Топливо для жидкостных ракетных двигателей. Топливо реактивного двигателя


Топливо для жидкостно-реактивного двигателя. Ракетные двигатели

Топливо для жидкостно-реактивного двигателя

Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.

Основным требованием, которое предъявляется к топливу для ЖРД, является высокая теплотворная способность, т. е. большое количество тепла, выделяющееся при сгорании 1 кг топлива[10]. Чем больше теплотворная способность, тем, при прочих равных условиях, больше скорость истечения и тяга двигателя. Более правильным является сравнение различных теплив не по их калорийности, а непосредственно по скорости истечения, которую они обеспечивают в равных условиях, или, что то же самое, по удельной тяге.

Помимо этого главного свойства топлив для ЖРД к ним обычно предъявляются и некоторые другие требования. Так например, большое значение имеет удельный вес топлива, так как запас топлива на самолете или ракете обычно ограничивается не его весом, а объемом топливных баков. Поэтому чем плотнее топливо, т. е. чем больше его удельный вес, тем больше по весу войдет топлива в те же топливные баки и, следовательно, будет больше продолжительность полета. Важно также, чтобы топливо не вызывало коррозии, т. е. разъедания ржавчиной, деталей двигателя, было просто и безопасно в хранении и перевозке, не было дефицитным по источникам сырья.

Наиболее часто в настоящее время в ЖРД применяются так называемые двухкомпонентные топлива, т. е. топлива раздельной подачи. Эти топлива состоят из двух жидкостей, хранящихся в отдельных баках; одна из этих жидкостей, обычно называемая горючим, чаще всего представляет собой вещество, принадлежащее к классу углеводородов, т. е. состоит из атомов углерода и водорода, а иногда содержит и атомы иных химических элементов — кислорода, азота и других. Горючим этот компонент (составную часть) топлива называют потому, что при его сгорании, т. е. соединении с кислородом, выделяется значительное количество тепла.

Другой компонент топлива, так называемый окислитель, содержит кислород, необходимый для сгорания, т. е. окисления горючего, почему этот компонент и получил название окислителя. Окислителем может служить чистый кислород в жидком состоянии, а также озон или какой-либо кислородоноситель, т. е. вещество, содержащее кислород в химически связанном виде: например, перекись водорода, азотная кислота и другие кислородные соединения. Как известно, в воздушно-реактивных двигателях, как и в обычных двигателях внутреннего сгорания, окислителем служит кислород атмосферы.

В случае двухкомпонентного топлива обе жидкости по отдельным трубопроводам подаются в камеру сгорания, где и происходит процесс горения, т. е. окисления горючего кислородом окислителя. При этом выделяется большое количество тепла, вследствие чего газообразные продукты сгорания приобретают высокую температуру.

Наряду с двухкомпонентными топливами существуют и так называемые однокомпонентные, или унитарные, топлива, т. е. топлива, представляющие собой одну жидкость. Однокомпонентным топливом может служить либо смесь двух веществ, реагирующих лишь в определенных условиях, которые создаются в камере, либо какое-нибудь химическое вещество, при некоторых условиях, обычно в присутствии соответствующего катализатора, разлагающееся с выделением тепла. Таким однокомпонентным топливом является, например, высоко-концентрированная (крепкая) перекись водорода.

Перекись водорода в качестве однокомпонентного топлива имеет лишь ограниченное применение. Это объясняется тем, что при реакции разложения перекиси водорода с образованием паров воды и газообразного кислорода выделяется лишь сравнительно небольшое количество тепла. Вследствие этого скорость истечения оказывается относительно невысокой, практически она не превышает 1200 м/сек. Так как температура реакции разложения невелика (около 500 °C), то такую реакцию обычно называют «холодной», в отличие от реакций со сгоранием, хотя бы с той же перекисью водорода в качестве окислителя, когда температура бывает в несколько раз больше («горячие» реакции). Мы потом познакомимся со случаями использования «холодной» реакции разложения перекиси водорода.

Практически все существующие жидкостно-реактивные двигатели работают на двухкомпонентном топливе. Однокомпонентные топлива не применяются, так как при значительной теплотворной способности, большей чем 800 кал/кг, они взрывоопасны. Состав топлива, т. е. выбор определенной пары «горючее-окислитель», может быть при этом самым различным, хотя в настоящее время предпочтение отдается нескольким определенным комбинациям, получившим наиболее широкое применение. Вместе с тем производятся энергичные поиски лучших топлив для ЖРД, и в этом отношении действительно имеются огромные возможности.

Применяемые в настоящее время двухкомпонентные топлива обычно делятся на самореагирующие, или самовоспламеняющиеся, и несамореагирующие, или топлива принудительного зажигания. Самовоспламеняющееся топливо, как показывает само название, состоит из таких компонентов «горючее — окислитель», которые при смешении их в камере сгорания двигателя самовоспламеняются. Реакция горения начинается сразу же после соприкосновения обоих компонентов и идет до полного израсходования одного из них. Несамовоспламеняющееся топливо требует специальных приспособлений для воспламенения смеси, т. е. для начала реакции горения. Эти запальные приспособления — впрыск каких-нибудь самовоспламеняющихся жидкостей, различные пиротехнические запалы, для сравнительно маломощных двигателей — электрическое зажигание и другие, — необходимы, однако, только при запуске двигателя, так как затем новые порции топлива, поступающего в камеру сгорания, воспламеняются от уже существующего в камере постоянного очага горения или, как говорят, факела пламени.

В настоящее время применяются как самовоспламеняющиеся, так и несамовоспламеняющиеся топлива и отдать предпочтение какому-либо одному из этих двух видов затруднительно, так как обоим типам топлива свойственны серьезные недостатки.

Несамовоспламеняющиеся топлива представляют большую опасность в эксплоатации, так как из-за неполадок в зажигании при запуске двигателя или возможных перебоев в горении при его работе, в камере сгорания даже за доли секунды накапливаются большие количества топлива. Это топливо, представляющее собой сильно взрывчатую смесь, затем воспламеняется, что чаще всего ведет к взрыву и катастрофе.

С другой стороны, известные самовоспламеняющиеся топлива обычно менее калорийны, чем несамовоспламеняющиеся. Кроме того, они должны применяться совместно с добавочными веществами, обеспечивающими энергичное начало и дальнейшее протекание реакции горения. Эти добавочные вещества, так называемые инициирующие вещества и катализаторы, добавляемые либо к окислителю, либо к горючему, усложняют эксплоатацию топлива, так как оно становится при этом неоднородным (приходится считаться с расслаиванием и другими свойствами неоднородных жидкостей). Пожалуй, наибольшим недостатком этих топлив является пожарная опасность при их эксплоатации. При малейшей течи компонентов топлива на самолете или ракете может возникнуть пожар, так как компоненты при смешении воспламеняются.

Мы упомянем лишь о наиболее распространенных топливах. В качестве окислителя в настоящее время наиболее часто применяются жидкий кислород и азотная кислота; применялась также перекись водорода. Каждый из этих окислителей имеет свои достоинства и недостатки. Жидкий кислород обладает тем преимуществом, что является 100 %-ным окислителем, т. е. не содержит в себе балластного вещества, не принимающего участия в горении (что имеет место для других двух окислителей), вследствие чего для сгорания того же количества горючего жидкого кислорода требуется по весу меньше, чем других окислителей. Одним из недостатков кислорода является то, что он при обычной температуре, как известно, находится в газообразном состоянии, вследствие чего для сжижения его приходится охлаждать до температуры минус 183 °C и хранить в специальных сосудах, типа дьюаровских, таких, например, какие применяются в термосах. Даже в таких сосудах кислород быстро испаряется, до 5 % в день. Перекись водорода, применявшаяся в качестве окислителя, имела очень высокую концентрацию, до 90 %; производство перекиси такой концентрации сложно и было освоено только в связи с ее применением в качестве окислителя для ЖРД. Концентрированная перекись весьма неустойчива, т. е. разлагается при хранении, которое поэтому становится серьезной задачей — для этой цели применялись различные стабилизирующие присадки. Азотная кислота неудобна тем, что в водных растворах вызывает коррозию многих металлов (обычно она хранится в алюминиевых баках).

В качестве горючих в настоящее время чаще всего применяются погоны нефти — керосин и бензин, а также спирт. Теоретически идеальным горючим является жидкий водород, в особенности с жидким кислородом в качестве окислителя, но его не применяют, так как такое топливо представляет большую опасность и его трудно хранить, а также потому, что жидкий водород имеет очень небольшой удельный вес (он почти в 15 раз легче воды), вследствие чего требует очень больших топливных баков.

В настоящее время наиболее часто применяют в качестве топлива для ЖРД либо керосин или бензин с азотной кислотой, либо спирт с жидким кислородом. Скорость истечения, которую обеспечивают эти топлива в современных двигателях, колеблется в пределах 2000–2500 м/сек, причем топлива с азотной кислотой дают значения, приближающиеся к нижнему из указанных пределов.

Сгорание жидкого водорода в жидком кислороде теоретически дало бы наибольшее значение скорости истечения, равное 3500 м/сек. Однако действительное значение скорости истечения при таком сгорании значительно меньше из-за различных потерь, в частности, из-за так называемой термической диссоциации, т. е. распада продуктов сгорания, который происходит при высокой температуре в камере сгорания и связан с затратой тепла.

В связи с большей калорийностью (теплотворной способностью) жидких топлив по сравнению с порохом скорость истечения газов в ЖРД получается большей, чем в пороховых двигателях, именно 2000–2500 м/сек вместо 1500–2000 м/сек. Для сравнения укажем, что при сгорании бензина в воздухе в современных воздушно-реактивных двигателях скорость истечения продуктов горения не превышает 700–800 м/сек.

Следует отметить, что применяющиеся в настоящее время топлива для ЖРД обладают серьезными недостатками, в первую очередь недостаточной калорийностью, и потому не могут считаться удовлетворительными. Подбор новых, улучшенных топлив — одна из важнейших задач совершенствования ЖРД. Однако более неотложной задачей является разработка таких конструкций ЖРД, которые позволили бы полностью использовать как лучшие из существующих, так и новые, более совершенные, топлива. Важнейшее требование, которое при этом предъявляется двигателю, это надежная работа при очень высоких температурах, развивающихся при сгорании высококалорийных топлив.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Реактивные топлива

Реактивные топлива

Качество современных товарных реактивных топлив, предназ­наченных для авиационного транспорта, при температуре нагрева ниже 100 °С существенно не изменяется.

При более высокой температуре становится заметным окислительный распад компо­нентов, составляющих топливо: Глубина и скорость распада воз­растают с температурой по мере ее приближения к средней тем­пературе кипения жидкой фазы. При дальнейшем повышении температуры давление насыщенных паров топлива возрастает, все большая часть топлива начинает кипеть, что затрудняет кон­такт с кислородом воздуха и, следовательно, окисление в жидкой фазе. Однако при этом продолжается укрупнение ранее образо­вавшихся частиц твердой фазы. С повышением температуры ин­тенсифицируется коррозия металлов. Значительный нагрев топли­ва будет происходить за счет аэродинамического нагрева корпуса самолета, летящего со скоростью более 1 М. Вот почему для сверхзвуковых самолетов необходимо подбирать топливо с наи­меньшим давлением насыщенных паров.

На рис. 60 показано осадкообразование для стандартных то­варных реактивных топлив в зависимости от температуры их на­грева. В зависимости от фракционного состава каждое топли­во характеризуется своей температурой равновесного кипения. Температуры максимального осадкообразования находятся при­близительно в области температур равновесного кипения топлив или ненамного выше.

Ранее было отмечено, что окислительный распад в атмосфере воздуха или кислорода протекает при температуре значительно более низкой, чем распад в инертной среде. В среде азота в ин­тервале температур, при которых в контакте с кислородом воздуха образуется значительное количество осадка, компоненты топлива практически не распадаются (табл. 85 ).

С ростом концентрации кислорода в газовой среде, контактирующейся с топливом при нагреве, количество образующихся осадков увеличивается. Это хорошо подтверждает окислительное происхождение твердой фазы в топливах (рис. 61).

На современных реактивных самолетах вес топлива в начале полета часто превышает 50% общего подъемного веса при полез­ной нагрузке 8—10%; при этом топливо рассматривается также как охлаждающая жидкость, обеспечивающая нормальное функ­ционирование в полете греющихся агрегатов. Предвидят, что уже к 1970 г. в некоторых странах значительная часть воздушного транспорта будет представлена сверхзвуковыми самолетами. Сверхзвуковой полет сопряжен с дополнительным значительным нагревом поверхности самолета за счет освобождающейся кинетической энергии трения плоскости самолета о достаточно плотные слои атмосферы, находящиеся на высоте 20—30 км.

На рис. 62 показано изменение температуры самолета в стра­тосфере в зависимости от скорости полета. Как это видно, при скорости 2 М (2390 км/ч) температура поверхности самолета будет 90 °С, а при 3 М (3580 км/ч) она достигнет 250 °С. На са­молете топливо используется не только как источник энергии и охлаждающий агент, но и как балансировочная масса, что вы­нуждает располагать баки с топливом под большей частью по­верхности летательного аппарата. Такое расположение топлива должно усилить влияние аэродинамического нагрева поверхности сверхзвукового самолета на нагрев топлива.

На рис. 63 показано предполагаемое размещение топливных баков в самолете с крейсерской скоростью 2,2 М.

Основные топливные баки — отсеки размещены в крыльях. Баки, расположенные в фюзеляже (три в носовой части и один в хвостовой), установлены для балансировки. Для каждого двига­теля имеется отдельный топливный коллектор. Тепло от топлив­ной системы отводится при помощи гидросистемы, системы кон­диционирования и системы смазки двигателей и генераторов. Перезаправка топливных баков осуществляется за 20 мин.

По-видимому, в эксплуатационных условиях для реактивных топлив температура 150—200СС максимально допустимая.

Об увеличении температуры топлива в сверхзвуковом самоле­те (скорость 2,2 М) дает представление схема, изображенная на рис. 64. Согласно этой схеме, топливо лишь перед конечным теплообменным аппаратом — масляным холодильником — нагре­вается до 160 °С, а перед форсункой камеры сгорания — до 200 °С, проходя эти участки под давлением. В аппаратуре топливо будет находиться под избыточным давлением 0,35 кГ/см2, которое соответствует давлению насыщенных паров лишь при 165 °С. В этом случае реактивное топливо должно оставаться стабильным при нагреве до 200 °С.

Для оценки термической стабильности реактивных топлив раз­работано много методов. Известны установки, с помощью кото­рых оценивают изменение качества топлив при их прокачке в условиях переменных температур, соответствующих реальным условиям эксплуатации. Результаты определений при помощи большинства принятых методов характеризуются значительным «запасом прочности». Условия испытания, по-видимому, жестче условий эксплуатации.

За рубежом распространена прокачивающая установка CFR Fuel Coker. При заданных давлении, температуре, скорости подачи топлива в систему и продолжительности испытания на установке определяют термическую стабильность товарных реактив­ных топлив. Изменяя условия, определяют термическую стабиль­ность топлив, предназначенных для сверхзвуковой авиации; в этом случае установку используют для исследовательских целей.

В табл. 86 приведены условия испытаний на установке.

Подогреватель установки CFR Fuel Coker представляет собой две концентрические алюминиевые трубки, между которыми через кольцеобразное отверстие прокачивается топливо. Во внутрен­ней трубке расположен электрический нагревательный элемент; топливо, соприкасаясь с горячей стенкой алюминиевой трубки, может выделять лаковые отложения различной интенсивности. Лакообразование топлива оценивают по шкалам в зависимости от внешнего вида трубки. Наиболее плотные лаковые отложения оценивают баллом 4. Баллом 0—1 оценивают участки поверх­ности, цвет которых почти не изменился. Таким образом полу­чают представление о лакообразующей способности топлива при соприкосновении его жидкой фазы с алюминиевой стенкой, нагре­той до температуры, превышающей равновесную температуру кипения топлива.

После подогревателя топливо проходит через металлический фильтр, спеченный из микрошариков нержавеющей стали, корпус которого нагревается до определенной температуры. Диаметр дис­ка фильтра 12,7 мм, номинальная величина пор 20 мк.

Стандартные условия испытания, предусмотренные специфика­цией, следующие: расход топлива 2,72 кг/ч; начальная темпера­тура топлива — температура окружающего воздуха; температура подогревателя 149 °С; температура фильтра 205 °С. Испытания продолжаются в течение 5 ч в том случае, если перепад давления на фильтре к этому времени не достигнет 635 мм рт. ст. По исте­чении указанного времени испытание можно продолжать до до­стижения этого предельного давления на фильтре. На установке фиксируют время, в течение которого изменяется перепад давле­ния, обусловленный забивкой фильтра осадками и смолами.

Изготавливают установку только из нержавеющей стали и алюминия.

Установка и режим ее работы имитируют наиболее важные узлы топливной системы самолета, при прохождении которых топ­ливо нагревается. Топливный бачок установки соответствует баку самолета, подогреватель воспроизводит топливо-масляный тепло­обменник, а фильтр установки — топливную форсунку камеры сгорания.

В табл. 87 приведены типичные результаты стандартных испы­таний термической стабильности товарных реактивных топлив США и Англии на установке CFR Fuel Сoker.

Как видно из табл. 87, в данном случае топлива не только удо­влетворяют требованиям спецификации, но имеют значительный запас качества.

Поскольку при температуре подогревателя установки 149°С и корпуса фильтра 205°С запас качества современных товарных топлив велик, некоторые исследователи предполагают, что имеет­ся возможность доведения качества товарных реактивных топлив, предназначенных для дозвуковых самолетов, до уровня требова­ний сверхзвуковых самолетов со скоростью 2—2,5 М. Экономи­чески это наиболее целесообразный путь. Для осуществления указанной цели предпринимаются большие исследовательские и испытательные работы. Прилагаются усилия не только в области получения удовлетворительного качества топлив, но и усовершенствования конструкции топливной аппаратуры сверхзвуковых са­молетов. Например, исключают контакт топлива с каталитически активными металлами: медью и ее сплавами (содержащими более 10% меди), свинцом, марганцем, бериллием, цинком.

Поскольку в дальнейшем предусматривается создание самоле­тов со скоростью 3 М, рассмотрим возможные температуры на­грева реактивного топлива на примере сверхзвукового самолета, летящего со скоростью 3 М и дальностью полета 6500 км. Такой самолет после взлета достигает скорости 3 М на высоте 20,7 км через 22 мин. При этом топливо нагревается незначитель­но (до 60—70 °С). Затем самолет со скоростью 3 М летит 104 мин с одновременным увеличением высоты (крейсерский полет). В этих условиях топливо равномерно нагревается до температуры па выходе из фюзеляжных баков 100 °С и на 'выходе из топливо- масляного радиатора (перед форсунками) до 140 °С.

Через 160 мин после взлета самолет совершает посадку. При замедлении полета топливо будет нагреваться еще 10—15 мин и на выходе из топливо-масляного теплообменника будет иметь при скорости 3 М температуру 260°С. Этот короткий период опа­сен вследствие образования отложений на фильтрах, в форсунках, а также ухудшения теплоотдачи в теплообменниках. Температу­ра несмоченной стенки неизолированного крыльевого бака, осво­божденного от топлива, к началу крейсерского полета составит 260°С. К концу полета остаточное и резервное топливо (15%) в фюзеляжном баке будет нагрето до 110 °С. Предполагается, что вследствие окислительных превращений остаточное топливо не будет пригодно для использования по прямому назначению или для смешения со свежим топливом. На земле оно будет слито.

Добавление в стабильное топливо 0,5% топлива, ранее нагре­того в полете, приведет к значительному ухудшению качества всей смеси.

В соответствии с намечающимися температурными пределами нагрева топлива в полете при различных сверхзвуковых скорос­тях на установке CFR Fuel Coker были испытаны топлива при различных условиях (исследовательский метод) с целью опреде­ления границы распада топлив. Эта граница характеризовалась температурой топлива на выходе из установки после испытания и температурой металла у выхода топлива. Температурные условия испытания ужесточались в зависимости от назначения топлива. В табл. 88 приведены результаты оценки границ распада различ­ных топлив.

Граница распада всех топлив, в том числе специально пред­назначенных для самолетов со скоростью 3 М, находилась в пре­делах 176—274 °С. Разрыв между границами распада топлив, предназначенных для самолетов со скоростью 2 М, и товарных топлив, используемых в дозвуковой транспортной авиации, со­ставлял всего лишь 15 °С. Очевидно, что. незначительным регла­ментированием химического состава современных товарных ре­активных топлив удастся обеспечить их удовлетворительную тер­мическую стабильность для самолетов со скоростью 2—2,2 М.

vdvizhke.ru

Топливо для воздушно-реактивных двигателей - Справочник химика 21

    ТОПЛИВА ДЛЯ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ [c.90]

    Топлива для воздушно-реактивных двигателей [c.96]

    Топливо для воздушно-реактивных двигателей (ВРД) [c.137]

    ТОПЛИВА ДЛЯ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕИ [c.417]

    Полнота сгорания является важной характеристикой химических топлив, так как от нее зависит эффективность действия тех или иных устройств, принцип действия которых основан на использовании выделяющегося при горении тепла. Например, снижение полноты сгорания топлива для воздушно-реактивного двигателя на 5, 10 и 15% уменьшает дальность полета соответственно на 5, 11 и 18% [25, с. 149]. В нормальных условиях работы двигателей полнота сгорания достигает 94—98%, но в неблагоприятных условиях [c.69]

    Топлива для воздушно-реактивных двигателей реактивные топлива, авиационные керосины — вырабатывают на базе прямогонных фракций нефти и газойлей каталитического крекинга с применением в ряде случаев гидрогенизационных процессов. В СНГ выпускают топлива марок ТС-1, Т-1, Т-2, РТ, выкипающие в интервале 60—280 °С (применяют в двигателях с дозвуковой скоростью полета), и термостабильное топливо утяжеленного состава, выкипающее в интервале 195—315 °С (применяют для двигателей со сверхзвуковой скоростью полета). [c.418]

    Общие требования к топливам для воздушно-реактивных Двигателей неоднократно рассматривались в литературе [3—5, И]. Целесообразно остановиться на тех эксплуатационных свойствах топлива, которые приобрели особое значение в последние годы в связи с повышением теплонапряженности двигателей, ужесточением требований к их надежности и ресурсу, а также увеличением скоростей и дальности полетов. [c.14]

    Фракционный состав моторных топлив имеет очень важное эксплуатационное значение, так как характеризует их испаряемость в двигателях и давление паров при различных температурах и давлениях. Топливо для двигателей с зажиганием от искры должно иметь такую испаряемость, которая обеспечивала бы легкий запуск двигателя при низких температурах, быстрый прогрев двигателя, его хорошую приемистость к переменам режима и равномерное распределение топлива по цилиндрам. Кроме того, при плохой испаряемости топлива оно будет разжижать смазочное масло, что крайне нежелательно. Топливо для воздушно-реактивных двигателей (ВРД) должно быть утяжеленного фракционного состава, порядка 150—280° С, для обеспечения надежной работы системы топливо-подачи на больших высотах без образования паровых пробок. Вместе с тем должна быть обеспечена и хорошая испаряемость в камере сгорания и полнота сгорания топлива. [c.80]

    Дизельное топливо должно протекать по трубопроводам малого диаметра, через тонкие фильтры, иногда при крайне низких температурах. Поэтому вязкость и температура застывания дизельного топлива имеют исключительно большое значение. Наиболее жесткие требования к температуре застывания предъявляются к авиационным горючим и особенно к топливу для воздушно-реактивных двигателей. Она должна быть у дизельного топлива летнего —10, зимнего —45, у арктического и для воздушно-реактив-ных двигателей —60° С. [c.171]

    Присутствие воды в смазочных маслах, карбюраторных и дизельных топливах, топливе для воздушно-реактивных двигателей и в других нефтепродуктах крайне нежелательно и по техническим нормам в большинстве случаев недопустимо. Содержание воды в масле усиливает его склонность к окислению, а также ускоряет процесс коррозии металлических деталей, соприкасающихся с маслом. Присутствуя в карбюраторном и дизельном топливе, вода снижает их теплотворную способность, засоряет карбюратор и вызывает закупорку распыляющих форсунок. При низких температурах кристаллики льда засоряют топливные фильтры, что может служить причиной аварии при эксплуатации авиадвигателей. [c.96]

    Понижение вязкости топлива благоприятно сказывается на условиях его распыливания, так как уменьшаются размеры капель. Поскольку, однако, снижение вязкости вызывает ухудшение работы топливной аппаратуры вследствие износа трущихся частей, чрезмерно уменьшать вязкость не следует. Вязкость реактивных топлив ТС-1, Т-1, Т-2, РТ при 20 °С должна быть не менее 1,05—1,50 мм /с, а утяжеленного термостабильного топлива — не выше 4,5 мм /с. Важным эксплуатационным показателем топлива для воздушно-реактивных двигателей служит температура начала кристаллизации. Так как при полетах самолетов с дозвуковой скоростью топливо в баках интенсивно охлаждается, то для предотвращения его застывания температура начала кристаллизации должна быть не выше — (55—60) °С. [c.419]

    Рагозин Н. А. Топлива для воздушно-реактивных двигателей (По данным зарубежной печати). Гостоптехиздат, 1956, стр. 56, ц. 1 р. 80 к. [c.351]

    Содержание смолистых веществ в топливах для воздушно-реактивных двигателей оценивают теми же методами, которые применяют для бензинов и дизельных топлив (определение содержания фактических смол, остатка в стаканчике после испарения топлива в струе воздуха или водяного пара). Считают, что топлива, содержащие в 100 мл не более 4—6 мг фактических смол, не вызывают осложнений в работе топливной аппаратуры из-за образования смолистых отложений. [c.181]

    Топлива для воздушно-реактивных двигателей (ВРД) представляют собой кервснновые фракции или смесь керосиновых и бензиновых фракций нефтей. Важнейшими характеристиками топлив для ВРД являются теплота сгорания в плотность, определяющие возможн5 ю дальность полета самолета при заданном объеме топливных баков. [c.90]

    Важным эксплуатационным показателем топлива для воздушно-реактивных двигателей служит температура начала кристаллизации. Так как при полетах самолетов с дозвуковой скоростью топливо в баках интенсивно охлаждается, то для предотвращения его застывания температура начала кристаллизации должна быть не выше 55-60 °С. [c.338]

    В качестве топлива для воздушно-реактивных двигателей наиболее широко применяют керосиновые фракции, обладающие довольно высокой физической стабильностью. При использовании топлив широкого фракционного состава типа топлива Т-2, содержащих много легких фракций, потери от испарения при хранении и применении бывают значительными. Поэтому все правила сокращения потерь при хранении бензинов полностью применимы и к топливам широкого фракционного состава. [c.176]

    Топлива для воздушно-реактивных двигателей готовят на основе нефтяных фракций, полученных путем прямой перегонки нефти. Такие фракции практически не содержат алкенов, [c.176]

    Небольшое содержание алкенов обусловливает высокую химическую стабильность реактивных топлив. В условиях хранения таких топлив окислительные процессы идут очень медленно. Так, при хранении топлив Т-1 и ТС-1 в наземных резервуарах в течение 6—7 лет в северной зоне или 4—5 лет в южной зоне изменения кислотности не превышали 0,3 мг КОН/ /100 мл, а содержание фактических смол повысилось не более чем на 3—4 мг/100 мл. Установлено, что топлива для воздушно-реактивных двигателей, полученные прямой перегонкой нефти, можно хранить в течение 5 лет без заметного изменения их качества. [c.177]

    От химического состава топлива зг висят также эффективность и полнота сгорания топлива для воздушно-реактивных двигателей. При сгорании аренов, в особенности бициклических (нафталиновых) углеводородов, образуются сажа и нагар, которые откладываются на стенках жаровых труб кам(ф сгорания и распылителей форсунок. Нагарообразование нарушает аэродинамику потока газов в камере сгорания, изменяет форму распыления струи топлива и форму факела. В конечном итоге происходит коробление и прогар стенок жаровых труб. Кроме того, при использовании ароматизированного топлива в газах сгорания появляются раскаленные частички углерода, увеличивается интенсивность излучения пламени, вследствие чего перегреваются стенки камеры сгорания. Нагарообразование растет также при повышении температуры конца кипения и плотности топлива, при у1,еличенном содержании сернистых соединений и смол. [c.343]

    По этим показателям особенно высокие требования предъявляют к топливам для воздушно-реактивных двигателей. Отложения на форсунках забивают отверстия, ухудшают качество распыления, искривляют факел вплоть до срыва пламени. Нагар, образующийся в камерах сгорания, сиособствует местным перегревам, короблению, а иногда и прогару стенок. Кусочки нагара, ссыпающиеся со стенок камер сгорания, вызывают эрозионный износ лопаток турбины. Для снижения образования отложений и нагара в топливах для воздушно-реактивных двигателей ограничивают содержание ароматических углеводородов (не более 20—22%), фактических смол (не более 5—6 мг/100 мл), серы (не более 0,1 — 0,25%), меркаптановой серы (не более 0,005%). Для этой же цели определяют высоту некоитящего пламени, люминометрическое число, коксуемость, зольность и йодное число. [c.16]

    В 1897 г. инженером П. Д. Кузьминским был впервые построен газотурбинный двигатель. Использующий в качестве топлива керосин, который в дальнейшем получил широкое распространение как топливо для воздушно-реактивных двигателей (ВРД). В 1906-1908 гг. инженером Короводиным бьш построен реактивный двигатель пульсирующего типа, работающий на бензине. В 1911 г. инженером Гороховым был предложен мотокомпрессорный ВРД, использующий также нефтяное топливо [4]. [c.177]

    В качестве топлива для воздушно-реактивных двигателей применяют пoJ yчeнный перегонкой нефти дистютлят с т. кип. 150-250 (реактивное топливо ТС-1) или 150-280 С (топливо Т-1). [c.105]

chem21.info

Топливо для реактивных двигателей - Справочник химика 21

    В настоящее время основными топливами для реактивных двигателей гражданских транспортных самолетов являются керосины Т-1, ТС-1, Т-7, Т-6, Т-2. [c.84]

    ПЕРСПЕКТИВНЫЕ ТОПЛИВА ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ [c.90]

    Керосиновые фракции ввиду высокого содержания изопа — рафинов и низкого — бициклических ароматических углеводородов являются высококачественным топливом для реактивных двигателей. [c.228]

    Присадки ВНИИ НП-360 МНИ-ИП-22к АЗНИИ-ЦИАТИМ-1 Топлива для реактивных двигателей Бензин растворитель для резиновой промышленности [c.182]

    Керосины тракторные Топлива для реактивных двигателей [c.198]

    Относительно продуктов, получаемых при процессах с более высоким давлением, следует отметить высокое качество фракции дизельного топлива (цетановое число 50—60). Стандартные моторные методы исследования лигроина показали его низкое качество (октановое число 40), если не применять последующего риформирования. Однако этот лигроин, по-видимому, окажется вполне удовлетворительным для использования его в качестве топлива для реактивных двигателей. В работе, описанной выше, использовались умеренные рабочие давления, но активность применявшегося катализатора не оставалась постоянной, и после работы в течение двух недель количество отложившегося на катализаторе кокса составляло около 5—6% вес. Операции при таких условиях требуют прерывного процесса с периодической регенерацией катализатора про- [c.284]

    Настоящий стандарт распространяется на светлые нефтепродукты (топлива для реактивных двигателей и осветительные керосины) и устанавливает метод определения максимальной высоты пе-коптящего пламени. [c.445]

    Чили. Потребление нефтепродуктов в Чили в 1970 г. составило 4,6 млн. т. За счет собственного производства в 1970 г. страна полностью удовлетворяла свои потребности в автомобильном бензине, на долю которого приходится более трети общего потребления нефтепродуктов, примерно 95% потребностей в дизельном топливе и 80% в керосине. За счет импорта покрывалось примерно 25% потребностей страны в мазуте и 40% в авиационном бензине. Страна закупила за рубежом все необходимое топливо для реактивных двигателей, а также смазочные масла. [c.56]

    Основанием для получения промышленного образца топлива для реактивных двигателей марки ТС-1 послужило Указание ЗАО ЮКОС-РМ  [c.162]

    Установка /]0У-АВТ-5 в период выработки промьшшенного образца топлива для реактивных двигателей марки ТС-1 перерабатывала смесь нефтей Самарских и Западносибирских. [c.162]

    В период выработки промышленного образца топлива для реактивных двигателей марки ТС-1 установка ЭЛОУ-АВТ-5 работала в соответствии с нормами технологического регламента, согласованного с представителем заказчика Представительства № 375. [c.162]

    Показатели технологического режима и фактические данные работы установки в период выработки промышленного образца топлива для реактивных двигателей марки ТС-1 приведены в таблице № 2. [c.162]

    Компонентный состав промышленного образца топлива для реактивных двигателей марки ТС-1 приведен в таблице 3. [c.162]

    Топливо для реактивных двигателей Т-2, ГОСТ 10227—86 Бензин авиационный, Б-70, ТУ 38—101913—82 Бензин-растворитель, ГОСТ 3134—78 Масло вакуумное БМ-6 [c.79]

    Топливо для реактивных двигателей (кроме Т-2), ГОСТ 10227—86 [c.79]

    Нафталиновые углеводороды, содержание Топливо для реактивных двигателей Измерение УФ поглощения (оптической плотности) топлива на волне 285 мм относительно изооктана вычисление содержания нафталиновых углеводородов по среднему значению коэффициентов поглощения индивидуальных нафталиновых углеводородов 17749—72 [c.49]

    Стабильность термоокислительная Топливо для реактивных двигателей Оценка склонности топлива к образованию нерастворимых продуктов окисления под действием высоких температур в условиях однократной прокачки через трубчатый подогреватель с контрольным фильтром 17751-79 [c.51]

    Теплота сгорания удельная низшая Топливо для реактивных двигателей Определение плотности и анилиновой точки испытуемого топлива вычисление по их значениям низшей удельной теплоты сгорания 11065—75 [c.52]

    Керосиновая фракция 120—230 (240) °С используется как топливо для реактивных двигателей, при необходимости подвергается демеркаптанизации, гидроочистке фракцию 150—280 или 150—315 °С из малосернистых нефтей используют как осветительные керосины, фракцию 140—200 °С—как растворитель (уайт-спирит) для лакокрасочной промышленности. [c.71]

    Трудности возникают и при оптимизации качества средних дистиллятов-реактивного и дизельного топлив. Топлива для реактивных двигателей получают преимущественно из прямогонных фракций нефти. Увеличение ресурсов их производства связано с оптимизацией (расширением) фракционного состава, температуры начала кристаллизации и содержания ароматических углеводородов, вязкости и показателей качества. Установлено, что каждый процент увеличения отбора реактивного топлива сопровождается уменьшением выхода дизельного топлива на 0,9%, а суммы светлых - на 0,5%. [c.206]

    Ввиду высокого содержания изопарафинов и низкого — бициклических ароматических углеводородов керосиновые фракции продуктов гидрокрекинга являются высококачественным топливом для реактивных двигателей, а дизельные фракции имеют высокие цетановые числа и относительно низкие температуры застывания. [c.298]

    Число временных технических условий ограничено. Они утверждаются на продукты, вырабатываемые в небольших количествах, в виде опытной партии, например, ВТУ 36-1-87—67 Топлива для реактивных двигателей, содержащие присадку ПМ АМ-2 (опытные партии) . [c.13]

    Топливо для реактивных двигателей представляет собой фракцию керосина, используемую для воздушно-реактивных двигателей. [c.57]

    Не менее важен процесс гидроочистки, предназначенный для улучшения качества углеводородного сырья. Ей подвергают бензины, лигроины, топлива для реактивных двигателей, дизельное топливо, масла, мазуты, угольные смолы, продукты, получаемые из горючих сланцев и т. д. Обработка водородом в присутствии катализаторов освобождает сырье от связанной серы, азота и кислорода, а также ведет к гидрированию ненасыщенных углеводородов и ароматических колец. Процесс проводят при 300—400°С, 3—4 МПа и 10-кратном избытке водорода. После гидроочистки как правило изменяются запах и цвет продуктов, уменьшается количество выделяющихся смолистых веществ, улучшаются топливные характеристики, повышается стойкость при хранв НИИ. Особенно важно удалить из топлива серу, чтобы предотвратить отравление воздуха диоксидом серы, который образуется при сгорании топлива. [c.90]

    Подавляющее большинство современных самолетов и вертолетов оснащено газотурбинными двигателями. Они независимо от используемого принципа тяги (за счет работы воздушного вш1та или истечения газов из сопла) работают на топливах для реактивных двигателей. Реактивные топлива представляют собой дистиллятные фракции нефти, вьпсипающие с учетом топлив различных марок в пределах 60-320 °С. Характерной особенностью применения топлив на авиационной технике являются повышенные требования к безотказности ее работы. В связи с этим реактивные топлива подвергают более тщательному контролю по технологии производства и качеству при выработке, транспортировании, хранении и применении. [c.121]

    Топлива Т-1 и ТС-1 яв. шются наиболее массовыми, в условиях эксплуатации они вэашозаменяеш. Однако по ряду показателей они не полностью удовлетворяют требованиямкавиационнкм двигателям. Поэтому разработано новое единое топливо для реактивных двигателей самолётов с дозвуковой скоростью полёта - топливо РТ. [c.100]

    Мы, нижеподписавшиеся, главный технолог завода Якимов С.Н., ззм. гоиералыюго директора по производству Сериков Н.К., начальник производственного отдела Шиборин Ю.А,, начальник ОГК Плаксина В.В., начальник филиала представительства заказчика № 375 КуляБИи П.В. составили настоящий акт в том, что 17-20 января 2000 года был проведен промышленный пробег по получению топлива для реактивных двигателей марки ТС-1 по ГОСТ 10227-86. [c.162]

    Компонентный состав проь4ышлеиного образца смесевого топлива для реактивных двигателей марки ТС-1 [c.165]

    Коррозио пая активность при повышенных температурах Топливо для реактивных двигателей Оценка производится по изменению массы металлической пластинки и по количеству отложений, образовавшихся на поверхности пластинки, находящейся в топливе в течение 25 ч при определенной температуре 18598-73 [c.49]

    Люминометриче-ское число Топливо для реактивных двигателей Определение производится на приборе ПЛЧТ-69 по температурам газов в камере сгорания при сжигании опытного и эталонного топлив 17750-72 [c.49]

    Топливо для реактивных двигателей Оценка производится по количеству осадка растворимых смол, образующихся при окислении топлива в приборе типа ТСРТ-2 при 150°С в течение 5 ч 11802—66 [c.51]

    Нефтяные топлива (авиационные и автомобильные бензины, топливо для реактивных двигателей, дизельное, котельное) применяют в двигателях различного типа, преобразующих тепловую энергию, которая получается при сгорании топлива, в механическую, а также в агрегатах и устройствах, предназначенных для получения тепла. [c.430]

    Катализаторы гидрокрекинга и гидроочистки. Процесс гидроочистки применяется для улучшения качества нефтяных дистиллятов путем их обработки водородом в присутствии катализатора. При этом они освобождаются от соединений серы, азота и кислорода, происходит гидрогенизация олефинов. диолефиновых и ароматических углеводородов. Гидроочистке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т. д. [46]. Используются алюмо-кобальт-молибденовый, алюмо-никель-молнбденовый или алюмо-никель-вольфрамовый катализаторы. Перед применением в процессе катализаторы обычно насыщают серой. Процесс гидроочистки проводят при температуре 300—400 °С, давлении 3—4 МПа, объемной скорости подачи сырья 1—5 ч"- и циркуляции водорода до 10 моль на 1 моль углеводорода. Во избежание повышенного коксоотложения на катализаторе сырье, поступающее на гидроочистку, необходимо предохранять от окисления. Катализаторы очень устойчивы к отравлению. Потерявший активность катализатор содержит сульфиды металлов и углистые отложения. Регенерацию проводят при температуре 300—400 °С паровоздушной смесью с начальной концентрацией кислорода 0,5—1% (об.). [c.405]

chem21.info

Моторное топливо для реактивных двигателей

    Важнейшими группами нефтепродуктов являются топлива и смазочные масла. Нефтяные топлива разделяются на моторные, применяемые в двигателях, и котельные — для сжигания в топках паровых котлов и в промышленных печах. Первые из них подразделяются в свою очередь на карбюраторные, дизельные и топлива для реактивных авиационных двигателей. Карбюраторным топливом для двигателей внутреннего сгорания с карбюраторами является бензин, важнейшей характеристикой которого является его стойкость к детонации. Детонация — это чрезмерно быстрое сгорание топливной смеси в цилиндре карбюраторного двигателя, нарушающее нормальную работу двигателя. Наиболее склонны к детонации предельные углеводороды нормального строения, тогда как предельные углеводороды с сильно разветвленной цепью детонируют слабо. Способность бензина к детонации оценивается октановым числом. В качестве стандарта принимается н-гептан и 2,2,4-триме-тилпентан (изооктан), октановые числа которых считают равными О и 100 соответственно  [c.173]     Такой спрос можно удовлетворить только дальнейшим увеличением объема, углублением и химизацией переработки нефти. При этом химический состав моторных топлив становится все более разнообразным и сложным, в них появляются активные химические компоненты, и в результате их свойства существенно изменяются. В то же время непрерывно совершенствуются двигатели и возрастает их теплонапряженность. Так, температура топлива в системе некоторых современных и перспективных двигателей до попадания в камеру сгорания может достигать следующ их величин [2, 4] в дизельных быстроходных двигателях 170—185° С, в реактивных двигателях сверхзвуковой авиации 200—250° С. [c.5]

    Полноте использования природных и синтетических нефтей, помимо методов их глубокой переработки (крекингом н деструктивной гидрогенизацией) на бензин, весьма способствует широкое применение дизелей, а за последнее время также и воздушного (газотурбинного) и жидкостного реактивных двигателей. Топливом для дизелей являются соляровые масла и моторная нефть, т. е. более тяжелые фракции перегонки нефти, в большей своей части служащие сырьем и для крекинга. К дизельному топливу, в частности к топливу, отличающемуся легкой самовоспламеняемостью, предъявляются специфические качественные требования. Сила стука дизельного мотора (сходного с детонацией в карбюраторном двигателе) определяется воспламеняемостью сжигаемого в нем горючего. Легко воспламеняющееся топливо способствует спокойному ходу дизельных машин. Установлено также, что сокращение [c.11]

    Полученные из нефти смеси алканов и других углеводородов применяются в качестве моторного топлива для двигателей внутреннего сгорания и реактивных двигателей. [c.101]

    Относительно продуктов, получаемых при процессах с более высоким давлением, следует отметить высокое качество фракции дизельного топлива (цетановое число 50—60). Стандартные моторные методы исследования лигроина показали его низкое качество (октановое число 40), если не применять последующего риформирования. Однако этот лигроин, по-видимому, окажется вполне удовлетворительным для использования его в качестве топлива для реактивных двигателей. В работе, описанной выше, использовались умеренные рабочие давления, но активность применявшегося катализатора не оставалась постоянной, и после работы в течение двух недель количество отложившегося на катализаторе кокса составляло около 5—6% вес. Операции при таких условиях требуют прерывного процесса с периодической регенерацией катализатора про- [c.284]

    В качестве моторных топлив находят применение различные нефтепродукты те, что обычно называются бензин , жидкие газы как правило, пропан и бутан), керосин и легкий газойль — топливо турбореактивных двигателей и автомобильных дизелей. Некоторые реактивные двигатели используют в качестве топлива широкую фракцию, в состав которой входит бензин и керосин. [c.385]

    Фракционный состав моторных топлив имеет очень важное эксплуатационное значение, так как характеризует их испаряемость в двигателях и давление паров при различных температурах и давлениях. Топливо для двигателей с зажиганием от искры должно иметь такую испаряемость, которая обеспечивала бы легкий запуск двигателя при низких температурах, быстрый прогрев двигателя, его хорошую приемистость к переменам режима и равномерное распределение топлива по цилиндрам. Кроме того, при плохой испаряемости топлива оно будет разжижать смазочное масло, что крайне нежелательно. Топливо для воздушно-реактивных двигателей (ВРД) должно быть утяжеленного фракционного состава, порядка 150—280° С, для обеспечения надежной работы системы топливо-подачи на больших высотах без образования паровых пробок. Вместе с тем должна быть обеспечена и хорошая испаряемость в камере сгорания и полнота сгорания топлива. [c.80]

    В книге обобщается отечественный и зарубежный опыт использования присадок к различным моторным топливам (автомобильным и авиационным бензинам, реактивным и дизельным топливам) как средств улучшения их эксплуатационных свойств и повышения долговечности двигателей и топливной аппаратуры. Рассматриваются механизм действия и ассортимент присадок, улучшающих сгорание топлив в двигателях, снижающих образование нагаров, предохраняющих двигатели от коррозии и износов, облегчающих эксплуатацию двигателей в различных условиях, повышающих электропроводность топлив и др. [c.2]

    В зависимости от функционального назначения и условий эксплуатации техника комплектуется двигателями внутреннего сгорания с разными технико-эксплуатационными параметрами и мощностью — карбюраторными, дизельными, воздушно-реактивными, газотурбинными. В результате определяется объем потребления моторных топлив по их видам и качественной характеристике— автомобильные и авиационные бензины, реактивные, дизельные, моторные (для тихоходных дизелей), газотурбинные топлива. Качественные требования к этим топливам функционально зависят от условий эксплуатации техники, в том числе природно-климатических, и степени форсирования двигателей. Потребность в моторных топливах даже при условии роста объемов работ и парка технических средств может быть снижена за счет улучшения топливной экономичности двигателей и технических средств (снижения их массы, улучшения аэродинамики и т. п.). [c.36]

    Керосиновая фракция (180-270°С) - содержит углеводороды С10-С15, используется в качестве компонента моторного топлива для реактивных и дизельных двигателей, для бытовых нужд (осветительный керосин). [c.39]

    В ассортименте нефтепродуктов завода бензины традиционного набора-от А-76 до АИ-93, ароматические углеводороды, получаемые с установки риформинга бензинов, дизельное топливо-летнее и зимнее с содержанием серы 0,2% (мае.), топливо для реактивных двигателей, печное топливо, мазуты марок 100 и 400, битумы, моторные и индустриальные масла, присадки и добавки. В рамках завода работает катализаторная фабрика, которая выпускает в основном катализаторы гидрирования и гидроочистки для большинства российских заводов. Кроме того, в ассортименте фабрики катализаторов-катализаторы риформинга, селективного крекинга бензинов и другие, а также различные модификации оксида алюминия. [c.134]

    Нефтяные топлива разделяются на моторные, или светлые нефтепродукты, применяемые для сжигания в двигателях, и котельные — для сжигания в топках паровых котлов и в промышленных печах. Первые из них разделяются в свою очередь на карбюраторные, дизельные и топлива для реактивных авиационных двигателей. Карбюраторным топливом для двигателей внутреннего сгорания с карбюраторами является бензин. Бензин в настоящее время — это важнейший нефтепродукт, так как служит топливом для двигателей, устанавливаемых на автомашинах и винтомоторных самолетах. Авиационный бензин является более легким, плотность его 0,73— 0,76 г/с.и , т. кип. 40—180° С, автомобильный — более тяжелым, плотность его 0,74—0,77 г см, т. кип. 50—200° С. Важнейшей характеристикой бензина как топлива является его стойкость к детонации. [c.210]

    В ассортименте завода этилированные бензины, дизельное топливо, топливо для реактивных двигателей, мазуты, моторные масла, битумы. [c.142]

    По топливному варианту нефть перерабатывают в основном на моторные и котельные топлива. При одной и той же мощности завода по нефти топливный вариант переработки отличается наименьшим числом технологических установок и низкими капиталовложениями. Переработка нефти по топливному варианту может быть глубокой и неглубокой. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных авиационных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка — гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы — каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива. [c.151]

    В связи с развитием реактивной авиации, открытием новых нефтяных месторождений и созданием опособов переработки нефти в высокооктановое топливо (риформинг) роль синтетического моторного топлива снизилась, но зато появился новый его потребитель— ракетная техника. В жидкостных ракетных системах используются синтетические горючие вещества (метанол, этанол, этилами-ны, диметилгидразин, некоторые металлооргалические соединения),, имеющие существевные преимущества перед углеводородами. Важное значение как богатый кислородом окислитель для жидкостных ракетных двигателей приобрел тетравитрометан (N02)4. [c.21]

    В народном хозяйстве как метан, так и углеводороды нефти играют очень важную роль, являясь наряду с углем основным энергетическим ресурсом современного человечества и главным источником органического химического сырья для промышленности. Особенно большие количества смесей углеводородов в виде фракций нефти идут в качестве моторного топлива для автотранспорта и самолетов старых типов с поршневыми двигателями (бензин), а также для реактивных самолетов и ракет (керосин). [c.67]

    Моторные топлива, согласно принятым во всех странах классификациям, делятся на следующие основные типы бензины для поршневых авиационных двигателей, бензины для автомобильных карбюраторных двигателей, топлива для реактивных двигателей, топлива для дизельных двигателей. Для карбюраторных двигателей (главным образом тракторных) применяют также керосины и лигроины. В последние годы гораздо шире стали применять специальные топлива для судовых и стационарных газотурбинных двигателей [6, 7]. [c.7]

    При разногласиях в оценке качества моторного топлива, а. также при определении температуры кристаллизации топлив для реактивных двигателей в качестве охладительной смеси применяется только этиловый спирт и твердая углекислота  [c.379]

    Моторные топлива. В ЧССР вырабатываются авиационные и автомобильные бензины, топлива дизельные и для реактивных двигателей, осветительный керосин. [c.99]

    Моторное топливо Тракторное топливо, топливо для реактивных двигателей, бытовое назначение, сырье для крекинга [c.80]

    Легковоспламеняющимися нефтепродуктами являются моторные топлива. Так, автомобильный бензин имеет температуру вспышки в закрытом тигле —50 С, авиационный —30" С. В зависимости от сортности топлива для реактивных двигателей должны иметь температуру вспышки не ниже 28—60 °С, а топлива для быстроходных дизелей 35—61 °С. [c.71]

    Топливо. Преобладающая масса всех нефтепродуктов используется в виде следующих топлив а) для карбюраторных двигателей внутреннего сгорания — авиационный и автомобильный бензин тракторный лигроин и керосин б) для дизелей — дизельное и моторное топливо, газойль в) котельное топливо — мазут топочный, мазут флотский, газ природный и искусственный, г) реактивное — для двигателей реактивного типа. [c.231]

    Керосин применяют главным образом как моторное топливо для тракторов и реактивных двигателей, а также для бытовых нужд. В настоящее время все больще и больше керосин начинают применять в качестве сырья в химической промышленности. [c.175]

    Зарубежные моторные топлива — автомобильные и авиационные бензины, топлива для авиационных воздушно-реактивных двигателей, дизельные топлива, топлива для стационарных и морских газотурбинных установок, котельные топлива (мазуты) — обычно представляют собой смеси нескольких компонентов, получаемых при различных технологических процессах, и содержат присадки. [c.12]

    Важнейшими среди нефтепродуктов являются моторные топлива и смазочные масла. В зависимости от целевого назначения топлива различают моторные бензины, тракторное, дизельное топливо и топливо для реактивных и турбореактивных двигателей. Моторные бензины, иначе карбюраторное топливо, используют для поршневых двигателей внутреннего сгорания, которыми оборудованы наиболее массовые виды транспорта (самолеты, автомобили, мотоциклы). [c.238]

    Изменение физико-химических свойств моторных топлив при. хранении (раздел Изменение свойств топлив для воздушно-реактивных двигателей при хранении написан Зреловым В. Н.). Котельное топливо [c.2]

    По основным характеристикам чехословацкие дизельные той-лива близки советским малосернистым дизельным топливам. Определение цетановых чисел дизельных топлив по моторному методу чехославацкими техническими условиями не предусматривается (определение п-роводится по расчетному методу на ооно вании значений физико-химических величин). Фактические значения цетановых чисел ряда образцов топлив NM-30 и ЫМ-45 составляют 48—50. Топливо для реактивных двигателей. Стандартом сЗН 656519 предусматривается выработка топлива РЬ-З, близкого по физикохимическим показателям топливу Т-1 по ГОСТ 10227—62. Качество топлива для реактивных двигателей РЬ-З и топлива РЬ-4 (технические условия ТРО-25-005-64) показаны ниже. Плотность. ...... [c.104]

    Моторные топлива, в зависимости от типа двигателей, для которых они предназначены, делятся на карбюраторные, дизельные и реактивные топлива. Жидкие карбюраторные топлива можно разделить [c.206]

    При условии хранения в присутствии антиоксидантов и под азотом нельзя исключать возможности использования как компонентов моторных топлив, также и диолефиновых и эни-новых углеводородов с сопряженными связями. Прэтр [30] отметил большой интерес, представляемый для поршневого двигателя внутреннего сгорания смесью изооктана и дицикло-нентадиена. Способность некоторых диолефиновых углеводородов ингибитировать окисление в условиях работающего двигателя и снижать детонацию должна быть объяснена их свойством комбинироваться со свободными радикалами, образующимися из других, более склонных к окислению, углеводородов. В результате возникают новые циклические и ациклические сильноразветвленные молекулы, не склонные к окислению и поэтому обладающие высокими антидетонационными свой-ттвами. Эти новые молекулы могут обладать и более высокими антидетонационными свойствами, нежели каждый из исходных компонентов. Это как раз и имеет место в случае примерно эквимолекулярной смеси изооктана и дициклопентадиена. Еще, повидимому, большее значение могут получить непредельные углеводороды в топливах реактивного двигателя, где им не придется конкурировать с тетраэтилсвинцом и где будет иметь значение не их способность повышать антидетонационные свойства смесей углеводородов в специфических условиях двигателя внутреннего сгорания, а присущая им высокая окисляемость. [c.322]

    Развитие этих процессов происходило и происходит под влиянием соответствующих требований со стороны моторной техники. При высоком уровне потребления авиационных и автомобильных бензинов и незначительном потреблении дизельных топлив в 1940—1950-х годах в широком масштабе в США, СССР и других развитых странах был реализован каталитический крекинг средних дистиллятов (керосино-газойлевой фракции атмосферной перегонки нефти), обеспечивающий большой выход бензиновых компонентов с достаточно высоким октановым числом. Для повышения октановых чисел бензинов получили распространение процессы полимеризации, алкили-пования, а также термического риформинга, который был заменен затем на более эффективный процесс каталитического риформинга. По мере дизели-зации моторного парка и перехода авиационной техники на реактивные двигатели возросла потребность в средних дистиллятах — авиационном керосине и дизельном топливе, и процесс каталитического крекинга с конца 1950-х — начала 1960-х годов был переориентирован на переработку тяжелого сырья — вакуумного газойля. В 1960-х годах в схемы НПЗ ряда зарубежных стран, прежде всего США, стал включаться процесс гидрокрекинга под давлением 15 МПа. Этот процесс обеспечивал наибольшую гибкость в регулировании выхода бензина, керосина, дизельного топлива при переработке тяжелого дистиллятного, а в ряде случаев — и остаточного сырья [121. По мере утяжеления сырья каталитического крекинга — переработки вакуумных газойлей с концом кипения 500—560 °С — возникла проблема как получения кондиционных котельных топлив из тяжелых вакуумных остатков, так и дальнейшей их переработки с целью увеличения выработки моторных топлив. Для переработки гудронов в схемах современных НПЗ получили развитие термические процессы (висбрекинг, замедленное коксование, коксование в псевдоожиженном слое — флюидкокинг — и его модификация с газификацией получаемого пылевидного кокса — флексико-кинг, сочетание процессов висбрекинга с термическим крекингом и др.), гидрогенизационные процессы (гидрокрекинг, гидрообессеривание), которые в ряде случаев сочетают со стадией предварительной подготовки сырья методами сольволиза (деасфальтизации) и деметаллизации. Перспективными процессами, частично реализованными в промышленности или находящимися в опытно-промышленной проверке, являются процессы гидровисбрекинга, [c.48]

    Возгщкает, естественно, вопрос, все ли эти продукты должны вырабатываться нефтяной промышленностью. Очевидно, что нефтеперерабатывающая промышленность — прежде всего топливная промышленность и промышленность крупнотоннажная. До 94% про дукции, выпускаемой нефтеперерабатывающими заводами, используется как топливо, в том числе до 40—45% как топливо для двигателей с искровым зажиганием, а остальное в виде топлива для дизельных и реактивных двигателей, металлургических печей и морского флота, для бытовых нужд и пр. Около 6% от выпускаемых на рынок нефтепродуктов падает на смазочные масла, дорожные битумы и прочие продукты. Поэтому будет правильным, если из процессов переработки углеводородных газов нефтеперерабатывающая промышленность сосредоточит у себя те процессы, которые дают 1) компоненты моторного топлива и 2) транспортабельные полуфабрикаты для дальнейшей переработки их другими отраслями промышленности. [c.333]

    Товарное производство позволяло доводить нефтепродукты до единых требований, действующих на территории бывшего Союза. В табл. 55 даны общие количества основных продуктов, выпускаемых на Омском нефтеперерабатывающем комплексе. Отметим также, что в Омске получают все виды бензинов (А-76, ЛИ-92, -93), топливо для реактивных двигателей ТС-1, дизельное летнее и зимнее топлива, бензол, толуол, ксилолы, моторное топливо для различных видов дизелей, мазуты М-40 и М-100, масла, парафин, битумы, нефтяной кокс различных размеров, катализаторы, печное топливо. Завод был предназначен для обеспечения Западной Сибири нефтепродуктами и с этой ролью, справлялся. Однако по наоору вторичных и каталитических Процессов Омский нефтеперерабатывающий комплекс значительно отстает от завода США средних размеров, и необходима большая его реконструкция. [c.129]

    Очищенные дистилляты представ 1яют собой уже товарные продукты. Легкие дистилляты — различные виды моторного топлива 1) для карбюраторных двигателей — бензин, лигроин, керосин, 2) для дизельных — газойль, соляровые дистилляты 3) для реактивных двигателей— фракции керосина. Тяжелые дистилляты, полученные при перегонке мазута, представляют собой смазочные масла, которые в зависимости от области применения подразделяются на индустриальные масла — веретенное, машинное и др. для двигателей внутреннего сгорания — авиационные автолы и др. трансмиссионные турбинные компрессорные для паровых машин — цилиндровые масла особого назначения. [c.68]

    Детально проанализированные выше различные варианты переработки тяжелого нефтяного сырья дают возможность значительно увеличить ресурсы светлых нефтепродуктов. Однако из-за недостатка водорода в самом тяжелом исходном сырье, получаемые в процессе его переработки топливные фракции — мотобензин, дизельное топливо или топли- во для реактивных двигателей также бедны водородом, т. е. они в известной степени непредельны, в связи с чем нестабильны и поэтому тре-буют ввода водорода извне. Кроме того, полученные дистиллаты, особенно из восточных нефтей, не отвечают требованиям стандарта по целому ряду и других качеств — повышенное против нормы содержание серы и фактических смол. Таким образом, одним из методов переработки тяжелого нефтяного сырья, дающим возможность получить качественные моторные топлива — авиационный бензин, топливо для реактивной авиации, дизельные топлива, а также глубоко использовать собственно-сырье, является, сочетание процесса переработки с каталитическим облагораживанием полученных дистиллатов. [c.261]

    Насыщение непредельных углеводородов происходит при помощи водорода, выделяющегося в момент образования высокомолекулярных соединений и продуктов уплотнения на катализаторе. Таким образом, в части мотобензина достаточно проведение низкотемпературной каталитической очистки над алюмосиликатами для получения из них заданных топлив нормируемых качеств. Товарное дизельное топливо, а также топливо для реактивных двигателей может быть получено путем гидрогенизационного облагораживания дистиллатов указанных топлив. Гидрирующие катализаторы, как например, алюмоникельсиликатный, 32, N 5, переводят непредельные углеводороды в соответствующие парафиновые, а ароматика при этом гидрируется в нафтеновые углеводороды. В то же время гидрирующие катализаторы снижают содержание сернистых соединений и фактических смол. Увеличение содержания парафиновых, а также нафтеновых углеводородов, приводит к значительному улучшению моторных качеств дизельных топлив, повышению их цетановых чисел. Что же касается реактивных топлив, то с осуществлением гидрогенизационного облагораживания возрастает их калорийность, а также плотность, что крайне необходимо в свете современных требований реактивной техники. [c.262]

    В качестве моторных топлив применяются для карбюраторных двигателей — бензин, лигроин и керосин, для дизельных двигате-ле11 — газойль и соляровое масло, для реактивных двигателей — главным образом керосино-газойлевые фракции. Мазут прямой гонки служит источником получения машинных масел, а также используется как моторное и котельное топливо. [c.186]

    Наша эпоха характеризуется необычайным прогрессом в области моторостроения, исключительными достижениями в конструировании моторов, появлением принципиально новых типов двигателей (например, реактивного), колоссальным ростом авио- и автопарка, а также флотов. Естественно, что это привело к огромному росту потребления моторного топлива и повышению предъявляемых к нему требований. При введении в эксплуатацию новых, мощных моторов химическая природа и углеводородный состав моторного топлива, которые определяют качество моторного топлива, приобретают особо важное значение. В период Великой Отечественной войны советский мотор, советское моторное топливо сыграли огромную роль в разгроме врага. Дальнейшее развитие советского моторостроения все более повышает требования к моторному топливу. [c.49]

chem21.info

Топливо для реактивных двигателей - Справочник химика 21

из "Химия нефти и газа"

Продукты сгорания вместе с воздухом из зоны дожигания проходят через газовую турбину, отдавая ей часть своей кинетической энергии. Газовая турбина передает эту энергию воздушному компрессору. Затем отработанные горячие газы выбрасываются через сопло, чем и создается реактивная тяга, обеспечивающая высокие скорости полета. В современных форсированных ТРД газ после турбины попадает в форсажную камеру. В эту камеру впрыскивается дополнительное количество топлива. В результате сгорания этого добавочного количества в выходное сопло газ поступает с более высокой температурой и с большей скоростью. Это, конечно, увеличивает силу тяги. Сгорание испаренного в воздухе топлива происходит в результате распространения фронта пламени. Однако значительная часть топлива сгорает и за счет самовоспламенения, причем, чем больше эта часть, тем выш е будет эффективность, т. е. полнота и скорость сгорания. Поэтому топлива с низкой температурой самовоспламенения и малым периодом задержки самовоспламенения лучше обеспечивают процесс сгорания в реактивных двигателях, чем топлива с низкими цетановыми числами. [c.104] В качестве топлива для реактивной авиации применяются различные дистиллаты прямой перегонки нефти авиационные керосины с пределами кипения 150—280° С, широкая бензино-лигрои-яо- керосиновая фракция (60—280° С) и для наиболее скоростных самолетов, летающих на большой высоте, утяжеленный керосин (195—315°С). Разберем вкратце основные требования к топливам для реактивной авиации и влияние химического состава на его качество. Прежде всего, оно должно беспрепятственно прокачиваться по системе топливоподачи как при низких, так и при высоких температурах. Совершенно очевидно, что любые неполадки в подаче топлива весьма опасны. Для обеспечения этого требования необходимо, чтобы топливо не теряло текучести при температурах до —50° С и не выделяло кристаллов углеводородов и льда наоборот, при высоких температурах (100° С и выше) оно не должно преждевременно интенсивно испаряться, что может повлечь за собой образование паровых пробок. Топливо не должно также выделять смол и других осадков, могущих засорить филь- тры, клапаны и другую топливоподающую аппаратуру. [c.104] С точки зрения самого процесса сгорания, ароматические углеводороды, обладающие наибольшими температурами самовоспламенения, также ухудшают качество реактивного топлива. Помимо указанного, к реактивным топливам предъявляются и другие серьезные требования. Они должны быть термически стабильными (т. е. не образовывать осадков и смол при нагревании), не давать нагара при сгорании и не вызывать коррозии. Наличие непредельных углеводородов и гетероорганических соединений ухудшает эти показатели топлива. Ароматические углеводороды, особенно бициклические и без боковых цепей, вызывают значительное нагарообразование. [c.106] по сумме всех требований к реактивным топливам можно сделать вывод о наиболее его желательном химическом составе. Высококачественное топливо нефтяного происхождения должно представлять собой смесь разветвленных алканов с цик-ланами разнообразной структуры, но с насыщенными боковыми цепями. Содержание ароматических углеводородов должно быть ограничено, а неуглеводородные компоненты — полностью отсутствовать. Можно ожидать, что в дальнейшем в состав реактивного топлива будут вовлекаться более высококиПящие фракции, освобожденные от вредных примесей ароматических структур, а также сернистых, кислородных и азотистых соединений при помощи исчерпывающего гидрирования. [c.106] Следует иметь в виду, что в качестве топлив для воздушно-реактивных двигателей можно применять не только чистые нефтепродукты или специально синтезированные углеводороды с высокими теплотами сгорания. Теплоты сгорания углеводородных топлив ограничены сравнительно низкой теплотой сгорания самого углерода. Поэтому поиски новых видов топлив уже привели к созданию бороводородного и металло-углеводородных топлив. Теплота сгорания бороводородов в среднем в полтора раза выше, чем у углеводородов. Металло-углеводородные топлива представляют собой суспензию таких металлов, как мвгний, алюминий, бор в обычных нефтяных топливах, с содержанием металла до 50%. При сжигании таких суспензий температура сгорания резко возрастает, а тяга двигателя значительно увеличивается. [c.106]

Вернуться к основной статье

chem21.info

Топливо для жидкостных ракетных двигателей

 

Топливо для жидкостных ракетных двигателей, применяемых в составе космических разгонных блоков и ступеней ракетоносителей, содержит горючее на основе метана и окислитель, при этом в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. Применение предлагаемого топлива на ракетоносителях среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции ракетоносителя по сравнению с применением топлива метан + кислород на ~2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин + кислород масса выводимого полезного груза увеличится на ~ 7,5%.

Предлагаемое топливо предназначено для использования в жидкостных ракетных двигателях (ЖРД), применяемых в составе космических разгонных блоков (РБ) и ступеней ракетоносителей (РН).

Аналогом данного топлива является топливо керосин+кислород [1, 3, 6]. Жидкий кислород в настоящее время является одним из наиболее распространенных окислителей в топливах ЖРД. Это связано с тем, что жидкий кислород является экологически безопасным компонентом топлива. При этом он дешев, не токсичен, умеренно пожароопасен и обеспечивает достаточно высокие энергетические характеристики топлив. Например, топливо керосин+кислород при давлении в КС 70 ата и геометрической степени расширения сопла 40 обеспечивает удельный пустотный импульс на ~ 8% больший, чем топливо керосин+AT, где в качестве окислителя используется азотный тетраксид. Керосин представляет собой углеводородное горючее, являющееся смесью природных углеводородов, получаемых при перегонке нефти. Получение керосина из природной нефти обусловливает его относительную дешевизну. Кроме того, керосин является малотоксичным веществом, относящимся к 4-ому (низшему) классу опасности, умеренно пожароопасен и обладает достаточно высокой плотностью, что положительно сказывается на его эксплуатационных достоинствах. В целом топливо керосин+кислород, является эффективным топливом с достаточно высокой плотностью ~ 1000 кг/м3 и достаточно высоким удельным импульсом истечения продуктов его сгорания, что позволяет достаточно эффективно решать существующие задачи, стоящие перед современными средствами выведения. К недостаткам топлива керосин+кислород относятся: относительно большая разница температур эксплуатации жидкого кислорода (~ 90 К) и керосина (~ 290 К), что требует принятия специальных мер, компенсирующих температурные напряжения, возникающие в баке хранения окислителя при заправке его жидким кислородом, и необходимость использования баков хранения компонентов с раздельными днищами и значительной теплоизоляцией между баками. Это ведет к существенному увеличению массы баков хранения компонентов и к увеличению объема, занимаемого баками хранения компонентов топлива в двигательной установке, что также увеличивает массовые затраты на хранение топлива. Прототипом предлагаемого топлива является топливо метан+кислород [2]. Метан является основной составляющей природных газов, поэтому его производство, по оценкам, будет даже дешевле, чем производство керосина. По энергетическим характеристикам это топливо превосходит топливо керосин+кислород: при указанных выше давлениях в КС и геометрической степени расширения сопла удельный импульс топлива метан+кислород будет выше удельного импульса топлива керосин+кислород на ~ 4%. Однако метан даже при температуре 91 К (температура его плавления 90,66 К) обладает низкой плотностью 455 кг/м3, при этом плотность топлива метан+кислород всего 830 кг/м3, что приводит к увеличению массовых затрат на его хранение ввиду необходимости увеличения объема баков хранения компонентов. Низкая плотность топлива метан+кислород и невозможность переохлаждения кислорда при использовании баков хранения компонентов топлива с совмещенными днищами ведут к тому, что для космических РБ существенно (на 20% по сравнению с керосин+кислород) снижается время возможного хранения топлива в околоземном пространстве. Поскольку температура плавления метана выше температуры кипения кислорода при давлении 1 ата (т.е. выше 90 К), то использование баков хранения компонентов топлива с совмещенными днищами даже для кипящего при 1 ата кислорода (а тем более при использовании переохлажденного кислорода, который кипит при более низком давлении) невозможно без использования межбаковой теплоизоляции. Кроме того, поскольку бак горючего заправлен криогенным метаном, то его надо теплоизолировать от внешних теплопритоков, что дополнительно увеличивает массовые затраты на хранение топлива. Все это ведет к существенному по сравнению с топливом керосин+кислород увеличению массы и габаритов баков хранения топлива метан+кислород, что значительно, а в некоторых случаях вплоть до нуля, снижает эффект, который можно было бы получить от более высокого удельного импульса прототипа. Задачей изобретения является увеличение плотности топлива и, как следствие, массовых затрат на его хранение в топливных баках. Энергетические характеристики топлива при этом не ухудшаются по сравнению с прототипом. Это достигается при применении топлива, содержащего горючее и окислитель, где в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%. При указанном содержании метана температура затвердевания такого горючего менее 90 К, т.е. при использовании в качестве окислителя, например, кипящего жидкого кислорода баки окислителя и горючего могут иметь общее днище, не покрытое теплоизоляцией. Кроме того, предлагаемое топливо для указанного интервала мольного соотношения метан - этилен будет иметь плотность от 900 до 970 кг/см3, что сравнимо с плотностью топлива керосин+кислород, а с учетом большой теплоемкости горючего в предлагаемом топливе возможное время пребывания космических РБ в околоземном пространстве будет таким же, как при использовании топлива керосин+кислород. При этом проведенные термодинамические расчеты показали, что удельный импульс продуктов истечения предлагаемого топлива будет таким же, как для топлива метан+кислород. Применение предлагаемого топлива на РН среднего класса с общим запасом топлива 300 т позволит снизить массу конструкции РН по сравнению с применением топлива метан+кислород на ~ 2%, что эквивалентно увеличению массы выводимого полезного груза на ~ 6,5%. По сравнению с использованием топлива керосин+кислород масса выводимого полезного груза увеличится на ~ 7,5%. Метан, как уже отмечалось выше, является основной составляющей природных газов, а этилен является широко распространенным сырьем для химической промышленности (например, при производстве полиэтилена), поэтому производство горючего для такого топлива не потребует создания новых производств и может быть освоено в достаточно короткие сроки. Стоимость предлагаемого топлива по оценкам будет сравнима со стоимостью топлива керосин+кислород. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Основы теории и расчета жидкостных ракетных двигателей /в 2-х книгах/ под ред. В. М. Кудрявцева, изд. 4-е перераб. и доп. - М. "Высшая школа", 1993. - кн.1, стр.130-134. 2. Паушкин Я. М. Химический состав и свойства реактивных топлив. - М. Издательство академии наук СССР, 1958.- 376 с., ил. стр.302. 3. Синярев Г.Б. Жидкостные ракетные двигатели. - М. Государственное издательство оборонной промышленности. 1955. -488 стр., ил. стр.159 - 161. 4. Справочник по физико-техническим основам криогеники. /М.П.Малков.- 3-е изд., перераб. и доп. - М.:Энергоатомиздат, 1985, -432 с., ил. стр.217. 5. Справочник по разделению газовых смесей методом глубокого охлаждения. /И. И. Гельперин. - 2-е изд., перераб. - М. Государственное научно-техническое издательство химической литературы, 1963. - 512 с., ил. стр.232. 6. Термодинамические и теплофизические свойства продуктов сгорания /в 3-х томах/ под ред. В.П. Глушко, - М. Всезоюзный институт научной и технической информации. 1968, т. 2, стр.177-308.

Формула изобретения

Топливо для жидкостных ракетных двигателей, содержащее горючее на основе метана и окислитель, отличающееся тем, что в качестве горючего используется смесь метана и этилена с мольным содержанием метана от 5 до 25%.

www.findpatent.ru