньше 300 В. Электролитические полярные конденсаторы использовать нельзя.

Сердечники для катушек индуктивности должны быть из трансформаторного железа. Для точной подгонки дросселя в железе нужно вырезать зазор. Необходимое количество витков можно рассчитать, используя соотношения для расчета резонансной частоты контура. Для намотки желательно использовать гибкий медный провод. Минимальное сечение должно быть не менее 2,5 мм2.

Общую площадь намотки необходимо сравнить с размерами окна в сердечнике. После сборки необходимо выполнить подгонку катушек, подключив сетевое напряжение 220 В (рис.3). Сопротивление нагрузки представляет собой лампу накаливания, измерительный прибор можно использовать любого типа с необходимым диапазоном. Правильная настройка определяется по максимальному напряжению. В зазор нужно уложить прокладки несколько больше расчетной величины. Затем следует убавлять толщину прокладок, контролируя напряжение по вольтметру. Значение должно увеличиваться при изменении толщины зазора, затем снижаться. Зазор при максимальном напряжении является самым оптимальным вариантом. При наладке необходимо стягивать железо сердечника до плотного контакта с прокладочным материалом. После подгонки следует собрать и подключить фильтр.

При наличии осциллографа можно проверить форму напряжения до и после фильтра. При наличии всех необходимых деталей и определенного опыта устройство вполне доступно для изготовления своими руками.

expertsvarki.ru


Смотрите также