Четырехцилиндровый свободнопоршневой двигатель. Свободнопоршневой двигатель штельцера


СВОБОДНОПОРШНЕВЫЕ ДВИГАТЕЛИ БИЛА

Машины, работающие по циклу Стерлинга

Большие перспективы применения имеют свободнопоршневые двигатели, изобретенные профессором Билом из университета штата Огайо. Эти двигатели самозапускающиеся, с необычными харак­теристиками, отличающимися от характеристик одноцилиндровых двигателей с кривошипно-шатун - ным механизмом; кроме того, от­дельные варианты двигателей могут быть изготовлены без вся­ких уплотнений для газа. В последнем случае заполнение рабочим телом под давлением и герметизацию двигателей мож­но производить при их изго­товлении, что обеспечит относи­тельно высокую удельную мощ­ность и предотвратит возможное загрязнение движущихся узлов от внешней пыли. В таком ис­полнении двигатели могут быть применимы для тех случаев» когда их обслуживание является проблемой» т. е. в малоразви­тых в техническом отношении странах, в военных целях и для бытовых нужд.

Двигатели Била могут ра­ботать в любом положении — в вертикальном, горизонтальном, наклонном или перевернутом. Их конструкция очень проста: в них нет ни пружин, ни клапа­нов, ни каких-либо других меха­нически действующих узлов.

Рис. 10-1. Основные составные части свободнопоршиевого двигателя Стир­линга (двигатель Била).

/ — вытеснитель; 2 — рабочий поршень; 3 — шток вытеснителя; 4— полость рас­ширения; 5 — кольцевой регенератор; 6 — полость сжатия; 7 — буферная по­лость; Pw — давление в рабочей полости; Pfy ~ давление в буферной полости (пред­полагается постоянным).

Принцип действия. В двигателе Била имеются три основных элемента: тяжелый рабочий поршень, легкий вытеснитель и цилиндр с уплотнениями на обоих концах (рис. 10-1). Как видно из рисунка, шток вытеснителя относительно большого диаметра проходит через рабочий поршень. Шток вытеснителя полый, с открытым торцом, так что внутренняя полость вытеснителя соединена (и фактически является ее частью) с полостью, расположенной ниже рабочего поршня, называемой буферной полостью. К рабочей полости отно­сится часть'цилиндра над рабочим поршнем, подразделяемая на полость сжатия — между рабочим поршнем и вытеснителем и по­л ость расширения — над вытеснителем. Длинная узкая кольцевая щель между цилиндром и вытеснителем выполняет функцию регене­ратора между горячей полостью расширения и холодной полостью сжатия. Для полости расширения предусмотрен нагреватель, а для полости сжатия — холодильник.

Рассмотрим систему, показанную на рис. 10-1, находящуюся вначале в положении 0. Давление во всех полостях одинаковое, а температура везде равна температуре окружающей среды. Пусть теперь полость расширения нагревается. С ростом температуры да­вление рабочего тела в замкнутом рабочем объеме увеличивается от положения 0 до положения 1. Возрастание давления в рабочей полости до определенного значения приведет к перемещению вниз рабочего поршня и вытеснителя. Сила, действующая на рабочий поршень, равна (pw — Рь)(Ас—AR) [17], а сила, действующая на вы­теснитель,— AR (pw—Pb). Ускорение рабочего поршня при дви­жении вниз определяется как

АР = (Pw—Рь) (Ac—AR)/Mp, А ускорение вытеснителя

AD = (Pw—Pb)AR/MD*.

Если отношение MP/MD велико (т. е. 10 : 1) и если отношение AR/AC значительно (т. е. 1 : 4), то AD> аР. Поэтому вытеснитель ускоряется быстрее; это приводит к тому, что рабочее тело вытес­няется из холодной полости сжатия в горячую полость расширения. Этот процесс ускоряется как ростом давления в рабочей полости по сравнению с давлением в буферной полости (принимаемым постоян­ным), так и дальнейшим возрастанием ускорений обоих поршней. В итоге рабочий поршень и вытеснитель соприкасаются (положение 2), и с этого момента начинают двигаться вместе. После соприкосно­вения поршней поток рабочего тела больше не поступает в полость расширения, но поскольку процесс расширения продолжается, да­вление начинает падать. В положении 3 давление Pw все еще больше, чем давление рь поэтому рабочий поршень и вытеснитель продол­жают ускоряться.

Расширение продолжается до точки 4> где давления рабочего тела Pw и буферной полости рь равны. Инерции тяжелого поршня достаточно для продолжения процесса расширения рабочего тела и за точкой равновесия давлений; поэтому давление в рабочей по­лости падает ниже давления в буферной полости рь таким образом, на рабочий поршень и вытеснитель начинают действовать замедля­ющие силы (возникающие из-за разности давлений). Вытеснитель, будучи более легким, первым реагирует на это. Замедляющие силы тормозят движение вытеснителя вниз, что приводит к отделению егоот рабочего поршня, продолжающего двигаться вниз. В этот момент рабочее тело начинает перетекать по регенеративному кольцевому каналу из горячей полости расширения в холодную полость сжатия. Это вызывает резкое падение давления в рабочей полости, и между полостями устанавливается большая разность давлений pb~pw. Вытеснитель быстро устремляется вверх к головке цилиндра (точ­ка 6) и остается в этом положении до тех пор, пока давление в бу­ферной полости будет выше давления в рабочей полости.

В некоторый момент рабочий поршень останавливается и начи­нает подниматься вверх (точка 7) под действием превосходящего давления в буферной полости. Поскольку процесс сжатия все еще продолжается, равенство давлений мгновенно восстанавливается (точка S), а затем давление в рабочей полости будет превышать давление в буферной полости. При таком положении вытеснитель начинает двигаться вниз до соприкосновения с рабочим поршнем в точке 9У и далее цикл вновь повторяется, но без начальной стадии 0-4.

Схема р, V-диаграммы для всей системы показана на рис. 10-1. На практике за один рабочий цикл двигатель не выходит на установившийся режим в отли­чие от описанного выше.

Применение двигателей Била. Двигатель Била может быть источником мощности при соединении колеблющегося ра­бочего поршня с нагрузкой. На рис. 10-2 показан один из вари­антов двигателя Била, работа­ющий как газовый компрессор. Поршень и цилиндр компрес­сора расположены коаксиально относительно рабочего поршня

Объем

Вытеснитель

И цилиндра двигателя. Эгби (Agbi, 1971 г.) проводил системати­ческие исследования двигателя такого типа. Характерный вид перемещений рабочего поршня и вытеснителя, периодическое из­менение давления, а также общая р, V-диаграмма двигателя при­ведены на рис. 10-3.

В другом варианте, показанном на рис. 10-4, двигатель Била может быть сконструирован таким образом, что легкий корпус ци­линдра и легкий вытеснитель сочетаются с очень тяжелым поршнем. Для обеспечения контролируемого движения цилиндра он помещен в направляющей втулке. В такой конструкции колеблются ци­линдр и вытеснитель, а поршень ос­тается неподвижным. Нижний торец цилиндра может быть подсоединен к плунжеру гидравлического насоса, а к верхнему торцу подводится теп­лота от продуктов сгорания топлива или от солнечного концентратора. С такой конструкцией двигателя, ра­ботающего от солнечной энергии, проф. Бил добился очень эффектив­ной работы водяного насоса.

Рис. 10-4. Схема свобод - нопоршневого двигателя Стирлинга, работающего на солнечной энергии, для привода водяного насоса.

J_

О)

У

Ё

С*

CD £

Р it

Рис. 10-3. Характеристики двигателя Стирлинга свобод- нопоршневого типа (Била), работающего как воздушный компрессор (по данным Эгби, 1971 г.).

Рабочий поршень

1 — концентратор солнеч­ных лучей; 2 — полость расширения; 3 — вытесни­тель; 4 — кольцевой реге­нератор; 5 — теплообменник охлаждения змеевикового типа; 6 — полость сжатия; 7 _ рабочий поршень; 8 — направляющая втулка; 9 — Буферная полость; 10 — ци­линдр; 11 — плунжер иасо - са; 12 — створчато-клапан - ный насос.

Другие возможности использования двигателя предусматри­вают либо магнит и генераторную обмотку для получения от си­стемы электроэнергии, либо сдвоенную конструкцию установки, в которой свободнопоршневой двигатель является приводом холо­дильной машины со свободным поршнем, так что простая труба, нагретая на одном конце, становится холодной на другом. Для бытовых и промышленных печей, работающих на жидком топливе или природном газе, зачастую требуются маломощные источники электроэнергии для привода вентиляторов или водяных насосов. При прекращении подачи электроэнергии порой возникает ряд трудностей, несмотря на то, что газ или мазут (дающие 99,9% энергии) пока недефицитны. Поэтому для замены электродвигателей для тэких случаев имеется потребность в приводных системах, работающих от внешнего подвода теплоты. Обычные режимы сжи­гания топлива отвечают требованиям работы таких приводов. Здесь важно отметить, что термодинамический к. п. д. не имеет значения, так как топливо сжигается главным образом для обеспечения нагре­вания. В этом случае начальная стоимость, надежность и способ­ность к самостоятельному запуску являются важными критериями. По-видимому, рассмотренные случаи — идеальные области приме­нения двигателей Била.

Среднее давление цикла определяется формулой 2я 2я Рср-— Г рй(ф—0) = — Г Р-акс(1-в) (4.12) FcP 2Я J Н V 2я J l+6cos(<D-0) V v / [10] [11] Подобное расположение …

Несколько советов, заслуживающих внимания, при конструи­ровании машин Стирлинга. Быть реалистами. Легко сделаться оптимистом и восторженно относиться к потенциальным возможностям машин Стирлинга. Не­обходимо признать, что двигатель фирмы «Филипс» — это резуль­тат …

Из гл. 7 следует, что существующие методы проектирования регенеративных (и других) теплообменников неудовлетворительны. Исследования в этой области могут быть предприняты на инженер­ных факультетах университетов, но при этом должен быть достиг­нут …

msd.com.ua

Свободнопоршневой двигатель

 

(61) Дополнительное к авт. свид-ву (22) Заявлено 30.12.74 (21) 2089125/24-06 с присоединением заявки №вЂ” (23) Приоритет— (43) Опубликовано 05.08.76 Бтоллетень А" 29 (45) Дата опубликованин описания 17.11.76 (оj) я йче

F 02В 71/04

К 01В 11/00

Государственный комитет

Соввта Министров СВОР по делам изооретений н открытий (53) УДК

621.432--12 (088.8) (72) Авторы изобретения П. К. Морозенко, К. В. Охрименко, С. П. Смолин, В. В. Тур и А. М. Хартов (71) Заявители

Научно-производственное объединение Энергия" и Завод "Сатурн" (54) СВОБОДНОПОР111ЯЕВОЙ ДВИГАТЕЛЬ

Изобретение относится к двигателестроению.

Известны свободнопоршневые двигатели (СПД) содержащие рабочий цилиндр с впускными окнами, в котором размещен поршень двустороннего действия для подачи газа через каналы сопловых аппаратов к турбинам, оси которых расположены перпендикулярно оси цилиндра, и полую втулку.

Однако взаимчое расположение генерирующей и теплоиспользующей частей способствует сравнительно низкой удельно — габаритной мощности СПД.

Увеличение же периферийных коммуникаций не только усложняет конструкцию машины в целом и доступ к ее узлам, но и приводит к недоиспользованию располагаемого теплоперепада из — за наличия значительных потерь давления, особенно при высоких скоростях течения газа.

Кроме того, в известном СПД не обеспечивается степень парциальности, равнаяединице,прикоторой, как известно, к.п.д. турбомашины достигает наибол ьших значений.

Целью изобретения является повышение удельно — габаритной мощности и к.п.д. свободнопоршневого двигателя.

Для ее достижения в каналы сопловых аппаратов помещают связанные полой втулкой распределители, а турбины размегцены по торцам цилиндра на общем валу, расположенном во внутренней полости втулки.

5 Ба чертеже представлен описываемый свободнопоршневой двигатель. продольный разрез.

Свободнопоршневой двигатель 1 содержит рабо ий цилиндр 2 с впускнымп окнами 3 и соосную с ним полую втулку 4. В цилиндре возвратно--посту1О пательно движется поршень 5 двустороннего действия для подачи газа через каналы сопловых a!mapaтов 6 с распределителями 7 к турбинам 8, размещенным на общем валу 9, расположенном в полости вт. ки.

15 Двигатель работает следующим образом.

При движении поршня 5 свободнопоршневого двигателя 1 по полой втулке 4 справа налево в первой камере сгорания, образованной этим поршнем и соответствующим распределителем 7, происходит р11 сжатие топливо — воздушной смеси до BocpJtaMGHeния, а во второй — продувка камеры сгорания через окна 3.

Первый (левый) распределитель 7 под действ 1ем р давления газов после вспышки смеси открывает вы524001

Составитель В. Ткаченко

Техред О. Луговав

Редактор Н. Вирко

Корректор Т Кравченко

Тираж 690 Подписное

ЦНИИПИ Государственного комитета Совета Министров СССР ло делам изобретениЯ и от срытиЯ

113035, Москва, Ж вЂ” 35, Раушская наб., д 4/5

Заказ 4935/397

Филиал ППП " Патент ", г. Ужгород,ул. Проектная, 4 ход из цилиндра-2 для истечения газа из камеры сгорания через каналы сопловых аппаратов 6 к турбине

8 и садится на воздушньй демпфер. Одновременно с этим другой распределитель 7 закрывает выход из цилиндра и тем самым подготавливает противоположную камеру сгорания для сжатия в ней топливо— воздушной смеси. После:воашаменения топливо— воздушной смеси в этой камере сгорания ее распределитель 7 обеспечивает выход газа через каналы сопловых аппаратов 6 к соответствующей торцовой турбине 8, связанной с другой, противоположной турбиной общим валом 9, расположенным во внутренней полости втулки 4.

Формула изобретения

Свободнопоршневой двигатель, содержащий рабочий цилиндр с впускными окнами, в котором размещен поршень двустороннего действия для подачи газа через каналы сопловых аппаратов к турбинам,и полую втулку,о тли чающий ся тем, что, с целью повышения удельно — габаритной мощности и к.п.д. двигателя, в каналах сопловых

1О аппаратов помещены связанные полой втулкой распределители, а турбины размещены по торцам цилиндра на общем валу, расположенном во внутренней полости втулки.

  

www.findpatent.ru

Свободнопоршневой гидротурбинный двигатель внутреннего сгорания становского

 

Использование: энергетика и транспорт. Сущность изобретения: свободнопоршневой двигатель содержит поршневую группу 1 из двух аксиально связанных поршней 7 и 8. Поршни размещены в рабочих цилиндрах 2 и 3, образующих две боковые камеры 4 и 5 сгорания. Между рабочими цилиндрами размещен бак 6 у турбожидкостью. Поршни могут вращаться друг относительно друга, и на каждом поршне в баке с турбожидкостью закреплены пропеллеры-гидротурбины двустороннего действия с противоположным направлением лопаток 9. Благодаря такому выполнению гидротурбины поршни вращаются в противоположные стороны, предотвращая потери энергии на вращение турбожидкости. 4 ил.

Изобретение относится к двигателям внутреннего сгорания, а именно к свободнопоршневым двигателям (СПД) в теплоэнергических и транспортных установках.

Известны двигатели со свободно двигающимися поршнями, содержащие поршневую группу, рабочие цилиндры, образующие две боковые камеры сгорания. При сгорании топлива в боковых камерах сгорания поршневая группа содержит возвратно-поступательное движение, обеспечивая сжатие или перемещение рабочего тела, приводящего в движение исполнительные механизмы. Наиболее близким по технической сущности к предлагаемому является свободнопоршневой двигатель внутреннего сгорания, содержащий поршневую группу, рабочие цилиндры, образующие две боковые камеры сгорания, размещенный между ними бак с турбожидкостью. Поршневая группа содержит два жестко связанных друг с другом рабочих поршня с гидротурбиной двустороннего действия между ними, на их общей оси. Лопатки гидротурбины установлены с возможностью поворота вокруг своих осей. При сгорании топлива в боковых камерах сгорания поршневая группа вместе с гидротурбиной совершает возвратно-поступательное движение. Лопатки гидротурбины, взаимодействуя с турбожидкостью, сообщают турбине и поршням вращательное движение. Причем при возвратно-поступательном движении поршневой группы лопатки под действием сопротивления турбожидкости поворачиваются вокруг своих осей так, что турбина с поршнями вращается в одну и ту же сторону. Однако при этом турбожидкость приобретает противоположное вращение, которое трудно затормозить. В результате отбираемая полезная мощность уменьшается за счет потерь энергии на вращение турбожидкости, уменьшая тем самым КПД двигателя. Задача изобретения состоит в том, чтобы предотвратить вращение турбожидкости. Для решения этой технической задачи в свободнопоршневом гидротурбинном двигателе внутреннего сгорания, содержащем поршневую группу из двух рабочих поршней с гидротурбиной двустороннего действия между ними, рабочие цилиндры, образующие две боковые камеры сгорания, и размещенный между ними бак с турбожидкостью, рабочие поршни аксиально связаны друг с другом с возможностью вращения друг относительно друга, а гидротурбина выполнена в виде двух пропеллеров с противоположным направлением лопаток, закрепленных на рабочих поршнях. На фиг. 1 изображена принципиальная схема предлагаемого двигателя; на фиг. 2 турбина из двух пропеллеров с лопатками двустороннего действия с обтекателем; на фиг. 3 подпружиненная поворотная лопатка двустороннего действия с одним из возможных вариантов установки пружин; на фиг. 4 один из возможных вариантов выполнения связи между рабочими поршнями. Свободнопоршневой гидротурбинный двигатель внутреннего сгорания содержит поршневую группу 1, рабочие цилиндры 2 и 3, образующие две боковые камеры 4 и 5 сгорания, и размещенный между ними бак 6 с турбожидкостью, установленный неподвижно на рабочих цилиндрах 2 и 3. Поршневая группа состоит из двух аксиально связанных между собой рабочих поршней 7 и 8 с возможностью вращения друг относительно друга. В месте соединения поршней 7 и 8 на их общей оси расположена гидротурбина двустороннего действия. Она выполнена в виде двух отдельных пропеллеров двустороннего действия с противоположным направлением лопаток 9. Каждый пропеллер закреплен на соответствующем рабочем поршне 7 или 8. Пропеллер двустороннего действия может быть выполнен либо в виде двухрядных жестких лопаток с обтекателем 10 между ними, как показано на фиг. 2, либо с поворотными подпружиненными лопатками (фиг. 3). Здесь представлен один из возможных вариантов установки пружин 11. Для связи с механизмом отбора мощности поршни 7 и 8 снабжены штоками 12 или как минимум одним, выходящими за пределы камер сгорания. Система топливоподачи может быть выполнена, как и в прототипе, в виде поршневых насосов, связанных с рабочими поршнями (не показаны). Аксиальная связь рабочих поршней 7 и 8 с возможностью вращения их друг относительно друга может быть реализована с помощью втулки, как показано на фиг. 4. Двигатель работает следующим образом. При попеременном сгорании топливно-воздушной смеси в боковых камерах 4 и 5 сгорания рабочие поршни 7 и 8 вместе с закрепленной на их осях гидротурбиной совершают возвратно-поступательное движение в рабочих цилиндрах 2 и 3. При взаимодействии движущейся в аксиальном направлении гидротурбины с турбожидкостью в баке возникает вращательный момент и поршневая группа 1 приобретает вращательное движение. При этом поршень 7 вращается в одну сторону, а поршень 8 в другую. Отбор полезной мощности осуществляется при помощи штоков 12, соединенных с поршнями 7 и 8 и выходящих за пределы камер 4 и 5 сгорания. Благодаря тому, что на разных рабочих циклах гидротурбина вращает рабочие поршни 7 и 8 в противоположных направлениях, не меняя направления этого вращения, турбожидкость в баке 6 не приобретает вращательного движения. При этом уменьшаются потери энергии и повышается КПД двигателя. Таким образом, в рамках компактной схемы СПГД реализуются достаточно высокие удельно-весовые показатели двигателя при непосредственной передаче крутящего момента на нагрузку. СПГД является всеядным двигателем, так как степень сжатия ничем не ограничена. Вращающиеся поршни делаю рабочую смесь более однородной, чем улучшается качество сгорания топлива. Запуск двигателя осуществляется сжатым воздухом или пиропатроном, исключая мощные тяжелые аккумуляторные батареи. Подача топливно-воздушной смеси в камеры сгорания в двухтактном варианте двигателя осуществляется поршневым насосом, поршень которого соединен с штоком двигателя, выходящим за пределы торцовой камеры сгорания. Система зажигания в виде схемы с высоковольтным напряжением не нужна, здесь достаточно термически нагретого стержня, способного при сжатии топливно-воздушной смеси воспламенить ее. При сложении вращающихся энергий двух поршней эти энергии легко перевести из режима отдачи в режим накопления энергии. Удельно-весовые показатели и технические параметры СПГД позволяют перевести на новый качественный уровень создание подвижного транспорта и энергетических установок.

Формула изобретения

Свободнопоршневой гидротурбинный двигатель внутреннего сгорания, содержащий поршневую группу из двух рабочих поршней с гидротурбиной двустороннего действия между ними, рабочие цилиндры, образующие две боковые камеры сгорания, и размещенный между ними бак с турбожидкостью, отличающийся тем, что рабочие поршни поршневой группы связаны друг с другом в аксиальном направлении с возможностью вращения относительно друг друга, а гидротурбина выполнена в виде двух пропеллеров с противоположным направлением лопаток.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

NF4A Восстановление действия патента Российской Федерации на изобретение

Извещение опубликовано: 20.07.2005        БИ: 20/2005

www.findpatent.ru

Свободнопоршневой двигатель

Изобретение относится к двигателям внутреннего сгорания. В свободнопоршневом двигателе, содержащем по меньшей мере один цилиндр, внутри которого расположены два оппозитно установленных поршня со штоком, свечи зажигания, линейный генератор, содержащий в свою очередь статорную обмотку, расположенную на цилиндре, системы газораспределения на концах цилиндра, коллектор подачи топливовоздушной среды и коллектор выхлопных газов, систему газораспределения и систему управления, согласно изобретению система управления содержит блок управления и датчик положения поршней, каждая система газораспределения выполнена в виде подпружиненных впускного и выпускного клапанов, содержащих седло и шток и установленных в головках цилиндра, и гидротолкателей, установленных на торцах штоков клапанов, соединенных трубопроводами с гидрораспределителем, который электрической связью соединен с блоком управления, с которым также соединен датчик положения поршней. Цилиндр может быть выполнен с двумя коаксиальными стенками, образующими зазор для прохождения охлаждающей жидкости. Изобретение обеспечивает увеличение КПД и надежности. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к энергетическим установкам и может быть использовано в автомобилестроении, тяжелом машиностроении и малой энергетике, в частности в виде вспомогательных двигателей транспортных механизмов на передвижных или переносных электростанциях, электросварочных агрегатах и др.

Известен свободнопоршневой двигатель по А. Св. СССР А.с. 985365 СССР, МКИ 5 F02В 71/04. опубл. 30.12.82, содержащий дизельный двигатель внутреннего сгорания, линейный генератор и систему подачи топлива. Двигатель представляет собой цилиндр с торцевыми камерами сгорания, в районе которых расположены впускные и выпускные клапаны. Внутри цилиндра расположены поршни, соединенные перемычкой (штоком).

Генератор состоит из статора, якоря и систем возбуждения и снятия нагрузки. Статор выполнен в виде обмоток статора и обмоток возбуждения. Эти обмотки укреплены на внешней поверхности цилиндра. Якорь выполнен в виде обмоток токоприемной и возбуждения, которые уложены внутри порщней и соединены друг с другом последовательно. Система возбуждения выполнена в виде присоединительных клемм возбуждения, а система съема нагрузки выполнена в виде клемм съема нагрузки.

Система подачи топлива представляет собой форсунки, расположенные в торцевых частях цилиндра и предназначенные для подачи топлива в камеру сгорания.

Процесс преобразования энергии делится на два основных цикла: первый цикл - преобразование энергии из химической энергии топлива в механическую энергию движения поршней, а второй - механическая энергия движения поршней преобразуется в электрическую энергию. Первый цикл представляет собой рабочий процесс двухтактного дизельного двигателя, а второй, в свою очередь, делится на два этапа. На первом этапе посредством пересечения обмоткой первого поршня магнитного поля, созданного первой обмоткой статора (обмоткой возбуждения), производится возбуждение магнитного поля в первом поршне. На втором этапе происходит образование и съем электроэнергии, при чем обмотка первого поршня играет роль обмотки возбуждения для второго поршня.

Использование принципа электромагнитов в обеих частях линейного генератора позволяет получить высокую мощность магнитного поля, и, как следствие, минимизировать размеры установки.

Однако известное устройство имеет следующие недостатки. При работе устройства движение одного поршня используется для возбуждения магнитного поля в другом. Это приводит к потере рабочего процесса первого поршня для производства энергии на токосъем. Неполное использование рабочего процесса двухтактного дизельного двигателя для производства энергии на токосъем является причиной низкого кпд. Кроме того, от перегрева обмоток до температуры 500-600°С их магнитные свойства снижаются, что также понижает кпд двигателя.

Известен свободнопоршневой двигатель по А. Св. СССР №1733650 СССР, МКИ 5 F02В 71/04, опубл. 15.05.92 г, состоящий из дизельного двигателя внутреннего сгорания, линейного генератора, системы подачи топлива и системы охлаждения.

Этот двигатель содержит цилиндр с выпускными клапанами в торцевых частях двигателя и продувочным окном в центральной части двигателя. Внутри гильзы расположен поршень со штоком.

Генератор состоит из статора, якоря, системы возбуждения и системы съема нагрузки. Статор выполнен в виде обмоток, закрепленных на внешней поверхности цилиндра. Якорь представляет собой обмотку, уложенную внутри поршня. Система возбуждения выполнена из щеток и проводов возбуждения. Щетки расположены внутри поршня. Они являются первой частью скользящего контакта системы возбуждения с обмоткой якоря. Второй частью скользящего контакта является пластина приема тока возбуждения, расположенная на обмотке якоря. Пластина соединена с выводами обмотки якоря. Провода подвода возбуждения расположены в штоке.

Система подачи топлива включает в себя две форсунки, расположенные в оппозитных частях цилиндра. Система охлаждения состоит из двух водяных форсунок, также расположенных в оппозитных частях цилиндра.

Преобразование энергии осуществляется так же, как в вышеприведенном двигателе и состоит из двух циклов: первый цикл - преобразование энергии из химической энергии топлива в механическую энергию движения поршней, второй - механическая энергия движения поршней преобразуется в электрическую энергию. Первый цикл представляет собой рабочий процесс двухтактного дизельного двигателя. Второй цикл, в отличие от вышеприведенного двигателя, состоит из одного этапа и представляет собой рабочий процесс линейного генератора с непосредственным возбуждением. Исключение одного этапа достигается благодаря системе непосредственного возбуждения, провода которой проходят через шток.

Принцип работы системы охлаждения состоит в том, что при достижении определенной (600-800°С) температуры отработанных газов через специальные водяные форсунки в камеру сгорания подается охлаждающая жидкость, которая, испаряясь и смешиваясь с отработанными газами, образует охлаждающую среду, которая охлаждает камеру сгорания. Система охлаждения обеспечивает снижение температуры отработанных газов до 100-200°С. Но температура охлажденных отработанных газов все таки ниже, чем температура поршня и обмотки якоря, т.к. сначала охлаждаются отработанные газы, а затем они отбирают излишек теплоты у поршня и обмотки. Из-за этого температура поршня и обмоток снижается только до 250-300°С.

Достоинством этого двигателя является повышение кпд за счет полного использования рабочего процесса двухтактного двигателя для производства электроэнергии на токосъем. Кроме того, кпд повышается за счет снижения потерь магнитного поля благодаря уменьшению температуры обмоток (в частности обмотки якоря).

Однако известное устройство имеет следующие недостатки. Отсутствие непосредственною контакта охлаждающей среды с обмоткой якоря, расположенной внутри поршня, приводит к недостаточному охлаждению обмотки. Температура обмотки снижается только до 250-300°С. При этом потери электромагнитного поля на медных обмотках на 50% больше, чем потери электромагнитного поля при температуре в 20°С.

Кроме того, подача охлаждающей жидкости в камеру сгорания приводит к резким перепадам температуры, а, как следствие, к колебанию магнитного поля и силы вырабатываемого тока, что также влияет на снижение кпд.

Известен свободнопоршневой двигатель по патенту РФ №2186231, МПК F02B 71/04, опубл. 27.07.2002 г., прототип.

Этот двигатель, содержит дизельный двигатель внутреннего сгорания, выполненный из цилиндра с форсунками, внутри которого расположен поршень со штоком, линейный генератор, выполненный из обмоток статора, расположенных на цилиндре, из обмотки якоря, расположенной на поршне и контактирующей с системой возбуждения, состоящей из щеток с проводами подвода возбуждения, систему съема нагрузки и систему охлаждения, в него дополнительно введены два отсекательных кольца системы охлаждения, закрепленных на штоке, и охлаждающие трубки, соединенные с внутрипоршневой камерой, при этом обмотка якоря расположена на штоке поршня, каждое отсекательное кольцо установлено между обмоткой и торцевыми частями поршня, а щетки установлены в теле цилиндра.

Недостатки - невысокий КПД из-за отсутствия системы своевременного открывания и закрывания клапанов и низкая надежность из-за применения обмоток и токосъемников во взрывоопасной среде: парах масло с топливом. Кроме того, не проработана система запуска ГТД.

Задача, стоящая перед изобретателями, заключалась в разработке свободнопоршневого двигателя, с высоким кпд и надежности.

Решение указанных задач достигнуто в свободнопоршневом двигателе, выполненном по меньшей мере из одного цилиндра, внутри которого расположен два оппозитно установленных поршня со штоком, содержащий свечи зажигания, линейный генератор, содержащий в свою очередь, обмотку статора, расположенную на цилиндре, системы газораспределения на концах цилиндра и коллектор подачи топливо-воздушной среды и коллектор выхлопных газов, тем, что согласно изобретению, каждая система газораспределения выполнена в виде пустотелого корпуса установленного на торце цилиндра, внутри которого размещена втулка с впускными и выпускными окнами топлововоздушной смеси и выхлопных газов, имеющими возможность сообщаться соответственно с впускными и выпускными коллекторами, на оси втулки выполнено ведомое колесо гибкой передачи, а на штоке выполнена зубчатая рейка, с которой контактирует зубчатое колесо с ведущим валом на внешнем конце которого, установлено ведущее колесо гибкой передачи. На ведущем валу может быть установлен прерыватель соединенный с электрической свечой. Свободнопршнецой двигатель может быть оборудован блоком управления, на валу ведущего колеса установлен, по меньшей мере один датчик положения поршней, который электрическими связями соединен с блоком управления. Цилиндр может быть выполнен с двумя коаксиальными стенками, образующими зазор для прохождения охлаждающей жидкости.

Сущность изобретения поясняется чертежом, на котором приведен карбюраторный вариант двигателя.

Свободнопоршневой двигатель содержит, по меньшей мере, один цилиндр 1, внутри которого установлены оппозитно два поршня 2. Поршни 2 имеют компрессионные и маслосъемные кольца, соответственно, 3 и 4. Поршни 2 оппозитно закреплены на штоке 5. На торцах 6 установлены головки 7 цилиндров 1. Между торцами 6 цилиндра 1 и поршнями 2 образованы камеры сгорания 8, а между поршнями 2 -внутрипоршневая камера 9. Внутрипоршневая камере 9 частично заполнена смазывающей жидкостью.

Свободнопоршневой двигатель содержит трубопровод подачи топливовоздушной смеси 10 и трубопровод отвода выхлопных газов 11 и систему газораспределения 12.

Система газораспределения 12, в свою очередь (каждая) содержит головку 7, внутри которого установлена выполнено две полости впускная 13 и выпускная 14 и установлены впускной клапан 15 с головкой 16 и штоком 17, а в выпускной полости - выпускной клапан 18 с головкой 19 и штоком 20. На головке 7 установлены пружины 21, которые в нормальном положении удерживают клапаны 15 и 18 в закрытом положении. На торцах штоков 17 и 20 всех клапанов 15 и 18 установлены гидротолкатели 22. Для обеспечения работы гидротолкателей 22 применена гидросистема, содержащая маслобак 23, трубопровод низкого давления 24 соединенный с гидронасосом 25, к выходу которого присоединен трубопровод высокого давления 26, гидрораспределитель 27, к выходам которого присоединены управляющие трубопроводы 28, соедиенные с гидротолкателями 22.

Линейный генератор электроэнергии 29 состоит из статорной обмотки 30 установленной снаружи в центральной части цилиндра 1 и магнитов 31, установленных на промежуточном поршне 32, установленном в средней части штока 5 с относительно большим зазором. Система съема нагрузки выполнена в виде проводов 33 с присоединительными клеммами 34. Цилиндр 1 оборудован двумя свечами зажигания 35 На штоке 5 выполнена зубчатая рейка 36, с которой взамодействует зубчатое колесо 37, установленное на валу 38. На валу 38 установлен датчик положения поршней 39. В двигателе применен блок управления 40. Свечи зажигания 35 и датчик положения поршней 39 соединены электрическими связями 41 с блоком управления 40.

Система охлаждения состоит из двух стенок цилиндра 1: внешней 42 и внутренней 43 с зазором 44 между ними, и трубок подвода и отвода охладителя 45 и 46.

Электрическая схема содержит электрические провода 33, соединяющие статорную обмотку 30 через присоединительные клеммы 34 и коммутатор 47 с электродвигателем 48. К коммутатору 47 присоединен аккумулятор 49.

Блок управления 40 - это электронный блок, содержащий процессор и блок памяти. (На чертеже электронная схема блока управления подробно не показана.) Блок управления 40 должен обеспечивать своевременное своевременную подачу напряжения на свечи зажигания 35 и контроль режима работы свободнопоршневого двигателя, например частоты перемещения поршней 2.

Возможно применение нескольких цилиндров 1. На чертеже приведена схема свободнопоршневого двигателя с двумя поршнями 1. В этом случае статорные обмотки 29 соединены с коммутатором 47.

Свободнопоршневой двигатель работает следующим образом.

При запуске свободнопоршневого двигателя линейный генератор электроэнергии 29 работает в двигательном режиме. Для этого из аккумулятора 49 на статорные обмотки 30 через коммутатор 47 подается ток запуска обратной полярности, по отношению к току, вырабатываемому статорной обмоткой 30. Под действием магнитных сил, возбуждаемых статорной обмоткой 30 и действующих на магниты 31, шток 5 и поршни 2 приводится в движение, совершая ход сжатия в одной из камер сгорания 8 цилиндра 1. При достижении определенной степени (при определенном положении поршня 2 фиксируемом датчиком положения поршней 39) топливо подается в трубопровод подачи топливовоздушной смеси 10 и поступает через открытый впускной клапан 15 в одну из камер сгорания 8. После чего с блока управления 40 подают напряжение на свечу 35 (см. чертеж) и начинается процесс сгорания и расширения отработанных газов, происходящий в соответствии с циклом четырехтактного двигателя. Одновременно в противоположном конце цилиндра 1 происходит процесс выхлопа и продувки. После запуска система линейного генератора 29 переключается в генераторный режим при помощи коммутатора 47 и электрический ток поступает на электродвигатель 48 и аккумулятор 49.

Возможна довольно длительная работа электродвигателя (двигателей) 48 от аккумулятора 49, например, в гараже или густонаселенном районе. Это необходимо в целях обеспечения экологи окружающей среды.

При работе свободнопоршевого двигателя каждый ход поршней 2 является рабочим ходом для одной из частей цилиндра 1, в то время, как для противоположной части этот ход является процессом сжатия. Температура поршня 2, из-за его контакта с горячими отработанными газами, составит 500-600°С.

При работе двигателя магниты 31 совершают возвратнопоступательные движения и в статорной обмотке 30 возникает электромагнитное поле и в них индуцируется электрический ток. Вырабатываемый ток передается потребителю через провода 33, и присоединительные клеммы 34 и коммутатор 47 ко всем потребителям системы съема нагрузки, например кроме электродвигателя (электродвигателей) 48 к приборам внешнего освещения (не показано).

Одновременно с работой двигателя происходит работа системы охлаждения. Для этого по трубопроводу 45 подают в зазор 44 охлаждающую жидкость, подогретая жидкость выходит по трубопроводу 46 и далее охлаждается в теплообменнике (не позазано).

При остановке двигателя вновь происходит переключение линейного генератора в режим двигателя и отключают подачу топлива (не показано). При этом для создания противодействия движению поршня ток остановки, подаваемый на статорную обмотку 30, может обеспечить движение поршня 2 в направлении, обратном настоящему направлению движения поршня 2 для экстренного торможения.

При работе свободнопоршневого двигателя с несколькими цилиндрами 1 сначала запускают один цилиндр 1 и по мере увеличения нагрузки запускают второй, третий и т.д. цилиндры 1. Это позволит всем цилиндрам 1 работать практически на расчетном режиме, что повысит КПД двигателя. При этом неработающие цилиндры 1 могут быть предварительно прогреты. Это облегчит их запуск и повысит КПД.

Т.к. в процессе работы свободнопоршневого двигателя температура на статорных обмотках 28, которые находятся вне цилиндра 1, составляет примерно +10 - +20°С, то потери магнитного поля в медных обмотках на нагрев уменьшаются, по сравнению с потерями магнитного поля в прототипе, на 30-50%. Снижение потерь приводит к повышению кпд свободнопоршневого двигателя. Отсутствие токосъемников приводит к повышению пожаробезопасности работы а отсутствие обмоток в зоне высоких температур повышает надежность двигателя..

Электронная система управления позволяет полностью автоматизировать процесс зажигания и открывания и закрывания спускных и выпускных клапанов и корректрировать в зависимости от режима работы двигателя.

Улучшается экологичность работы двигателя, так как транспортное средство в густонаселенных районах может передвигаться с выключенный свободнопоршневым двигателем на аккумуляторе.

1. Свободнопоршневой двигатель, содержащий, по меньшей мере, один цилиндр, внутри которого расположены два оппозитно установленных поршня со штоком, свечи зажигания, линейный генератор, содержащий, в свою очередь, статорную обмотку, расположенную на цилиндре, системы газораспределения на концах цилиндра, коллектор подачи топливовоздушной среды и коллектор выхлопных газов, систему газораспределения и систему управления, отличающийся тем, что система управления содержит блок управления и датчик положения поршней, каждая система газораспределения выполнена в виде подпружиненных впускного и выпускного клапанов, содержащих седло и шток и установленных в головках цилиндра, и гидротолкателей, установленных на торцах штоков клапанов, соединенных трубопроводами с гидрораспределителем, который электрической связью соединен с блоком управления, с которым также соединен датчик положения поршней.

2. Свободнопоршневой двигатель по п.1 или 2, отличающийся тем, что цилиндр выполнен с двумя коаксиальными стенками, образующими зазор для прохождения охлаждающей жидкости.

www.findpatent.ru

Двигатель Штельцера

Documents войти Загрузить ×
  1. Технологии
  2. Электротехника
advertisement advertisement
Related documents
Pjatitaktnyj_dvigatel__rabotaet_i_mozhet_pojti_v_proizvodstvox
Виды двигателей.
Работа газа и пара при расширении. Двигатель
Двигатель внутреннего сгорания. Топливо сгорает прямо в цилиндре,
RVS-технологии: реанимация двигателей со стажем
Двигатель внутреннего сгорания» 8 класс
Почему для поставок в Россию выбраны модели с 4
Как функционирует дизельный двигатель?
Тепловые двигатели
тепловые машины
Двигатель Стирлинга - МБОУЛ "ВУВК им. А. П. Киселева"
Машина Томаса Ньюкомена (1663
Б.П. Садковский, А.Ю. Андросов ДВИГАТЕЛЬ БУДУЩЕГО
Урок физики в 8 классе Двигатель внутреннего сгорания примере двигателя внутреннего

studydoc.ru

Свободнопоршневой двигатель

Изобретение относится к двигателестроению, а именно к свободнопоршневым двигателям, и может быть использовано в качестве двигателя для привода тихоходных поршневых насосов без промежуточных преобразований движения, а также для привода любых потребителей от вращающегося приводного вала с использованием в качестве источника энергии энергии как высоко-, так и низкопотенциальных газовых сред. В свободнопоршневом двигателе, содержащем основание, на котором установлен цилиндр, внутри которого размещен поршень, впускные и выпускные клапаны с механизмами их привода, согласно изобретению цилиндр закреплен на основании с возможностью качания в вертикальной плоскости относительно центра его продольной оси, на обоих концах цилиндра расположены головки с впускными и выпускными клапанами, к которым посредством гибких магистралей подведена рабочая среда. Изобретение позволяет упростить передачу мощности потребителям без использования промежуточных сред и механизмов соответственно с большей надежностью и более высоким КПД, а также использовать в качестве источника энергии энергию низкопотенциальных газовых сред. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к двигателестроению, преимущественно к конструкциям двигателей, предназначенных для непосредственного привода тихоходных поршневых насосов, например "качалок" в нефтедобывающей промышленности, и позволяет использовать низкопотенциальные газовые среды в качестве источников энергии, например сброс давления после паровых или газовых турбин, отработанные выхлопные газы стационарных двигателей внутреннего сгорания и т.п. Описываемый свободнопоршневой двигатель позволяет также снимать полезную мощность с вращающегося вала.

Известны свободнопоршневые двигатели, которые преимущественно преобразуют химическую энергию топлива в механическую энергию по принципу работы двигателей внутреннего сгорания, например /см. патент №2066383, F02В 71/04/, где передача мощности от поршней осуществлена рабочей жидкостью или магнитным полем /см. патент №2046966, F02В 71/04/.

Известные двигатели работают по принципу двигателей внутреннего сгорания и не обеспечивают возможности использования энергии низкопотенциальной газовой среды. Для передачи мощности от поршней используется промежуточная среда (жидкость, магнитное поле), что ведет к снижению коэффициента полезного действия и усложнению конструкции, причем в случае использования известных двигателей для привода поршневых насосов вновь необходим механизм преобразования в возвратно-поступательное движение поршня насоса, что усложняет конструкцию и снижает общий коэффициент полезного действия.

Целью изобретения является упрощение конструкции двигателя, особенно для привода поршневых тихоходных насосов, а также обеспечение возможности работы двигателя на энергии низкопотенциальной газовой среды.

Свободнопоршневой двигатель содержит основание, на котором установлен цилиндр с расположенным внутри него свободным массивным поршнем. Цилиндр закреплен на основании посредством жестко прикрепленной к нему оси качания с возможностью качания в вертикальной плоскости относительно центра продольной оси цилиндра. На обоих концах цилиндра закреплены головки с впускными и выпускными клапанами, к впускным клапанам которых посредством гибких магистралей подведена рабочая среда. В случае использования описываемого двигателя для привода тихоходных поршневых насосов цилиндр двигателя посредством шарнира непосредственно соединен со штангой механизма привода этого насоса. В случае снятия мощности с вращающегося приводного вала ось качания цилиндра соединена с этим валом посредством обгонных муфт правого и левого вращения, причем одна из них непосредственно передает вращение на приводной вал, а вторая для изменения направления вращения - через зубчатые передачи. Механизм привода клапанов закрывает выпускной клапан той головки, к которой в данный момент подходит поршень, обеспечивая условие безударной о головку остановки поршня, то есть кинетическая энергия движущегося поршня расходуется на сжатие оставшейся в цилиндре газовой среды, давление которой в момент остановки поршня может превысить давление во впускной магистрали. Под действием сжатой газовой среды поршень меняет направление своего движения на противоположное, и, как только давления между поршнем и головкой и во впускной магистрали выравняются, механизм привода клапанов откроет впускной клапан данной головки и выпускной клапан противоположной головки.

На чертеже представлена схема описываемого свободнопоршневого двигателя.

Свободнопоршневой двигатель содержит основание 1, на котором на оси качания 2 жестко закреплен цилиндр 3 с расположенным внутри него массивным поршнем 4. С обеих сторон цилиндр 3 закрыт головками 5, в которых установлены впускные 6 и выпускные 7 клапаны. К головкам 5 со стороны впускных клапанов 6 подсоединены гибкие впускные магистрали 8. К цилиндру 3 посредством шарнира 9 прикреплена штанга привода 10 поршневого насоса, а ось качания 2 посредством обгонных муфт 11 правого и левого вращения соединена с приводным валом (на схеме не показан), причем одна из муфт 11 непосредственно соединена с этим валом, а вторая для изменения направления вращения соединена с ним через зубчатые передачи (на схеме но показаны).

Работает описываемый двигатель следующим образом. При подаче газообразной рабочей среды по гибким магистралям 8 под избыточным над атмосферным давлением поршень 4, преодолевая силу тяжести, начнет перемещаться к противоположной головке, выпускной клапан которой открыт, и по прохождении центром его тяжести оси качания 2 возникнет вращающий момент, который будет возрастать по мере приближения поршня к противоположной головке. Под действием этого момента цилиндр начнет поворачиваться вокруг оси качания 2. При достижении продольной осью цилиндра х-х положения, близкого к горизонтальному, механизм привода клапанов закроет впускной клапан 6 работавшей головки и поршень 4 продолжит свое движение к противоположной головке за счет расширения газов со стороны работавшей головки, а также за счет запаса кинетической энергии движущегося массивного поршня. По прохождении осью цилиндра х-х горизонтального положения к этим силам добавится и сила тяжести поршня 4. При приближении поршня 4 к неработавшей головке механизм привода клапанов закроет выпускной клапан 7 этой головки и вся энергия движущегося поршня преобразуется в энергию сжатого газа между поршнем и неработавшей головкой. В результате этого поршень остановится безударно об эту головку и изменит направление своего движения на противоположное. Как только давление между поршнем и неработавшей головкой и давление рабочей среды во впускной магистрали сравняются, механизм привода клапанов откроет впускной клапан на неработавшей головке и выпускной клапан на работавшей головке и поршень начнет перемещаться в обратном направлении, совершая также рабочий ход, причем работающей уже будет головка с открытым впускным клапаном, то есть от которой поршень начал движение. Мощность с описываемого двигателя снимается в случае его работы на привод поршневого насоса посредством штанги 10 привода насоса, соединенной с цилиндром 3 посредством шарнира 9. В случае снятия мощности с приводного вала крутящий момент на него передается с цилиндра 3 и жестко соединенную с ним ось качания 2 посредством обгонных муфт 11 правого и левого вращения, причем одна из этих муфт непосредственно соединена с этим валом, а вторая для изменения направления вращения соединена с ним посредством зубчатой передачи. При качании цилиндра 3 в одну сторону муфта 11, непосредственно связанная с приводным валом, передает крутящий момент с оси качания 2 сразу на этот вал, муфта же обратного направления свободно проскальзывает. При качании цилиндра в обратную сторону муфта, непосредственно связанная с приводным валом, проскальзывает, а муфта обратного направления вращения передает крутящий момент с оси качания 2 цилиндра 3 через зубчатую передачу, изменяющую направление вращения на обратное, на этот же приводной вал. Для снижения неравномерности вращения приводного вала на нем установлен маховик, а описываемый свободнопоршневой двигатель выполнен многоцилиндровым с общим приводным валом.

Описываемый свободнопоршневой двигатель при собственной простоте конструкции в случае использования его на привод поршневого насоса позволяет значительно упростить передаточный механизм от поршня двигателя к поршню насоса с более высоким коэффициентом полезного действия даже по сравнению с непосредственным соединением поршней насоса и двигателя общим штоком, а также позволяет использовать для получения механической энергии энергию как высокопотенциальных, так и низкопотенциальных газовых сред, например энергию выхлопных газов стационарных двигателей внутреннего сгорания, сброс давления после паровых и газовых турбин и тому подобное с высоким коэффициентом полезного действия как по давлению, так и по температуре газовой среды, поскольку при прохождении поршня около оси качания цилиндра подача рабочей среды через впускной клапан прекращается и происходит примерно двойное расширение газа с использованием этой энергии на полезную работу.

1. Свободнопоршневой двигатель, содержащий основание, на котором установлен цилиндр, внутри которого размещен поршень, впускные и выпускные клапаны с механизмами их привода, отличающийся тем, что цилиндр закреплен на основании с возможностью качания в вертикальной плоскости относительно центра его продольной оси, на обоих концах цилиндра расположены головки с впускными и выпускными клапанами, к которым посредством гибких магистралей подведена рабочая среда.

2. Свободнопоршневой двигатель по п.1, отличающийся тем, что цилиндр двигателя посредством шарнира непосредственно соединен со штангой привода поршневого насоса.

3. Свободнопоршневой двигатель по п.1, отличающийся тем, что цилиндр жестко соединен с осью качания, которая в свою очередь соединена с приводным валом посредством обгонных муфт правого и левого вращения, причем одна из муфт непосредственно передает крутящий момент на этот вал, а вторая - через зубчатые передачи.

4. Свободнопоршневой двигатель по п.1, отличающийся тем, что механизм привода клапанов закрывает выпускной клапан той головки, к которой подходит поршень, обеспечивая условие безударной о головку остановке поршня, впускной же клапан этой головки открывает при равенстве давлений рабочей среды между поршнем и этой головкой и во впускной магистрали и закрывает при приближении к горизонтальному положению продольной оси цилиндра, причем одновременно с открытием впускного клапана на одной головке открывает выпускной клапан на противоположной головке.

www.findpatent.ru

Четырехцилиндровый свободнопоршневой двигатель

Изобретение относится к двигателям внутреннего сгорания. В четырехцилиндровом свободнопоршневом двигателе, содержащем два корпуса двигателя, четыре цилиндра, внутри которых расположены оппозитно установленные поршневые группы, свечи зажигания, общий входной коллектор, индивидуальные входные коллекторы, общий выхлопной коллектор выхлопных газов, индивидуальные выхлопные коллекторы, форсунку, свечи и систему управления с блоком управления, согласно изобретению топливная форсунка установлена в общем входном коллекторе, поршневые группы выполнены в виде единого узла с двумя торцами и цилиндрическим корпусом, в котором радиально установлены постоянные магниты, вне корпусов двигателя установлена общая обмотка возбуждения. Система управления содержит блок управления, датчики давления и датчики положения поршней, установленные на всех цилиндрах, при этом блок управления электрическими связями соединен с датчиками давления и свечами зажигания. Изобретение обеспечивает увеличение КПД и надежности. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к энергетическим установкам и может быть использовано в автомобилестроении, тяжелом машиностроении и малой энергетике, в частности в виде вспомогательных двигателей транспортных механизмов на передвижных или переносных электростанциях, электросварочных агрегатах и др. Наиболее оптимальным в двигателестроении принято считать четырехцилиндровый двигатель.

Известен свободнопоршневой двигатель по А. Св. СССР А.с. 985365 СССР, МКИ 5 F02B 71/04. опубл. 30.12.82, содержащий дизельный двигатель внутреннего сгорания, линейный генератор и систему подачи топлива. Двигатель представляет собой цилиндр с торцевыми камерами сгорания, в районе которых расположены впускные и выпускные клапаны. Внутри цилиндра расположены поршни, соединенные перемычкой (штоком).

Генератор состоит из статора, якоря и систем возбуждениями снятия нагрузки. Статор выполнен в виде обмоток статора и обмоток возбуждения. Эти обмотки укреплены на внешней поверхности цилиндра. Якорь выполнен в виде обмоток токоприемной и возбуждения, которые уложены внутри поршней и соединены друг с другом последовательно. Система возбуждения выполнена в виде присоединительных клемм возбуждения, а система съема нагрузки выполнена в виде клемм съема нагрузки.

Система подачи топлива представляет собой форсунки, расположенные в торцевых частях цилиндра и предназначенные для подачи топлива в камеру сгорания.

Процесс преобразования энергии делится на два основных цикла: первый цикл - преобразование энергии из химической энергии топлива в механическую энергию движения поршней, а второй - механическая энергия движения поршней преобразуется в электрическую энергию. Первый цикл представляет собой рабочий процесс двухтактного дизельного двигателя, а второй, в свою очередь, делится на два этапа. На первом этапе посредством пересечения обмоткой первого поршня магнитного поля, созданного первой обмоткой статора (обмоткой возбуждения), производится возбуждение магнитного поля в первом поршне. На втором этапе происходит образование и съем электроэнергии, при чем обмотка первого поршня играет роль обмотки возбуждения для второго поршня.

Использование принципа электромагнитов в обеих частях линейного генератора позволяет получить высокую мощность магнитного поля, и, как следствие, минимизировать размеры установки.

Однако известное устройство имеет следующие недостатки. При работе устройства движение одного поршня используется для возбуждения магнитного поля в другом. Это приводит к потере рабочего процесса первого поршня для производства энергии на токосъем. Неполное использование рабочего процесса двухтактного дизельного двигателя для производства энергии на токосъем является причиной низкого кпд. Кроме того, от перегрева обмоток до температуры 500-600°C их магнитные свойства снижаются, что также понижает кпд двигателя.

Известен свободнопоршневой двигатель по А. Св. СССР №1733650 СССР, МКИ 5 F02B 71/04, опубл. 15.05.92 г, состоящий из дизельного двигателя внутреннего сгорания, линейного генератора, системы подачи топлива и системы охлаждения.

Этот двигатель содержит цилиндр с выпускными клапанами в торцевых частях двигателя и продувочным окном в центральной части двигателя. Внутри гильзы расположен поршень со штоком.

Генератор состоит из статора, якоря, системы возбуждения и системы съема нагрузки. Статор выполнен в виде обмоток, закрепленных на внешней поверхности цилиндра. Якорь представляет собой обмотку, уложенную внутри поршня. Система возбуждения выполнена из щеток и проводов возбуждения. Щетки расположены внутри поршня. Они являются первой частью скользящего контакта системы возбуждения с обмоткой якоря. Второй частью скользящего контакта является пластина приема тока возбуждения, расположенная на обмотке якоря. Пластина соединена с выводами обмотки якоря. Провода подвода возбуждения расположены в штоке.

Система подачи топлива включает в себя две форсунки, расположенные в оппозитных частях цилиндра. Система охлаждения состоит из двух водяных форсунок, также расположенных в оппозитных частях цилиндра.

Преобразование энергии осуществляется так же, как в вышеприведенном двигателе и состоит из двух циклов: первый цикл - преобразование энергии из химической энергии топлива в механическую энергию движения поршней, второй - механическая энергия движения поршней преобразуется в электрическую энергию. Первый цикл представляет собой рабочий процесс двухтактного дизельного двигателя. Второй цикл, в отличие от вышеприведенного двигателя, состоит из одного этапа и представляет собой рабочий процесс линейного генератора с непосредственным возбуждением. Исключение одного этапа достигается благодаря системе непосредственного возбуждения, провода которой проходят через шток.

Принцип работы системы охлаждения состоит в том, что при достижении определенной (600-800°C) температуры отработанных газов через специальные водяные форсунки в камеру сгорания подается охлаждающая жидкость, которая, испаряясь и смешиваясь с отработанными газами, образует охлаждающую среду, которая охлаждает камеру сгорания. Система охлаждения обеспечивает снижение температуры отработанных газов до 100-200°C. Но температура охлажденных отработанных газов все-таки ниже, чем температура поршня и обмотки якоря, т.к. сначала охлаждаются отработанные газы, а затем они отбирают излишек теплоты у поршня и обмотки. Из-за этого температура поршня и обмоток снижается только до 250-300°C.

Достоинством этого двигателя является повышение кпд за счет полного использования рабочего процесса двухтактного двигателя для производства электроэнергии на токосъем. Кроме того, кпд повышается за счет снижения потерь магнитного поля благодаря уменьшению температуры обмоток (в частности обмотки якоря).

Однако известное устройство имеет следующие недостатки. Отсутствие непосредственною контакта охлаждающей среды с обмоткой якоря, расположенной внутри поршня, приводит к недостаточному охлаждению обмотки. Температура обмотки снижается только до 250-300°C. При этом потери электромагнитного поля на медных обмотках на 50% больше, чем потери электромагнитного поля при температуре в 20°С.

Кроме того, подача охлаждающей жидкости в камеру сгорания приводит к резким перепадам температуры, а, как следствие, к колебанию магнитного поля и силы вырабатываемого тока, что также влияет на снижение кпд.

Известен свободнопоршневой двигатель по патенту РФ №2186231, МПК F02B 71/04, опубл. 27.02.2002 г., прототип.

Этот двигатель, содержит дизельный двигатель внутреннего _ сгорания, выполненный из цилиндра с форсунками, внутри которого расположен поршень со штоком, линейный генератор, выполненный из обмоток статора, расположенных на цилиндре, из обмотки якоря, расположенной на поршне и контактирующей с системой возбуждения, состоящей из щеток с проводами подвода возбуждения, систему съема нагрузки и систему охлаждения, в него дополнительно введены два отсекательных кольца системы охлаждения, закрепленных на штоке, и охлаждающие трубки, соединенные с внутрипоршневой камерой, при этом обмотка якоря расположена на штоке поршня, каждое отсекательное кольцо установлено между обмоткой и торцевыми частями поршня, а щетки установлены в теле цилиндра.

Недостатки невысокий КПД из-за отсутствия системы своевременного открывания и закрывания клапанов и низкая надежность из-за применения обмоток и токосъемников во взрывоопасной среде: парах масло с топливом. Кроме того, на проработана система запуска ГТД.

Задача, стоящая перед изобретателями, заключалась в разработке свободнопоршневого двигателя, с высоким кпд и надежности двигателя.

Решение указанных задач достигнуто в четырехцилиндровом свободнопоршневом двигателе, содержащем два корпуса двигателя, четыре цилиндра, внутри которых расположены оппозитно установленные поршневые группы, свечи зажигания, общий входной коллектор, индивидуальные входные коллекторы, общий выхлопной коллектор выхлопных газов, индивидуальные выхлопные коллекторы, форсунку, свечи и систему управления с блоком управления, тем, что согласно изобретению топливная форсунка установлена в общем входном коллекторе, поршневые группы выполнены в виде единого узла с двумя торцами и цилиндрическим корпусом, в котором радиально установлены постоянные магниты, вне корпусов двигателя установлена общая обмотка возбуждения. Система управления содержит блок управления и датчики давления, установленные на всех цилиндрах, при этом блок управления электрическими связями соединен с датчиками давления и свечами зажигания. Система управления может содержать блок управления и датчики положения поршней, установленные на всех цилиндрах, при этом блок управления электрическими связями соединен с датчиками положения поршней.

Сущность изобретения поясняется на фиг.1…4. где:

- на фиг.1 представлена схема двигателя,

- на фиг.2 приведена схема одного блока,

- на фиг.3 приведен разрез А-А,

- на фиг.4 приведен цилиндр в разрезе.

Свободнопоршневой двигатель (фиг.4) содержит два блока 1 каждый из которых содержит корпус двигателя 2, два оппозитно установленных цилиндра 3 и поршневую группу 4. При этом поршневая группа 4 выполнена в виде единого узла с двумя торцами 5 и 6 и цилиндрическим пустотелым корпусом 7 в средней части которого радиально установлены постоянные магниты 8.

Корпус двигателя 2 выполнен с образованием зазора 9 между ним и цилиндрическим корпусом 7 и магнито-прозрачным (титан, нержавеющая сталь полимер, композиционный материал). Корпус двигателя 2 соединен с цилиндрами 3 фланцами 10. а вне корпусов двигателя 2 установлена общая обмотка возбуждения 11. Обмотка возбуждения 11 и постоянные магниты 8 образуют линейный электрогенератор. Полость 12 внутри цилиндрического корпуса 7 соединена отверстием 13 с зазором 9 между корпусами 2 и 7. (фиг.2 и 3). С обеих сторон поршневая группа 4 имеет компрессионные и маслосьемные кольца, соответственно 14 и 15.

Кроме того, двигатель содержит общий впускной коллектор 16 и индивидуальные впускные коллекторы 17, а также общий выхлопной коллектор 18 и индивидуальные выхлопные коллекторы 19. В общем впускном коллекторе 16 установлена топливная форсунка 20. Во всех индивидуальных впускных коллекторах 17 установлены впускные клапаны 21 с приводом 22. В индивидуальных выхлопных коллекторах 19 установлены управляемые выпускные клапаны 23 с приводами 24. В каждом цилиндре 3 имеется электросвеча 25.

Двигатель может содержать блок управления 26, а в каждом цилиндре 3 установлен датчик давления 27, соединенный электрической связью 28 с блоком управления 26. Двигатель может содержать датчик положения поршней 29.

Общая обмотка возбуждения 11 соединена электрическими проводами 30 с коммутатором 31. Коммутатор 31 электрическими проводами 30 соединен с аккумулятором 32 и электродвигателем 33.

На корпусе двигателя 2 выполнено заправочное отверстие 34, соединенное с проводом 35, содержащим кран 36 и маслобак 37. (фиг.2).

Топливная система двигателя содержит топливный бак 38. к которому присоединен топливопровод 39, содержащий топливный насос 40 соединенный с топливной форсункой 20.

Цилиндры 3 могут быть оборудованы ребрами 41 для воздушного охлаждения, (фиг 4).

Работа свободнопоршневого двигателя (фиг.1…4) осуществляется следующим образом.

Для запуска двигателя напряжение с аккумулятора 32 через коммутатор 31 подается общую обмотку возбуждения 11. В этом случае линейный электрогенератор работает как двигатель. Одновременно блок управления 26 включает топливный насос 40 и топливо из топливного бака 38 подается в форсунки 20. Потом открывают впускной клапан 21 одного из цилиндров 3 подачей сигнала с блока управления 26 на привод 22-й топливо-воздушная смесь поступает в полость одного из цилиндров 3. При работе свободнопоршневого двигателя (фиг.1…4) каждый ход поршневой группы 4 является рабочим ходом для одного из цилиндров 3, в то время, как для противоположной части этот ход является процессом сжатия. При достижении необходимой степени сжатий фиксируемой датчиком давления 27 блок и/или датчиком положения поршня 29 управления 26 подает напряжение на электросвечу 25. Поршневая группа 4 совершает рабочий ход. Потом открывают выпускной клапан 23 подачей команды с блока управления 26 на привод 24. Происходит выхлоп.

Потом аналогичный цикл повторяется в другом цилиндре 3.

Температура поршневой группы 4, из-за его контакта с горячими отработанными газами, составит на максимальном режиме не более 500-600°C.

При остановке двигателя вновь происходит переключение линейного генератора в режим двигателя и отключают подачу топлива, (не показано). При этом, для создания противодействия движению поршня, ток остановки, подаваемый на линейный электрогенератор может обеспечить движение поршневой группы 4 в направлении, обратном настоящему направлению движения поршневой группы 4 для осуществления экстренного торможения.

Т.к. в процессе работы свободнопоршневого двигателя температура в обмотке возбуждения 11 линейного электрогенератора, которая находятся вне цилиндров 3, составляет примерно +10 - +20°C, то потери магнитного поля в медных обмотках на нагрев уменьшаются, по сравнению с потерями магнитного поля в прототипе, на 30-50%. Снижение потерь приводит к повышению КПД свободнопоршневого двигателя. Отсутствие токосъемников приводит к повышению пожаробезопасности работы, а отсутствие обмоток в зоне высоких температур повышает надежность двигателя.

Надежная система смазки позволяет увеличить ресурс работы двигателя до капитального ремонта, уменьшить износ трущихся частей и предотвратить перегрев.

Электронная система управления позволяет полностью автоматизировать процесс зажигания и открывания и закрывания спускных и выпускных клапанов и корректировать их открытие и закрытие в зависимости от режима работы двигателя.

Улучшается экологичность работы двигателя, так как транспортное средство в густонаселенных районах может передвигаться с выключенный свободнопоршневым двигателем на аккумуляторе.

Применение датчиков давления и положения поршней на обеих цилиндрах позволяет не только своевременно открывать и закрывать впускные и выпускные клапаны и подавать напряжение на электросвечи, но и контролировать аварийную ситуацию и при необходимости автоматически выключить двигатель.

Расширить номенклатуру производства двигателей с одним или двумя и более блоками.

1. Четырехцилиндровый свободнопоршневой двигатель, содержащий два корпуса двигателя, четыре цилиндра, внутри которых расположены оппозитно установленные поршневые группы, свечи зажигания, общий входной коллектор, индивидуальные входные коллекторы, общий выхлопной коллектор, индивидуальные выхлопные коллекторы, свечи, форсунку и систему управления с блоком управления, отличающийся тем, что поршневые группы выполнены в виде единого узла с двумя торцами и цилиндрическим корпусом, в котором радиально установлены постоянные магниты, вне корпусов двигателя установлена общая обмотка возбуждения.

2. Свободнопоршневой двигатель по п.1, отличающийся тем, что система управления содержит блок управления и датчики давления, установленные на всех цилиндрах, при этом блок управления электрическими связями соединен с датчиками давления и свечами зажигания.

3. Свободнопоршневой двигатель по п.1 или 2, отличающийся тем, что система управления содержит блок управления и датчики положения поршней, установленные на всех цилиндрах, при этом блок управления электрическими связями соединен с датчиками положения поршней.

www.findpatent.ru