Ступени двигателя


Первая ступень, двигатель, топливо, направления развития

При запуске орбитального тела скорость ракеты-носителя увеличивается от нуля до первой космической, что при скорости истечения w = 2500 м/сек соответствует изменению отношения скорости движения к скорости истечения от нуля примерно до трех. Отсюда следует, что топлива, дающие большие скорости истечения (таким топливом и является водород, у которого w = 4000 м/сек), рациональнее всего применять на верхних ступенях, работающих при высоких скоростях полета.

Первая же ступень большую часть времени работает при скоростях полета значительно меньших скорости истечения, и повышать их невыгодно из-за роста перегрузок и сопротивления атмосферы. Заметим, что применение водорода на верхних ступенях существенно снижает потребную тягу первой ступени. Так, при проектировании ракетной системы «Сатурн» было подсчитано, что использование для двигателей второй ступени не водорода, а керосина потребовало бы увеличения тяги первой ступени на 70%. Если же керосин применить также и на третьей ступени, то тягу двигателей первой ступени пришлось бы утроить.

Есть еще одна причина, препятствующая применению водорода на первой ступени. Дело в том, что водород как горючее обладает существенным недостатком — он имеет низкий по сравнению с другими горючими удельный вес. Поэтому для хранения водорода на борту ракеты требуются очень большие емкости. Происходит утяжеление конструкции за счет баков. По этой причине водород очень долго вообще не рассматривался как топливо для двигателей. Для первой ступени утяжеление может быть настолько существенным, что прирост конечной скорости ракеты за счет применения водорода будет совершенно незначительным из-за уменьшения отношения масс (см. формулу Циолковского). Другое дело на верхних ступенях, где требуются значительно меньшие запасы горючего. Увеличение объема и веса баков этих ступеней при использовании водорода не скажется сколько-нибудь заметным образом на отношении масс, а значит, увеличит прирост скорости ракеты.Продолжение http://is2006.livejournal.com/562363.html

Дальнейшее развитие ЖРД-строения связано с освоением новых топлив, таких, например, как сжиженный природный газ в качестве горючего. В частности, исследования, проводимые российскими и французскими специалистами по проекту "Волга", направлены на изучение и разработку основ конструирования ЖРД, в которых будет использована пара компонентов топлива - жидкий кислород и сжиженный метан. Более высокий удельный импульс тяги, создаваемый этой парой, а также меньшая стоимость и неограниченные запасы метана - привлекательный конкурентный фактор, стимулирующий исследования в новом направлении.

НПО "Энергомаш" в течение ряда лет ведет научно-исследовательские и опытно-конструкторские разработки по созданию так называемого трехкомпонентного двигателя. Термодинамические расчеты показывают, что если к традиционной паре компонентов топлива - жидкий кислород и керосин - добавить 3-5% (по массе) водорода, то можно получить до 20% прироста удельного импульса тяги в пустоте. Это открывает широкие возможности для новых систем выведения, таких как многоразовая авиационно-космическая система или ракетные носители, в которых один трехкомпонентный двигатель способен работать на режимах и первой, и второй ступеней. В первом режиме используются три компонента топлива - кислород, керосин и водород, а во втором - только кислород и водород.

На разработанном в НПО "Энергомаш" экспериментальном трехкомпонентном двигателе впервые при огневых испытаниях продемонстрирована возможность сжигания трех компонентов в одной камере сгорания с переходом в течение пуска на работу на двух компонентах - кислород с водородом - в той же камере. При этом достигнуты высокая устойчивость рабочего процесса и полнота сгорания топлива, а также отработаны натурные элементы смесеобразования камеры сгорания и газогенераторов. Есть надежда, что в ближайшие пять-шесть лет такой двигатель будет построен.Продолжение http://vivovoco.rsl.ru/VV/JOURNAL/VRAN/2004/04_06/ROCKET.HTM

— А пока полетаем на ЖРД?

— Конечно, и мы четко видим перспективы дальнейшего развития этих двигателей. Есть задачи тактические, долгосрочные, тут предела нет: внедрение новых, более жаростойких покрытий, новых композитных материалов, уменьшение массы двигателей, повышение их надежности, упрощение схемы управления. Можно внедрить ряд элементов для более тщательного контроля за износом деталей и других процессов, происходящих в двигателе. Есть задачи стратегические: к примеру, освоение в качестве горючего сжиженного метана и ацетилена вместе с аммиаком или трехкомпонентного топлива. НПО «Энергомаш» занимается разработкой трехкомпонентного двигателя. Такой ЖРД мог бы применяться в качестве двигателя и первой, и второй ступени. На первой ступени он использует хорошо освоенные компоненты: кислород, жидкий керосин, а если добавить еще около пяти процентов водорода, то значительно увеличится удельный импульс — одна из главных энергетических характеристик двигателя, а это значит, что можно отправить в космос больше полезного груза. На первой ступени вырабатывается весь керосин с добавкой водорода, а на второй тот же самый двигатель переходит от работы на трехкомпонентном топливе на двухкомпонентное — водород и кислород.

Мы уже создали экспериментальный двигатель, правда, небольшой размерности и тягой всего около 7 тонн, провели 44 испытания, сделали натурные смесительные элементы в форсунки, в газогенераторе, в камере сгорания и выяснили, что можно сначала работать на трех компонентах, а потом плавно переходить на два. Все получается, достигается высокая полнота сгорания, но чтобы идти дальше, нужен более крупный образец, нужно дорабатывать стенды, чтобы запускать в камеру сгорания компоненты, которые мы собираемся применять в настоящем двигателе: жидкие водород и кислород, а также керосин. Думаю, это очень перспективное направление и большой шаг вперед. И надеюсь кое-что успеть сделать при жизни.Продолжение http://is2006.livejournal.com/544389.html

На столе генерального директора, доктора технических наук Бориса Каторгина уже лежат чертежи первого в мире трехкомпонентного (кислород, водород, керосин) ЖРД. Пока его назвали РД-701. Масса двигателя составит 1,8 т, а максимальную тягу он разовьет 200 т/с. Работать будет в двух режимах, потребляя после старта 6% водорода, 12,6% керосина и 81,4% кислорода, а при дальнейшем разгоне — вообще без керосина. Определено уже и применение нового двигателя — космические челноки, взлетающие с самолетов типа «Мрии».Продолжение http://is2006.livejournal.com/671236.htmlРешил маленькие кусочки информации слить в одно место, для удобства...

is2006.livejournal.com

3.1.1. Определение числа пусковых ступеней асинхронных двигателей с фазным ротором

Следует задаться предварительным значением вращающего момента переключения М2ПР в соответствии с условиями (23) или (24) и значением пускового моментаМ1 в соответствии с условием (22) (значение вращающего моментаМ1не является предварительным и входе дальнейших расчетов не должно уточняться).

Необходимо определить предварительно

. (28)

На любой ступени пуска отношение значение скольжения, соответствующее вращающему моменту М1, к критическому скольжению той же ступени (см. рис. 3) одинаково и равно

(29)

Необходимо определить значение по выбранному.

Связь между предварительными значениями коэффициентов иопределяется равенством

(30)

Далее необходимо рассчитать значение критического скольжения

. (31)

Номинальное скольжение SНв формуле (31) безразмерно.

Предварительное число пусковых ступеней mПРравно

. (32)

Так же как и для двигателей постоянного тока необходимо рассмотреть два значения числа ступеней, полученных в результате округления mПРв меньшуюm1и большуюm2сторону. Целым значениям числа ступеней соответствуют два уточненных значения коэффициентов нарастания сопротивлений

(33)

и

, (34)

а также два уточненных значения и

(35)

и

. (36)

Полученным значениям исоответствуют два значения моментов переключения

(37)

и

. (38)

Следует выбрать тот вариант, который обеспечивает выполнение условия . Если же этим условиям удовлетворяют оба варианта предпочтение следует отдать меньшему числу ступеней. Для дальнейших расчетов следует использовать выбранные значенияm,М2,  без дополнительных индексов.

3.1.2. Расчет сопротивлений пусковых резисторов

В электроприводах с асинхронными двигателями добавочные токоограничивающие пусковые резисторы включаются в три фазы обмотки ротора. Их значения в каждой фазе определяются по формуле

, (39)

где r2- собственное активное сопротивление одной фазы обмотки ротора асинхронного двигателя

. (40)

Все величины входящие в правую часть формулы (40) определяются из справочника (см. табл. П.1).

3.2. Построение механических характеристик в пусковом режиме

Число механических характеристик, участвующих в процессе пуска двигателя равно m+1: одна естественная характеристика иmискусственных. При построении механических характеристик асинхронного двигателя в режиме пуска рекомендуется воспользоваться формулой Клосса

, (41)

где критическое скольжение i-ой ступени определяется из выражения

. (42)

суммарное сопротивлениеi- ой ступени пуска

. (43)

Частота вращения, соответствующая скольжению Sравна

, (44)

где синхронная частота вращения в размерности системы СИ определяется по справочным данным

. (45)

При построении механических характеристик значения скольжения Sв формулах (41) и (44) следует задавать в пределах от 0 до 1.

studfiles.net

Со ступеньки на ступеньку

Желательно смотреть с разрешением 1280 Х 800

"Техника-молодежи", 1960, №1, с. 18-23

СО СТУПЕНЬКИ НА СТУПЕНЬКУ

И. МЕРКУЛОВ

Рис. А. ПЕТРОВА

АПУСК произведен с помощью многоступенчатой ракеты», — эти слова уже много раз читали мы в сообщениях о запуске первых в мире искусственных спутников Земли, о создании спутника Солнца, о запуске космических ракет к Луне. Всего одна короткая фраза, а сколько вдохновенного труда ученых, инженеров и рабочих нашей Родины скрывается за этими шестью словами!

Что же представляют собой современные многоступенчатые ракеты? Почему возникла необходимость применять для космических полетов ракеты, состоящие из большого количества ступеней? Какой технический эффект дает увеличение числа ступеней ракеты?

Попробуем кратко ответить на эти вопросы. Для осуществления полетов в космос требуются громадные запасы топлива. Они столь велики, что их невозможно поместить в баках одноступенчатой ракеты. При современном уровне инженерной науки можно построить ракету, в которой на долю топлива приходилось бы до 80— 90% ее общего веса. А для полетов на другие планеты потребные запасы топлива должны в сотни и даже в тысячи раз превосходить собственный вес ракеты и находящегося в ней полезного груза. При тех запасах топлива, которые удается поместить в баках одноступенчатой ракеты, можно достигнуть скорости полета до 3-4 км/сек. Усовершенствование ракетных двигателей, изыскание наивыгоднейших сортов топлива, применение более качественных конструкционных материалов и дальнейшее усовершенствование конструкции ракет, безусловно, позволят несколько увеличить скорость одноступенчатых ракет. Но до космических скоростей все-таки будет еще очень далеко.

Чтобы достигнуть космических скоростей, К. Э. Циолковский предложил применять многоступенчатые ракеты. Сам ученый образно назвал их «ракетными поездами». По мысли Циолковского ракетный поезд, или, как мы говорим сейчас, многоступенчатая ракета, должен состоять из нескольких ракет, укрепленных одна на другой. Нижняя ракета обычно является самой большой. Она несет на себе весь «поезд». Последующие ступени делаются все меньших и меньших размеров.

При взлете с поверхности Земли работают двигатели нижней ракеты. Они действуют до тех пор, пока не израсходуют все топливо, находящееся в ее баках. Когда баки первой ступени окажутся пустыми, она отделяется от верхних ракет, чтобы не обременять мертвым грузом их дальнейший полет. Отделившаяся первая ступень с пустыми баками некоторое время по инерции продолжает полет вверх, а затем падает на землю. Для сохранения первой ступени ради повторного использования можно обеспечить ее спуск на парашюте.

После отделения первой ступени включаются в работу двигатели второй ступени. Они начинают действовать тогда, когда ракета уже поднялась на некоторую высоту и имеет значительную скорость полета. Двигатели второй ступени разгоняют ракету дальше, увеличивая ее скорость еще на несколько километров в секунду. После израсходования всего топлива, содержащегося в баках второй ступени, сбрасывается и она. Дальнейший полет составной ракеты обеспечивает работа двигателей третьей ступени. Потом сбрасывается и третья ступень. Очередь подходит к двигателям четвертой ступени. Выполнив возложенную на них работу, они повышают скорость ракеты еще на некоторую величину, а затем уступают место двигателям пятой ступени. После сброса пятой ступени начинают работать двигатели шестой.

Расположенные по сторонам этого и следующих разворотов части рисунка, изображающего космическую ракету, могут составить разборную модель ее. Для этого нужно сложить страницы вдоль, как показано на схеме.

Так, каждая ступень ракеты последовательно увеличивает скорость полета, а последняя, верхняя ступень достигает в безвоздушном пространстве необходимой космической скорости. Если ставится задача осуществить посадку на другую планету и возвратиться обратно на Землю, то вылетевшая в космос ракета, в свою очередь, должна состоять из нескольких ступеней, последовательно включаемых при спуске на планету и при взлете с нее.

Интересно посмотреть, какой эффект дает применение на ракетах большого количества ступеней.

Возьмем одноступенчатую ракету со стартовым весом 500 т. Предположим, что этот вес распределяется следующим образом: полезный груз — 1 т, сухой вес ступени — 99,8 т и топливо — 399,2 т. Следовательно, конструктивное совершенство этой ракеты таково, что вес топлива в 4 раза превосходит сухой вес ступени, то есть вес самой ракеты без топлива и полезного груза. Число Циолковского, то есть отношение стартового веса ракеты к ее весу после израсходования всего топлива, для данной ракеты будет равно 4,96. Это число и величина скорости истечения газа из сопла двигателя определяют скорость, которую может достигнуть ракета. Попробуем теперь заменить одноступенчатую ракету двухступенчатой. Снова возьмем полезный груз в 1 т и будем считать, что конструктивное совершенство ступеней и скорость истечения газа останутся такими же, как и в одноступенчатой ракете. Тогда, как показывают расчеты, для достижения такой же скорости полета, как и в первом случае, потребуется двухступенчатая ракета с полным весом всего в 10,32 т, то есть почти в 50 раз легче, чем одноступенчатая. Сухой вес двухступенчатой ракеты составит 1,86 т, а вес топлива, помещенного в обеих ступенях, — 7,46 т. Как видим, в рассматриваемом примере замена одноступенчатой ракеты двухступенчатой позволяет в 54 раза сократить расход металла и топлива при осуществлении запуска одинакового полезного груза.

Возьмем для примера космическую ракету с полезным грузом в 1 т. Пусть эта ракета должна пробить плотные слои атмосферы и, вылетев в безвоздушное пространство, развить вторую космическую скорость — 11,2 км/сек. На наших диаграммах показано изменение веса такой космической ракеты в зависимости от весовой доли топлива в каждой ступени и от числа ступеней (см. стр. 22).

Нетрудно подсчитать, что если построить ракету, двигатели которой отбрасывают газы со скоростью 2 400 м/сек и в каждой из ступеней на долю топлива приходится лишь 75% веса, то даже при устройстве шести ступеней взлетный вес ракеты окажется очень большим — почти 5,5 тыс. т. Улучшая конструктивную характеристику ступеней ракеты, можно добиться существенного снижения стартового веса. Так, например, если на долю топлива приходится 90% веса ступени, то шестиступенчатая ракета может весить 400 т.

Исключительно большой эффект дает использование в ракетах высококалорийного топлива и повышение эффективности их двигателей. Если этим путем увеличить скорость истечения газа из сопла двигателя всего на 300 м/сек, доведя ее до величины, указанной на графике, — 2 700 м/сек, то стартовый вес ракеты можно будет сократить в несколько раз. Шестиступенчатая ракета, в которой вес топлива лишь в 3 раза превышает вес конструкции ступени, будет иметь стартовый вес примерно 1,5 тыс. т. А уменьшив вес конструкции до 10% от полного веса каждой ступени, мы можем снизить стартовый вес ракеты с тем же числом ступеней до 200 т.

Если увеличить скорость истечения газа еще на 300 м/сек, то есть принять ее равной 3 тыс. м/сек, то произойдет еще большее сокращение веса. Например, шестиступенчатая ракета при весовой доле топлива, равной 75%, будет иметь стартовый вес 600 т. Повысив весовую долю топлива до 90%, можно создать космическую ракету всего с двумя ступенями. Вес ее окажется около 850 т. Увеличив в 2 раза число ступеней, можно сократить вес ракеты до 140 т. А при шести ступенях взлетный вес снизится до 116 т.

Вот как влияет число ступеней, их конструктивное совершенство и скорость истечения газа на вес ракеты.

Почему же с ростом числа ступеней уменьшаются потребные запасы топлива, а вместе с ними и полный вес ракеты? Это происходит оттого, что, чем больше число ступеней, тем чаще будут отбрасываться пустые баки, ракета будет быстрее освобождаться от бесполезного груза. При этом с ростом числа ступеней сначала взлетный вес ракеты уменьшается очень сильно, а затем эффект от увеличения числа ступеней становится менее значительным. Можно также отметить, как это хорошо видно на приведенных графиках, что для ракет с относительно плохой конструктивной характеристикой увеличение числа ступеней дает больший эффект, чем для ракет с высоким процентным содержанием топлива в каждой ступени. Это вполне понятно. Если корпуса каждой ступени очень тяжелые, то их надо как можно быстрее сбрасывать. А если корпус имеет очень малый вес, то он не слишком обременяет ракеты и частые сбросы пустых корпусов уже не дают такого большого эффекта.

Расчет космической ракеты с разным числом ступеней, предназначенной для подъеме полезного груза в 1 т (вверху) или для доставки его на Луну (внизу). График позволяет, задавшись конструктивным совершенством ракеты (отношение веса горючего к общему весу), выбрать число ступеней и определить общий вес ракеты. Скорость истечения газов принята равной 2 700 м/сек.

При полете ракет на другие планеты потребный расход топлива не ограничивается тем количеством, которое необходимо для разгона при взлете с Земли. Подлетая к другой планете, космический корабль попадает в сферу ее притяжения и начинает приближаться к ее поверхности с увеличивающейся скоростью. Если планета лишена атмосферы, способной погасить хотя бы часть скорости, то ракета при падении на поверхность планеты разовьет такую же скорость, какая необходима для отлета с этой планеты, то есть вторую космическую скорость. Величина второй космической скорости, как известно, различна для каждой планеты. Например, для Марса она равна 5,1 км/сек, для Венеры — 10,4 км/сек, для Луны — 2,4 км/сек. В том случае, когда ракета подлетит к сфере притяжения планеты, обладая некоторой скоростью относительно последней, скорость падения ракеты окажется еще большей. Например, вторая советская космическая ракета достигла поверхности Луны со скоростью 3,3 км/сек. Если ставится задача обеспечить плавную посадку ракеты на поверхность Луны, то на борту ракеты надо иметь дополнительные запасы топлива. Чтобы погасить какую-либо скорость, требуется израсходовать столько же топлива, сколько необходимо для того, чтобы ракета развила такую же скорость. Следовательно, космическая ракета, предназначенная для безопасной доставки на лунную поверхность какого-нибудь груза, должна нести значительные запасы топлива. Одноступенчатая ракета с полезным грузом в 1 т должна иметь вес 3-4,5 т в зависимости от ее конструктивного совершенства.

Раньше мы показали, какой громадный вес должны иметь ракеты, чтобы унести в космическое пространство груз в 1 т. А теперь видим, что из этого груза только третья или даже четвертая доля может быть безопасно опущена на поверхность Луны. Остальное должно приходиться на топливо, баки для его хранения, двигатель и систему управления.

Какой же в итоге должен быть стартовый вес космической ракеты, предназначенной для безопасной доставки на поверхность Луны научной аппаратуры или иного полезного груза весом в 1 т?

Для того чтобы дать представление о кораблях такого типа, на нашем рисунке условно изображена в разрезе пятиступенчатая ракета, предназначенная для доставки на поверхность Луны контейнера с научной аппаратурой весом в 1 т. В основу расчета этой ракеты были положены технические данные, приводимые в большом количестве книг (например, в книгах В. Феодосьева и Г. Синярева «Введение в ракетную технику» и Саттона «Ракетные двигатели»).

Были взяты ракетные двигатели, работающие на жидком топливе. Для подачи топлива в камеры сгорания предусмотрены турбонасосные агрегаты, приводимые в действие продуктами разложения перекиси водорода. Средняя скорость истечения газа для двигателей первой ступени принята равной 2 400 м/сек. Двигатели верхних ступеней работают в сильно разреженных слоях атмосферы и в безвоздушном пространстве, поэтому их эффективность оказывается несколько большей и для них скорость истечения газа принята равной 2 700 м/сек. Для конструктивных характеристик ступеней были приняты такие значения, которые встречаются в ракетах, описанных в технической литературе.

При выбранных исходных данных получились следующие весовые характеристики космической ракеты: взлетный вес— 3 348 т, в том числе 2 892 т — топливо, 455 т — конструкция и 1 т — полезный груз. Вес по отдельным ступеням распределился так: первая ступень — 2 760 т, вторая — 495 т, третья — 75,5 т, четвертая — 13,78 т, пятая — 2,72 т. Высота ракеты достигла 60 м, диаметр нижней ступени — 10 м.

На первой ступени поставлено 19 двигателей с тягой по 350 т каждый. На второй — 3 таких же двигателя, на третьей — 3 двигателя с тягой по 60 т. На четвертой — один с тягой 35 т и на последней ступени — двигатель с тягой 10 т.

При взлете с поверхности Земли двигатели первой ступени разгоняют ракету до скорости 2 км/сек. После сброса пустого корпуса первой ступени включаются двигатели следующих трех ступеней, и ракета приобретает вторую космическую скорость.

Далее ракета по инерции летит к Луне. Приблизившись к ее поверхности, ракета поворачивается соплом вниз. Включается двигатель пятой ступени. Он гасит скорость падения, и ракета плавно опускается на лунную поверхность.

Приведенный рисунок и относящиеся к нему расчеты, конечно, не представляют собой реального проекта лунной ракеты. Они приведены лишь для того, чтобы дать первое представление о масштабах космических многоступенчатых ракет. Совершенно ясно, что конструкция ракеты, ее размеры и вес зависят от уровня развития науки и техники, от материалов, которыми располагают конструкторы, от применяемого топлива и качества ракетных двигателей, от мастерства ее строителей. Создание космических ракет представляет безграничные просторы для творчества ученых, инженеров, технологов. В этой области еще предстоит сделать много открытий и изобретений. И с каждым новым достижением будут меняться характеристики ракет.

Как современные воздушные корабли типа «ИЛ-18», «ТУ-104», «ТУ-114» не похожи на аэропланы, летавшие в начале этого века, так и космические ракеты будут непрерывно совершенствоваться. Со временем для полетов в космос в ракетных двигателях будет использоваться не только энергия химических реакций, но и другие источники энергии, например энергия ядерных процессов. С изменением типов ракетных двигателей изменится и конструкция самих ракет. Но замечательной идее К. Э. Циолковского о создании «ракетных поездов» всегда будет принадлежать почетная роль в исследовании бескрайных просторов космоса.

IV

testpilot.ru

Устройство принудительного отделения маршевой ступени от стартового двигателя

Изобретение относится к области вооружений и может найти применение в ракетных комплексах ближнего радиуса действия. В устройстве между двигателем и маршевой ступенью в полости установлен поддон, дно которого контактирует с задним торцом маршевой ступени. Стенка поддона, обращенная в сторону двигателя, снабжена бойком, напротив которого в подпружиненном со стороны двигателя пружиной корпусе расположен капсюль ударного действия и пороховой заряд. Передняя часть двигателя снабжена стаканом, размещенным внутри поддона, с образованием зазора между его наружной поверхностью и внутренней поверхностью поддона. Корпус с капсюлем, пороховым зарядом и боевая пружина расположены внутри стакана двигателя и зафиксированы в сжатом состоянии боевой пружины шариковым замком. В зазоре на наружную поверхность стакана над шариком установлена подпружиненная со стороны маршевой ступени втулка, снабженная со стороны двигателя поршнем и стопором. Газовод соединяет полость между поршнем и дном двигателя с камерой сгорания двигателя. Таким выполнением устройства обеспечивается повышение скорости отделения маршевой ступени от стартового двигателя. 1 з. п. ф-лы, 3 ил.

 

Предложенное изобретение относится к области вооружений и может найти применение в ракетных комплексах ближнего радиуса действия.

Известно устройство принудительного отделения маршевой ступени от стартового двигателя [1], принятое авторами за прототип, содержащее установленные на внутренней поверхности полости, образованные торцами стартового двигателя и маршевой ступени, поршень и газовод, позволяющее отделять маршевую ступень от стартового двигателя после прекращения его работы за счет разности сил аэродинамического сопротивления, действующих на разнокалиберные ступени снаряда. Известная конструкция устройства позволяет обеспечить надежную стыковку маршевой ступени и стартового двигателя большего калибра в процессе хранения и эксплуатации и отделение маршевой ступени после прекращения работы двигателя.

Однако в процессе разделения после того, как поршень обеспечивает разъединение маршевой ступени и стартового двигателя и стартовый двигатель прекращает работу, скорость маршевой ступени начинает уменьшаться и двигатель отделяется от нее под действием силы аэродинамического сопротивления. Скорость отделения двигателя ограничена соотношением калибров двигателя и маршевой ступени и не может быть существенно увеличена без увеличения калибра двигателя и стартовой массы снаряда, что в большинстве случаев недопустимо. При этом время взаимодействия маршевой ступени и двигателя в процессе разделения определяет импульс боковых сил и возмущения, сообщаемых маршевой ступени отделяющимся двигателем. Для неуправляемых снарядов возмущения, возникающие из-за низкой скорости разделения, могут привести к увеличению рассеивания, а для управляемых снарядов с командной системой управления - к выходу маршевой ступени из поля зрения системы управления.

Задачей предлагаемого изобретения является повышение скорости отделения маршевой ступени от стартового двигателя и исключение влияния соотношения калибров маршевой ступени и стартового двигателя на величину скорости отделения.

Поставленная задача достигается тем, что устройство принудительного отделения маршевой ступени от стартового двигателя, содержащее установленные на внутренней поверхности полости, образованной торцами стартового двигателя и маршевой ступени, поршень и газовод, в отличие от прототипа, снабжено поддоном, стенка которого со стороны стартового двигателя снабжена бойком и стаканом, размещенным внутри полости поддона с образованием зазора между его наружной поверхностью и внутренней поверхностью поддона, при этом внутри стакана в подпружиненном со стороны двигателя посредством боевой пружины корпусе расположены капсюль ударного действия и пороховой заряд, положение корпуса, капсюля и порохового заряда зафиксированы в сжатом состоянии боевой пружины замком в виде шарика, установленным в радиальном отверстии стакана и проточке, выполненной в корпусе, в зазоре между наружной поверхностью стакана и внутренней поверхностью поддона установлена подпружиненная со стороны маршевой ступени втулка, снабженная со стороны двигателя поршнем и стопором, а образованная между поршнем и дном двигателя полость соединена газоводом с камерой сгорания двигателя.

Стопор может быть выполнен в виде разрывной тяги, один конец которой жестко закреплен в поршне втулки, а второй - шарнирно на двигателе. В месте размещения поршня со стороны втулки двигателя во внутренней стенке поддона и наружной стенке стакана двигателя выполнены кольцевые проточки шириной не менее хода втулки до дна поддона.

Предлагаемая конструкция позволит:

- обеспечить последовательный разгон маршевой ступени до высокой скорости сначала стартовым двигателем, а затем продуктами сгорания заряда, размещенного в устройстве принудительного отделения маршевой ступени снаряда от стартового двигателя. За счет продуктов сгорания заряда стартового двигателя обеспечивается срабатывание стопора устройства с последующим перемещением втулки с поршнем в направлении, противоположном направлению движения маршевой ступени, за счет пружины в момент спада давления и тяги стартового двигателя. При этом происходит срабатывание шарикового замка и при перемещении корпуса с зарядом и капсюлем под действием боевой пружины происходит накалывание капсюля о боек и срабатывание устройства. При этом заряд сгорает в замкнутом объеме и создает высокое давление, уровень которого не зависит от уровня давления в камере сгорания стартового двигателя, что позволит повысить скорость отделения маршевой ступени от стартового двигателя;

- обеспечить уменьшение длины конструкции за счет радиального размещения боевой пружины и пружины, обеспечивающей фиксацию боевой пружины во взведенном состоянии;

- обеспечить надежное срабатывание капсюля ударного действия за счет повышения энергии удара корпуса с пороховым зарядом по неподвижному бойку, так как боевая пружина разгоняет корпус с зарядом, масса которого больше массы бойка. При этом корпус с зарядом служит инерционным предохранителем, дополнительно сжимая боевую пружину при действии осевой перегрузки в процессе работы двигателя;

- обеспечить отбрасывание стартового двигателя в направлении, противоположном направлению движения маршевой ступени за счет высокого уровня давления в полости устройства. При этом для носимых снарядов, выстреливаемых из пусковой трубы, может быть обеспечен вылет отработавшего стартового двигателя назад, в опасную зону, пребывание в которой людей при стрельбе заведомо недопустимо, что исключит возможность поражения стрелка и расположенных перед его позицией людей отработавшим стартовым двигателем;

- обеспечить высокую надежность срабатывания устройства за счет шарнирного крепления стопора подвижной втулки, исключающего ограничение перемещения втулки с поршнем при спаде давления в камере сгорания стартового двигателя. Наличие кольцевой проточки в зоне размещения подвижной втулки исключает заклинивание втулки при перемещении за счет того, что осаждающиеся на кромке поршня конденсированные частицы продуктов сгорания топлива стартового двигателя сталкиваются в проточку и не препятствуют поступательному перемещению втулки и расфиксации шарикового замка.

Сущность изобретения поясняется схемой устройства принудительного отделения маршевой ступени снаряда от стартового двигателя, представленной на фиг.1, схемой конструкции стопора, представленной на фиг.2, и схемой конструкции шарикового замка, представленной на фиг.3.

Предлагаемое устройство (фиг.1) состоит из маршевой ступени 1, поддона 4, дно которого контактирует с задним торцом 2 маршевой ступени 1. Поддон 4 со стороны двигателя 3 снабжен бойком 5. Напротив бойка расположен подпружиненный боевой пружиной 6 корпус 7, в котором напротив бойка расположен капсюль ударного действия 8, а внутри помещен пороховой заряд 9. Корпус 7 с капсюлем 8 и пороховым зарядом 9 расположен внутри стакана 10, которым снабжена передняя часть двигателя 3. Стакан 10, в свою очередь, размещен внутри поддона 4. Между наружной поверхностью стакана 10 и внутренней поверхностью поддона образован зазор 11. Корпус 7 с капсюлем 8 и пороховым зарядом 9 зафиксирован при сжатом состоянии боевой пружины 6 замком в виде шарика 12, установленного в радиальное отверстие 13 стакана двигателя и проточку 14 в корпусе 7. В зазоре 11 на наружную поверхность стакана 10 над шариком 12 установлена втулка 15, подпружиненная со стороны маршевой ступени пружиной 16. Со стороны двигателя втулка 15 снабжена поршнем 17 и стопором 18. Полость между поршнем втулки и дном двигателя соединена с камерой сгорания двигателя 19 газоводом 20. Стопор 18 выполнен в виде разрывной тяги 21, один конец 22 которой жестко закреплен в поршне втулки, а второй 23 - шарнирно на двигателе. В месте размещения поршня со стороны втулки во внутренней стенке поддона и наружной стенке стакана 10 двигателя выполнены кольцевые проточки 24 шириной S не менее хода L втулки до дна поддона.

Работа предлагаемой конструкции осуществляется следующим образом. При срабатывании стартового двигателя 3 продукты сгорания его топлива по газоводу 20 поступают в зазор 11 поддона 4. Под действием давления пороховых газов на поршень 17 происходит разрыв тяги 21 стопора 18 и втулка 15 сжимает пружину 16 до упора в дно поддона 4. После разрыва тяга 21 поворачивается на шарнире 23 и не препятствует перемещению втулки с поршнем в направлении дна двигателя. Втулка удерживается в подпружиненном состоянии давлением пороховых газов на поршень и не позволяет шарику 12 выйти из проточки 14 корпуса 7. Корпус 7 с капсюлем 8 и пороховым зарядом 9 в процессе работы двигателя остаются зафиксированными шариковым замком. В конце работы двигателя в момент спада давления в его камере сгорания происходит спад давления в полости поддона 4 и втулка 15 под действием пружины 16 перемещается к дну двигателя, освобождая радиальное отверстие 13, выполненное в стакане 10. Проточка 14 корпуса 7 передает давление боевой пружины 6 на шарик и он под давлением выскакивает через радиальное отверстие 13 в зазор между стаканом двигателя и стенкой поддона 4, освобождая корпус 7. Боевая пружина 6 разгоняет корпус с пороховым зарядом 9 и капсюлем 8 в направлении бойка 5. При накалывании капсюля происходит воспламенение заряда 9 и продукты его сгорания, создавая давление в полости поддона 4, обеспечивают отделение маршевой ступени 1 от отработавшего стартового двигателя 3 с заданной скоростью.

Масса порохового заряда определяется расчетом исходя из требуемой скорости отделения маршевой ступени от стартового двигателя, усилия сжатия пружин - исходя из уровня давления в камере сгорания стартового двигателя и потребной энергии накалывания капсюля ударного действия. Габариты элементов конструкции устройства принудительного отделения маршевой ступени снаряда от стартового двигателя выбираются в каждом конкретном случае исходя из массогабаритных ограничений на конструкцию снаряда и уточняются в процессе отработки.

В предлагаемом техническом решении обеспечивается повышение скорости отделения маршевой ступени снаряда от стартового двигателя при минимальных габаритах конструкции, исключается влияние давления в камере сгорания стартового двигателя влияние соотношения калибров маршевой ступени и стартового двигателя на величину скорости отделения, а также обеспечивается высокая надежность снаряда в целом и безопасность стрелка при стрельбе носимыми снарядами.

Источник информации

1. Патент РФ № 2105949, кл. F 42 В 15/00, 1998 г.

1. Устройство принудительного отделения маршевой ступени снаряда от стартового двигателя, содержащее установленные на внутренней поверхности полости, образованной торцами стартового двигателя и маршевой ступени, поршень и газовод, отличающееся тем, что оно снабжено поддоном, стенка которого со стороны стартового двигателя снабжена бойком и стаканом, размещенным внутри полости поддона с образованием зазора между его наружной поверхностью и внутренней поверхностью поддона, при этом внутри стакана в подпружиненном со стороны двигателя посредством боевой пружины корпусе расположены капсуль ударного действия и пороховой заряд, положения корпуса, капсуля и порохового заряда зафиксированы в сжатом состоянии боевой пружины замком в виде шарика, установленным в радиальном отверстии стакана и проточке, выполненной в корпусе, в зазоре между наружной поверхностью стакана и внутренней поверхностью поддона установлена подпружиненная со стороны маршевой ступени втулка, снабженная со стороны двигателя поршнем и стопором, а образованная между поршнем и дном двигателя полость соединена газоводом с камерой сгорания двигателя.

2. Устройство по п.1 отличающееся тем, что стопор выполнен в виде разрывной тяги, один конец которой жестко закреплен в поршне втулки, а второй - шарнирно на двигателе.

www.findpatent.ru


Смотрите также