Транзисторный двигатель


Электродвигатель с транзисторными силовыми преобразователями.

Появление силовых транзисторов на токи порядка десятков и сотен ампер способствовало разработке ряда вариантов тяговых электроприводов электромобилей с транзисторными силовыми преобразователями в цепи якоря двигателя постоянного тока с независимым возбуждением. Типичными для этого направления являются работы французской фирмы «Рагоно» и американских - «Дженерал Электрик» и «Крайслер».

Фирмой «Рагоно» создан электропривод для электромобилей полной массой около 1200 кг, причем в качестве опытных образцов использовались конвертированные автомобили «Рено 5Л (Reno-ult 5L»). Привод осуществляется от двигателя номинальной мощностью 6 кВт при номинальной частоте вращения 5000 мин-1 и напряжении 96 В. В схеме электропривода предусмотрено два транзисторных импульсных преобразователя. Силовой преобразователь в цепи якоря состоит из параллельного соединения 11 групп по три транзистора в каждой. При номинальном токе якоря двигателя 75 А и кратности максимального тока около 4 А максимальная токовая нагрузка на транзистор не превышает 10 А. Каждая группа транзисторов снабжена защитной индуктивностью и обратным диодом. Силовой преобразователь работает с постоянной частотой коммутации 700 Гц и обеспечивает изменение относительной длительности импульсов выходного напряжения от 0,05 до 1. Регулирование скорости по возбуждению осуществляется до максимальной частоты вращения 7000 мин-1 с помощью транзисторного преобразователя, рассчитанного на изменение тока возбуждения от 2 до 8 А при постоянной частоте коммутации 1000 Гц.

Рис. 3.5. Схема электропривода электромобиля ETV-1 с транзисторным преобразователем фирмы «Дженерал электрик»

Принципиальная схема электропривода, разработанного фирмой «Дженерал Электрик» для экспериментального электромобиля ETV-1 фирмы «Крайслер», показана на рис. 3.5. По общей структуре этот электропривод близок к варианту двухзонного регулирования, приведенному на рис. 3.3. Двигатель постоянного тока независимого возбуждения М питается от тяговой батареи GB через силовой преобразователь цепи якоря. Обмотка возбуждения ОВ получает питание через преобразователь возбуждения ПВ.

Главной отличительной особенностью является использование мощных силовых транзисторов. Фирмой было предварительно проведено исследование ряда вариантов транзисторных преобразователей с использованием силовых транзисторов различных фирм 2SD648 фирмы «Тосиба» (Toshiba) на 200 А, 300 В; RSD-751 фирмы EVC на 100 А, 450 В и ряда других; после этого был разработан собственный силовой модуль (Ml-МЗ на рис. 3.5). Этот модуль представляет сборку из двух транзисторов по схеме Дарлингтона и шунтирующего обратного диода.

Параметры силового транзистора по схеме Дарлингтона:

Напряжение коллектор-эмиттер 350В

Напряжение насыщения при токе 200 А 1.6В

Номинальный ток 200 А

Коэффициент усиления по постоянному току при номинальном токе коллектора 250

Время спада тока коллектора 1,2 мкс

Время задержки 2,6 мкс

Два модуля Ml и М2 (рис. 3.5) соединены параллельно, и через них осуществляется импульсное питание якоря двигателя в режиме тяги. При этом в режиме разгона с максимальным ускорением ток достигает 400 А, причем допускаемая силовым преобразователем длительность такого тока составляет 1 мин. Для длительного режима номинальный ток преобразователя составляет 200 А, что согласовано с характеристиками применяемого электродвигателя, имеющего номинальный длительный ток 175 А.

В режиме электрического импульсного торможения якорь двигателя М замыкается транзисторным модулем МЗ, что позволяет иметь максимальный ток якоря при торможении 200 А в течение 1 мин и 100 А длительно. При периодическом замыкании цепи якоря происходит накопление электромагнитной энергии в индуктивностях якоря и добавочных полюсов двигателя, которая затем сбрасывается в аккумуляторную батарею GB по цепям обратных диодов силового преобразователя.

Индуктивность LI предназначена для защиты транзисторных модулей от перенапряжений при коммутации аппаратов в электроприводе. Сброс накопленной в этой индуктивности энергии при отключении цепи под током обеспечивает параллельная защитная цепь из вентиля VI и.резистора. Защита транзисторных модулей от недопустимых режимов при включении и выключении транзисторов производится специальными защитными цепями из конденсаторов CI, С2, вентиля V2 и резисторов Rl, R2. Кроме того, от перенапряжений цепи коллектор-эмиттер защищены диодами Зенера Z1 и Z2.

Транзисторный силовой преобразователь работает при сравнительно высокой частоте переключений. Эта частота непостоянная, а изменяется при изменении скважности, достигая максимальной величины 2000 Гц. Для компенсации индуктивного сопротивления аккумуляторной батареи и проводов монтажа вход силового преобразователя шунтирован батареей конденсаторов Ф суммарной емкостью 1200 мкФ.

Преобразователь возбуждения ПВ осуществляет регулирование тока возбуждения в пределах от 2,0 до 10,6 А при постоянной частоте коммутации выходного транзистора, равной 9500 Гц. Вентили КЗ-V5 служат для защиты выходного транзистора. Вместе с тем некоторые схемные особенности преобразователя ПВ определяются тем, что в электромобиле ETV-1 этот преобразователь выполняет вторую функцию - бортового зарядного выпрямителя. В этом режиме напряжение однофазной сети 115 В подается через мостовой однофазный выпрямитель (на схеме рис. 3.5 не показан) в точки а - плюсом и b - минусом. В цепи заряда тяговой батареи оказывается при этом включенной индуктивность L2, сглаживающая ток заряда батареи. В этом режиме преобразователь ПВ работает с переменной частотой коммутации 5-15 кГц и при регулируемом токе заряда от 2 до 24 А.

Реверсирование электродвигателя производится переключением полярности обмотки возбуждения ОВ с помощью контакторов ВиН.

Управление электроприводом предусматривается с помощью микропроцессора МП по структуре, показанной на рис. 3.5. Педали хода и торможения связаны с задающими потенциометрами, которые определяют сигналы управления тяговым и тормозным моментом. Магнитные датчики тока якоря двигателя ТЯ, тока возбуждения ТВ и тока батареи ТБ совместно с сигналами по напряжению батареи и частоте вращения двигателя ДС участвуют в процессе вычисления момента на валу. Через устройства интерфейса УВ и УТ микропроцессор управляет работой преобразователей питания якоря и возбуждения ПВ в соответствии с заданным тяговым или тормозным моментом. Так как при форсировке тока возбуждения двигателя до 10,6 А частота вращения двигателя составляет 1800 мин-1, то работа преобразователя питания якоря происходит в зоне от этой скорости и почти до нуля. При частоте вращения от 1800 до 5000 мин-1 силовой преобразователь питания якоря находится в режиме насыщения и, кроме того, шунтируется контактором КШ. По этой шунтирующей преобразователь цепи осуществляется и режим генераторного торможения на больших частотах вращения.

Современные конструкции электродвигателей постоянного тока с независимым возбуждением, регулируемым в достаточно широких пределах, создают основу для построения тяговых электроприводов, не имеющих импульсных преобразователей со сложными устройствами принудительной коммутации тиристоров в якорной цепи двигателя. Такие электроприводы разработаны в СССР лабораторией электромобилей НАМИ, а за рубежом - рядом японских фирм.

 

 

Проверено корректором: 

www.electro-machines.ru

Глава 8

нением величины подводимого постоянного напряжения. Благодаря своим хорошим регулировочным качествам вентильные двигатели получили широкое применение для привода различных промышленных машин и механизмов.

8.2. Электропривод по системе транзисторный коммутатор - вентильный двигатель с постоянными магнитами

Вентильный двигатель рассматриваемого типа выполнен на базе трехфазной синхронной машины с постоянными магнитами на роторе. Трехфазные обмотки статора питаются постоянным током, подаваемым поочередно в две последовательно соединенные фазные обмотки. Переключение обмоток производится транзисторным коммутатором, выполненным по трехфазной мостовой схеме. Транзисторные ключи открываются и закрываются в зависимости от положения ротора двигателя. Схема вентильного двигателя представлена на рис.8.1.

Момент, создаваемый двигателем, определяется взаимодействием двух потоков: статора, создаваемого током в обмотках статора, и ротора, создаваемого высокоэнергетическими постоянными магнитами (на основе сплавов самарий-кобальт и других).

, (8.1)

где: θ – пространственный угол между векторами потоков статора и ротора;

рп – число пар полюсов.

Магнитный поток статора стремится повернуть ротор с постоянными магнитами, так, чтобы поток ротора совпал по направлению с потоком статора (вспомним магнитную стрелку компаса) [1-8].

Наибольший момент, создаваемый на валу ротора, будет при угле между векторами потоков равными будет уменьшаться до нуля по мере сближения векторов потоков. Эта зависимость показана на рис.8.2.

Рассмотрим пространс-твенную диаграмму векто-ров потоков, соответству-ющую двигательному режи-му (при числе пар полюсов рП=1). Предположим, что в данный момент включены транзисторы VT3 и VT2, (см. схему рис.8.1). Тогда ток проходит через обмотку фазы В и в обратном направлении через обмотку фазы А. Результирующий вектор м.д.с. статора будет занимать в пространстве положение F3 (см.рис.8.3). Если ротор занимает в этот момент положение, показанное на рис.8.4., то двигатель будет развивать в соответствии с 8.1 максимальный момент, под действием которого ротор будет поворачиваться по часовой стрелке. По мере уменьшения угла θ момент будет уменьшаться. Когда ротор повернется на 300 необходимо в соответствии с графиком на рис.8.2. переключить ток в фазах двигателя, так, чтобы результирующий вектор м.д.с. статора занял положение F4 (см.рис.8.3). Для этого нужно отключить транзистор VT3 и включить транзистор VT5.

Переключение фаз выполняет транзисторный коммутатор VT1-VT6, управляемый от датчика положения ротора DR; при этом угол θ поддерживается в пределах 900±300, что соответствует максимальному значению момента с наименьшими пульсациями. При рп=1 за один оборот ротора должно быть произведено шесть переключений, благодаря которым м.д.с. статора совершит полный оборот (см.рис.8.3). При числе пар полюсов больше единицы поворот вектора м.д.с. статора, а, следовательно, и ротора, составит 360/рп градусов.

Регулирование величины момента производится изменением величины м.д.с. статора, т.е. изменением средней величины тока в обмотках статора

, (8.2)

где: R1 – сопротивление обмотки статора.

Поскольку поток двигателя постоянен, то э.д.с. Ея, наводимая в двух последовательно включенных обмотках статора будет пропорциональна скорости ротора. Уравнение электрического равновесия для цепей статора будет

. (8.3)

При отключении ключей ток в обмотках статора мгновенно не исчезает, а замыкается через обратные диоды и фильтровый конденсатор С.

Следовательно, регулируя напряжение питания двигателя U1, можно регулировать величину тока статора и момента двигателя

. (8.4)

Нетрудно заметить, что выражения (8.2 - 8.4) подобны аналогичным выражениям для двигателя постоянного тока, вследствие чего механические характеристики вентильного двигателя в данной схеме подобны характеристикам двигателя постоянного тока независимого возбуждения при Ф=const (см.рис.6.4).

Изменение напряжения питания вентильного двигателя в рассматриваемой схеме производится методом широтно-импульсного регулирования (см.§6.3). Изменяя скважность импульсов транзисторов VT1-VT6 в периоды их включенного состояния, можно регулировать среднюю величину напряжения, подаваемого на обмотки статора двигателя.

Для осуществления режима торможения алгоритм работы транзисторного коммутатора должен быть изменен таким образом, чтобы вектор м.д.с. статора отставал от вектора потока ротора. Тогда момент двигателя станет отрицательным. Поскольку на входе преобразователя установлен неуправляемый выпрямитель, то рекуперация энергии торможения в данной схеме невозможна. При торможении происходит подзаряд конденсатора фильтра С. Ограничение напряжения на конденсаторах осуществляется путем подключения разрядного сопротивления через транзистор VT7 [1-8]. Таким образом, энергия торможения рассеивается в разрядном сопротивлении.

8.3. Электропривод по системе тиристорный коммутатор – синхронный двигатель

Ввентильном двигателе средней и большой мощности обычно используются синхронные двигатели обычной конструкции с электромагнитным возбуждением. Поскольку двигатели большой мощности имеют напряжение статора 6,0 или 10,0кВ, то в качестве вентильного коммутатора используется тиристорный преобразователь, состоящий из управляемого выпрямителя и инвертора (см.рис.8.5). Инвертор выполняет функции коммутатора, переключение которого производится от датчиков положения ротора. Поскольку тиристоры являются полууп-равляемыми приборами, то инвертор работает, как зависимый, коммутируемый за счет э.д.с. двигателя, наводимой в обмотках статора вращающимся электромагнитным полем ротора. Для обеспечения устойчивой коммутации вентилей инвертора предусматривается опережение угла их открывания на уголβ, который составляет не менее 150, что ведет к некоторому уменьшению момента вентильного двигателя .

Благодаря включению в цепь постоянного тока дросселя со значительной величиной индуктивности, преобразователь VT1-VT2 работает как источник тока, величина которого регулируется путем импульсно-фазового регулирования выходного напряжения выпрямителя VT1

,

где: Rэкв – эквивалентное сопротивление цепи обмоток статора;

Uс – напряжение питания выпрямителя.

Р

β1>β2

егулируя величину тока, можно изменять момент, развиваемый двигателем. Регулирование скорости в приводах рассматриваемого типа обычно производится введением внешнего контура регулирования скорости (рис. 8.6). Подробно двухкон-турные системы регули-рования рассмотрены в разделе 2. При этом механические характер-истики вентильного дви-гателя (см.рис.8.7) будут подобны характеристи-кам системы ТП-Д, рассмотренной в гл.6.

Поскольку в данной схеме входной выпря-митель принят управ-ляемым, то возможен режим рекуперативного торможения, когда э.д.с. двигателя .

Определенным недостатком рассматриваемой схемы является усложнение коммутации тиристоров инвертора при малых скоростях (ниже 0,1ωн), т.к. при этом э.д.с. двигателя становится недостаточной для естественной коммутации вентилей зависимого инвертора. В этом случае, при пуске двигателя до скорости 0,1ωн для коммутации вентилей инвертора приходится прерывать ток, запирая тиристоры выпрямителя, что усложняет схему его управления.

В последние годы с появлением запираемых тиристоров стали применять схемы с принудительной коммутацией вентилей инвертора, что повышает регулировочные свойства вентильного двигателя и дает возможность его использования для динамичных электроприводов с широким диапазоном регулирования скорости.

9.1. Классификация способов регулирования асинхронного двигателя

Асинхронный двигатель является наиболее массовым электрическим двигателем. Эти двигатели выпускаются мощностью от 0,1кВт до нескольких тысяч киловатт и находят применение во всех отраслях хозяйства. Основным достоинством асинхронного двигателя является простота его конструкции и невысокая стоимость. Однако по принципу своего действия асинхронный двигатель в обычной схеме включения не допускает регулирования скорости его вращения (см.гл.4). Особое внимание следует обратить на то, что во избежание значительных потерь энергии, а, следовательно, для короткозамкнутых асинхронных двигателей во избежание перегрева его ротора, двигатель должен работать в длительном режиме с минимальными значениями скольжения.

Рассмотрим возможные способы регулирования скорости асинхронных двигателей (см.рис.9.1). Как следует из (4.6 и 4.7), скорость двигателя определяется двумя параметрами: скоростью вращения электромагнитного поля статора ω0 и скольжением s:

166

studfiles.net

Про эволюцию модулестроения или как правильно управлять двигателями постоянного тока

Так сложилось, что последние 11 лет меня буквально преследуют проекты, в которых нужно управлять двигателями постоянного тока. Эта задача не такая простая, как может показаться на первый взгляд. Спустя все эти годы, я наконец, пришел к пониманию, как должен быть устроен правильный драйвер и хочу поделиться своими знаниями :)

Предыдущее(2014) и последнее(2017) поколения моих универсальных модулей управления двигателями постоянного тока.

Впервые задача разработать подобный драйвер, в более менее серьезном виде, встала передо мной в 2006 году, когда я был в бауманском роботоклубе. Нужно было сделать устройство для плавного управления мотором с напряжением 12В и током до 3-4А. Тогда я сделал свой первый Н-мост - простейшая схема из четырех транзисторов, которая позволяет по сути подключать каждый из выводов мотора к плюсу либо минусу питания. Но нормально он так и не заработал :)

Принцип работы, казалось бы очень простой - открываем, допустим, нижний левый и верхний правый транзисторы - мотор крутится в одну сторону. Открываем другую пару транзисторов - мотор крутится в другую сторону. Но есть один нюанс, а на самом деле нюансов много. За неимением времени и желания писать полноценную статью книгу, тем более такие статьи циклы статей уже написаны и гораздо лучше, чем написал бы я (ссылка внизу поста) - лишь в общих чертах расскажу, о некоторых самых основных подводных камнях.

На фотографиях оба модуля имеют очень схожий функционал - оба позволяют плавно и бесшумно управлять двигателями 12В с током до 15-16А в кратковременных режимах и до ~8А в постоянном режиме. При этом нагрев маленького модуля без радиатора меньше, чем большого с радиаторами.

В принципе, большинство сложностей возникает из-за ого, что двигателем нужно управлять плавно, менять его скорость. Регулировка скорости в подавляющем большинстве случаев осуществляется с помощью ШИМ (широтно-импульсной модуляции), которая предполагает переключение транзисторов в мосту с относительно высокой частотой. В случае с двигателями, чаще всего частота переключения составляет 20 кГц. При более низких частотах человек начинает слышать противный писк от двигателя, а более высокие частоты доставляют больше хлопот, соответственно выбирается минимально возможная частота, на грани слышимости человека.

1)Транзисторы.

Выбор транзисторов очень важен. Для начинающего же электронщика даташит на полевой транзистор выглядит как китайская грамота. Куча каких-то параметров, куча графиков и ничего не понятно. При этом, обычно, на первой же странице в самом верху, огромным шрифтом пишут один из основных параметров транзистора - максимально допустимый ток. И мне кажется, что очень многих это может вводить в заблуждение (во всяком случае меня вводило). Человек открывает даташит на транзистор, видит, там довольно большой ток, думает, что у него мотор то всего на 3А, значит хватит с головой и ставит этот транзистор, хотя на самом деле он может плохо подходить под его конкретную задачу.

Несколько параметров, которые важны при выборе транзистора:

а)Напряжение на затворе для полного открытия. Некоторые транзисторы можно открыть напряжением 1.5В, а некоторым нужно 5В и более. В целом, чем меньше напряжение - тем лучше. Этот параметр обычно прямо в даташитах не задан, однако обязательно есть график ВАХ транзистора, на котором указана характеристика при разном напряжении на затворе. Из этого графика легко понять, какое напряжение является оптимальным.

Например по этому графику мы видим, что при напряжении на затворе 2.3В - максимальный ток через транзистор может быть только 0.04А. Больший ток просто не потечет. При 2.4В ситуация получше - ток уже может достигнуть 0.4А. Но это все равно плохой режим, т.к. при таком токе на транзисторе будет падать большое напряжение. Как видим, начиная примерно с 4.5В на затворе транзистор может уже спокойно пропускать десятки ампер. при этом падение напряжения на нем будет очень маленьким. Это и есть то напряжение, которое нам нужно подавать на затвор (как минимум) для полного открытия транзистора. Нужно отметить, что этот график дан для температуры 25 градусов, а при нагреве характеристики ухудшаются их можно посмотреть на соседнем графике.

б)Емкость затвора. Как известно, полевые транзисторы управляются напряжением и ток через затвор не течет. Однако, в момент переключения затвор, имеющий паразитную емкость нужно зарядить или разрядить. Чем быстрее это будет сделано (об этом ниже) - тем лучше. Соответственно чем ниже емкость, тем лучше. Обычно в даташитах указывают заряд затвора Qg измеряемый в нанокулонах. Чем меньше - тем лучше.

в)Сопротивление канала в открытом состоянии. Rds(on) - собственно название говорит само за себя. В отличие от биполярных транзисторов, канал полевых транзисторов в открытом состоянии ведет себя как сопротивление. Падение напряжения на транзисторе зависит от тока и может быть вычислено по закону ома. Разумеется, выделяемое тепло на транзисторе зависит от этого сопротивления и тока через него протекающего. При этом вы можете найти два очень похожих на первый взгляд транзистора, с примерно одинаковым максимальным током, но с сопротивлением отличающимся на порядок и более. Разумеется, чем меньше сопротивление - тем лучше. Стоит также обратить внимание на максимальное напряжение Сток-Исток транзистора. Как правило, чем меньше напряжение - тем меньше и сопротивление канала. Не стоит брать напряжение с большим запасом - за это придется расплачиваться нагревом транзистора. Например у приведенного выше IRF530 максимальное напряжение - 100В, как следствие, сопротивление открытого канала 0.115 Ом, а это значит, что при токе 10А он будет греться как утюг, отдавая 11.5 Вт тепла, чтобы отвести столько тепла понадобится огромный радиатор.

В то же время - у моего самого любимого транзистора IRF8788 максимальное напряжение всего 30В. При этом эта крошка в корпусе SOIC-8 в открытом состоянии имеет сопротивление 0.003 Ома (да-да, три тысячных Ома). По сути это все-равно что короткий кусок толстой медной проволоки. Не трудно рассчитать, что при токе 10А, выделяемая мощность на транзисторе составит всего 0.3 Вт, что легко может быть рассеяно небольшим полигоном меди на плате. При токе 20А выделяемая мощность составит уже 1.2 Вт, что потребует более серьезного охлаждения и это примерно максимально допустимый постоянный ток для этого транзистора.

2)Драйвер и тип транзисторов.

Если вы наберете в поиске картинок "Н-мост", то одной из первых картинок будет вот эта:

Эта вредная и неправильная картинка. Если вы соберете мост по такой схеме, то он у вас 99% не заработает (при определенных условиях можно добиться работы этого моста, но эти условия весьма экзотичны). UPD: Как подсказали в комментариях тут еще и транзисторы нарисованы верх-ногами, так что не заработает 100%.

Почему? Для открытия полевого транзистора N типа (а именно такие транзисторы нарисованы на схеме) нужно подать на его затвор определенное напряжение относительно его Истока (Source). Но к чему у нас подключен исток верхних транзисторов? К мотору (другой вывод которого подключен к земле через нижний транзистор в момент работы). А на моторе у нас какое напряжение? Номинальное, ну скажем стандартные 12В. Т.е. чтобы открыть верхний транзистор, нам на его затвор надо подать 12В+[напряжение открытия], т.е. как правило не менее 17В, а лучше и все 22В(ведь чем больше напряжение - тем меньше сопротивление транзистора), относительно земли. При этом по этой схеме затворы верхних и нижних транзисторов соединены вместе. Но если на затвор нижнего транзистора подать 22В, то он скорее всего просто сгорит, т.к. у большинства полевых транзисторов максимально допустимое напряжение на затворе (относительно истока) - 20В. Кроме того, данная схема может создать иллюзию того, что транзисторами можно управлять с помощью логических уровней, что не верно.

Как же быть? Есть два основных варианта.

а)Чтобы не морочиться с получением напряжения выше напряжения питания - заменить верхние транзисторы на полевики P типа. При такой замене - управление несколько упростится. Для открытия P транзистора его затвор нужно будет подключить к земле, а для закрытия - к питанию. Т.е. получать напряжение выше чем напряжение питания схемы нам уже не нужно. Однако, мы все равно не можем управлять транзисторами с помощью логических уровней (исключая случаи, когда напряжение мотора соответствует напряжению логических уровней). Т.е. нам все равно нужен некий драйвер для управления транзисторами.Есть и еще одна проблема - P транзисторы обладают более плохими характеристиками чем аналогичные (комплементарные) N транзисторы, кроме того их банально меньше в природе, так что подобрать подходящий транзистор будет сложнее, а греться он будет сильнее.

б)Использовать специальные драйверы, которые умеют подавать на затворы верхних транзисторов напряжение большее, чем напряжение питания, а все транзисторы сделать N типа. Таких драйверов много, но нужно иметь ввиду, что большинство их них используют схему повышения напряжения называемую bootstrap. Она использует переключаемый конденсатор, для повышения напряжения на затворе. Недостаток такой схемы в том, что она не работает если транзистор постоянно включен или выключен. В случае, когда такие схемы используются, например, в импульсных блоках питания - это не страшно, ведь там транзистор никогда не бывает постоянно включен или выключен - на его затвор постоянно подается ШИМ сигнал. В случае же с управлением мотором - такие ситуации не только возможны, а постоянны, т.к. одна из сторон моста обычно не управляется ШИМ сигналом при вращении в одну сторону.

Альтернативой служат драйверы со встроенным источником питания с повышенным напряжением. Обычно это либо импульсный boost преобразователь, либо схема на переключаемых конденсаторах (в отличие от bootstrap - никак не связанная с процессом управления затворами и работающая от собственного генератора).

Но кроме этого есть еще одна очень веская причина использовать специализированный драйвер для управления транзисторами. Дело в том, что как уже было сказано выше - у затвора транзистора есть определенная емкость. Из-за этого нельзя мгновенно перевести транзистор из открытого в закрытое состояние и наоборот - этот процесс неизбежно занимает некоторое время, связанное с зарядкой/разрядкой емкости затвора. В течение этого времени транзистор находится в промежуточном состоянии - не до конца открытом/закрытом. При этом сопротивление транзистора резко возрастает, а значит резко возрастает и нагрев транзистора. Если бы мы не использовали ШИМ, то эта проблема бы вряд ли нас волновала бы, но при использовании ШИМ наш транзистор открывается и закрывается 20000 раз в секунду, соответственно 40000 раз в секунду он находится в промежуточном состоянии и греется.

И вот величина времени переключения очень критична. Представим, что допустим транзистор переключается за 5мкс - вроде не много, но помножим на 40000 и получим 200мс, а это значит, что транзистор 20% времени (0.2с от 1с) находится в промежуточном состоянии и жутко греется. При таком раскладе он очень быстро перегреется и сгорит. Поэтому время переключения нужно делать как можно меньшим и счет идет на десятки и сотни наносекунд!

Для того, чтобы быстро перезарядить затвор и тем самым сократить время, в котором транзистор находится в промежуточном состоянии нам нужен драйвер затвора, который может выдавать большой ток, потому что выходные линии микроконтроллеров, которые, как правило используются для генерации ШИМ и управления моторами большой ток выдать не могут. Типично хорошие драйверы затворов могут выдавать ток 1...5А. Это может звучать несколько парадоксально, что для управления транзистором, который вроде как управляется напряжением и у которого затвор вообще ни к чему не подключен (по сути полностью изолированный микроскопический кусочек металла) нужен драйвер, выдающий несколько ампер (разумеется импульсно). Несколько раз не очень продвинутые электронщики, мне даже не верили, когда я это все рассказывал. Ведь они когда-то приняли за догму "полевой транзистор управляется напряжением", что в общем-то правильно, да вот только с оговорками.

В продаже имеется множество разных драйверов транзисторов для разных задач, с разными характеристиками. Драйвер, на котором в итоге остановился я для управления мостом - MC33883. Простой, в то же время делает все что нужно. В этом драйвере встроена схема повышения напряжения на конденсаторах. У него четыре выхода - два для нижних ключей моста, два для верхних ключей моста и они могут выдавать ток до 1А на затвор. Есть также возможность выключить все ключи с помощью линии ENABLE, что оказалось очень удобно в моем случае.

Еще из интересных драйверов, которые я применяю (только для нижних ключей) - MC33152 и LM5110. Первый на напряжения побольше, второй на напряжения поменьше.

Существуют в природе готовые микросхемы со встроенными и ключами и драйверами. Но у меня с ними как-то не сложилось. Сколько не пробовал - на заявленных характеристиках большинство работать не хочет - перегревается, уходит в защиту. У многих есть режим FAULT, когда они по каким-то причинам перестают работать и не всегда их из этого режима легко вывести. Может быть я просто не умею их готовить, но на дискретных компонентах у меня все отлично работает.3)Алгоритм управления.

Можно поставить самые крутые транзисторы, выбрать самый лучший в мире драйвер, а схема все равно будет сильно греться и сгорит. Все дело в том, что такой простой, казалось бы штукой, как H-мост можно управлять множеством совершенно разных способов.

Допустим мы захотели крутить двигатель в какую-то одну сторону и включили два ключа, один снизу, второй сверху, слева и справа соответственно. Теперь мы хотим, чтобы двигатель вращался с какой-то промежуточной скоростью. Для этого мы решаем подать сигнал ШИМ на ключи, чтобы часть времени двигатель был подключен к питанию, часть нет. Мы догадываемся, что оба транзистора нам в общем-то отключать не нужно, достаточно отключить один, например нижний, а верхний можно оставить постоянно включенным. Мы подаем ШИМ сигнал на нижний транзистор и вроде бы все вначале работает, но быстро обнаруживаем, что второй верхний (закрытый) транзистор почему-то сильно греется, вплоть до сгорания.

Почему так получается и что с этим делать? Двигатель постоянного тока - индуктивная нагрузка. И это сразу же создает много нюансов при управлении. Как известно, ток на индуктивности не может меняться мгновенно. А значит, что ток, который течет через двигатель в момент закрытия нижнего ключа обязательно куда-то потечет. А потечет он по единственно возможному пути (не считая пробоя и прочего экстрeмизмa) - через встроенный в верхний закрытый ключ диод. На картинке: красным - ток через мост при открытом нижнем транзисторе, синим - ток через мост при закрытом нижнем транзисторе.

При прохождении тока через диод, напряжение на нем, как известно падает, на ~0.8В (зависит от тока и транзистора). При этом, раз напряжение падает, а ток течет - значит на диоде выделяется тепло. При токе 10А выделяемая мощность составит 8 Вт. При ШИМе 50% это будет 4 Вт средней мощности, от чего впрочем не легче - для транзистора в SOIC-8, это однозначно смертельная мощность. Как быть? Очень просто - на время закрытия нижнего ключа надо открывать верхний. Бытует распространенное заблуждение, что ток через полевой транзистор может течь только в одну сторону. Это не так, ток может течь в любую сторону. И если мы откроем верхний транзистор, то ток через него совершенно спокойно потечет.

При этом, как правило, падение напряжение будет в разы меньше, чем на диоде. Ну например в случае с IRF8788, который я упоминал выше, при токе 10А оно составит примерно 0.03В, что в ~26 раз меньше, чем на диоде. А выделяемая мощность составит всего 0.3 Вт, что уже является более чем приемлемым и эквивалентно небольшому нагреву даже для такого маленького транзистора в SOIC-8 без радиатора. Таким образом, верхний ключ с одной стороны моста мы открываем постоянно, а с другой стороны верхний и нижний ключи мы открываем и закрываем в противофазе.

На самом деле, это не единственно возможный вариант - есть и другие способы управления, на замечательный цикл статей о них я дам ссылку внизу поста.

Все было бы хорошо, но с применением данного метода управления ключами мы сталкиваемся с еще одной проблемой. Дело в том, что, как было сказано выше, транзисторы открываются и закрываются не мгновенно, переход из одного в другое состояние занимает некоторое время, даже при применении драйвера. Это приводит к тому, что если мы попробуем одновременно закрыть верхний транзистор в одной половине моста и открыть нижней в ней же, то в течение какого-то времени оба транзистора будут одновременно находиться в промежуточном состоянии. А это означает то, что они фактически будут замыкать между собой питание и землю, что разумеется выразится в большом сквозном токе и большом нагреве. В лучшем случае у схемы просто не очень сильно возрастет ток и нагрев, в худшем все сгорит.

Чтобы избежать этой проблемы нужно открывать и закрывать транзисторы с небольшой задержкой, так, чтобы один сначала полностью закрылся и только после этого второй начал открываться. Такие задержки удобно генерировать средствами управляющей микросхемы. В моем случае это замечательный микроконтроллер серии STM32F030. В нем есть таймер TIM1, который позволяет аппаратно генерировать во-первых ШИМ сигналы в противофазе, во-вторых так называемые deadtime-ы - задержки между переключениями сигналов.

Правильно настроив этот таймер мы можем полностью переложить все управление двигателем на аппаратную часть, в программе нам нужно будет лишь указывать значение ШИМ. Нужно понимать, что слишком большие задержки между переключениями транзисторов тоже плохо сказываются на работе схемы - ведь пока оба транзистора закрыты - ток вызываемый ЭДС самоиндукции будет течь через диод верхнего ключа, что как мы выяснили выше плохо. В общем тут нужна золотая середина.

В результате учета всех этих нюансов, спустя много-много лет разработок и опыта я в итоге пришел к такому миниатюрному решению, которое, тем не менее обладает весьма недурными характеристиками:

При весьма небольших размерах плата может спокойно крутить весьма мощные двигатели. Чаще всего ей приходится крутить двигатели от автомобильных стеклоподъемников с током заклинивания около 16-18А (средний рабочий ток с нагрузкой 4-10А). При этом плата не требует даже радиатора, нагреваясь при интенсивной работе градусов до 50. При этом большая часть тепла на плате исходит вовсе не от транзисторов, а от дорожек и от клемм, которые кстати не рассчитаны на ток больше 8А и являются по сути главным ограничителем максимального тока на плате.

В заключение - нет какого-то одного простого решения при разработке мощных драйверов моторов. Нельзя поставить только хорошие транзисторы или только реализовать правильный алгоритм управления. Решение - комплексное:-правильно подбираем транзисторы-правильно подбираем драйверы для управления транзисторами-правильно подбираем алгоритм управления драйверами

Обещанная ссылка на потрясающий цикл статей про Н-мосты: http://www.modularcircuits.com/blog/articles/h-bridge-secrets/

P.S. Не смотря на приличный объем текста - в посте покрыты лишь самые базовые данные об управлении двигателями постоянного тока, опущенно множество подробностей и тонкостей и вероятно допущены какие-то неточности - не ругайте сильно :)

Как-то так :)

alex-avr2.livejournal.com

6.6. Вентильный двигатель

6.6.1. Бесщеточный двигатель постоянного тока

Под вентильным двигателем понимают систему регулируемого электропривода, состоящую из электродвигателя переменного тока, конструктивно подобного синхронной машине, вентильного преобразователя и устройств управления, обеспечивающих коммутацию цепей обмоток электродвигателя в зависимости от положения ротора двигателя. В этом смысле вентильный двигатель подобен двигателю постоянного тока, в котором посредством коллекторного коммутатора подключается тот виток обмотки якоря, который находится под полюсами возбуждения.

Двигателям постоянного тока присущи серьезные недостатки, обусловленные, главным образом, наличием щеточно-коллекторного аппарата.

  1. Недостаточная надежность коллекторного аппарата, необходимость его периодического обслуживания.

  2. Ограниченные величины напряжения на якоре и, следовательно, мощности двигателей постоянного тока, что ограничивает их применение для высокоскоростных приводов большой мощности.

  1. Ограниченная перегрузочная способность двигателей постоянного тока, ограничение темпа изменения тока якоря, что существенно для высокодинамичных электроприводов.

В вентильном двигателе указанные недостатки не проявляются, поскольку здесь щеточно-коллекторный коммутатор заменен бесконтактным коммутатором, выполненным на тиристорах (для приводов большой мощности) или на транзисторах (для приводов мощностью до 200 кВт). Исходя из этого, вентильный двигатель, который конструктивно выполняется на базе синхронной машины, часто называют бесконтактным двигателем постоянного тока. По управляемости вентильный двигатель также подобен двигателю постоянного тока – его скорость регулируется изменением величины подводимого постоянного напряжения. Благодаря своим хорошим регулировочным качествам вентильные двигатели получили широкое применение для привода различных промышленных машин и механизмов.

6.6.2. Электропривод по системе транзисторный коммутатор - вентильный двигатель с постоянными магнитами

Вентильный двигатель рассматриваемого типа выполнен на базе трехфазной синхронной машины с постоянными магнитами на роторе. Трехфазные обмотки статора питаются постоянным током, подаваемым поочередно в две последовательно соединенные фазные обмотки. Переключение обмоток производится транзисторным коммутатором, выполненным по трехфазной мостовой схеме. Транзисторные ключи открываются и закрываются в зависимости от положения ротора двигателя. Схема вентильного двигателя представлена на рис.6.23.

Момент, создаваемый двигателем, определяется взаимодействием двух потоков: статора Ф1, создаваемого током в обмотках статора, и ротора Ф2, создаваемого высокоэнергетическими постоянными магнитами (на основе сплавов самарий-кобальт и других).

, (6.27)

где: θ – пространственный угол между векторами потоков статора и ротора;

рп – число пар полюсов.

Магнитный поток статора стремится повернуть ротор с постоянными магнитами, так, чтобы поток ротора совпал по направлению с потоком статора (вспомним магнитную стрелку компаса).

Наибольший момент, создаваемый на валу ротора, будет при угле между векторами потоков, равным 900, и будет уменьшаться до нуля по мере сближения векторов потоков. Эта зависимость показана на рис.6.24.

Рассмотрим пространственную диаграмму векторов потоков, соответствующую двигательному режиму (при числе пар полюсов рп=1). Предположим, что в данный момент включены транзисторы VT3 и VT4, (см. схему рис.6.23). Тогда ток проходит через обмотку фазы В и в обратном направлении через обмотку фазы А. Результирующий вектор м.д.с. статора будет занимать в пространстве положение F3 (см. рис.6.25). Если ротор занимает в этот момент положение, показанное на рис.6.26, то двигатель будет развивать в соответствии с (6.27) максимальный момент, под действием которого ротор будет поворачиваться по часовой стрелке. По мере уменьшения угла θ момент будет уменьшаться. Когда ротор повернется на 300, необходимо в соответствии с графиком на рис.6.24. переключить ток в фазах двигателя, так, чтобы результирующий вектор м.д.с. статора занял положение F4 (см. рис.6.25). Для этого нужно отключить транзистор VT3 и включить транзистор VT5. И далее следует переключать транзисторы в порядке возрастания номеров.

Переключение фаз выполняет транзисторный коммутатор VT1-VT6, управляемый от датчика положения ротора DR; при этом угол θ поддерживается в пределах 900±300, что соответствует максимальному значению момента с наименьшими пульсациями. При рп=1 за один оборот ротора должно быть произведено шесть переключений, благодаря которым м.д.с. статора совершит полный оборот (см. рис.6.25). При числе пар полюсов больше единицы поворот вектора м.д.с. статора, а, следовательно, и ротора, составит 360/рп градусов.

Регулирование величины момента производится изменением величины м.д.с. статора, т.е. изменением средней величины тока в обмотках статора

, (6.28)

где: R1 – сопротивление обмотки статора.

Поскольку поток двигателя постоянен, то э.д.с. Ея, наводимая в двух последовательно включенных обмотках статора будет пропорциональна скорости ротора. Уравнение электрического равновесия для цепей статора будет

. (6.29)

где: L1 – индуктивность обмотки статора.

При отключении ключей ток в обмотках статора мгновенно не исчезает, а замыкается через обратные диоды и фильтровый конденсатор С.

Следовательно, регулируя напряжение питания двигателя U1, можно регулировать величину тока статора и момента двигателя

. (6.30)

Нетрудно заметить, что выражения (6.28 - 6.30) подобны аналогичным выражениям для двигателя постоянного тока, вследствие чего механические характеристики вентильного двигателя в данной схеме подобны характеристикам двигателя постоянного тока независимого возбуждения при Ф=const.

Изменение напряжения питания вентильного двигателя в рассматриваемой схеме производится методом широтно-импульсного регулирования. Изменяя скважность импульсов транзисторов VT1-VT6 в периоды их включенного состояния с помощью регулятора Reg, можно регулировать среднюю величину напряжения, подаваемого на обмотки статора двигателя.

Для осуществления режима торможения алгоритм работы транзисторного коммутатора должен быть изменен таким образом, чтобы вектор м.д.с. статора отставал от вектора потока ротора. Для этого нужно изменить U1 до значения U1<Eя. Тогда момент двигателя станет отрицательным. Поскольку на входе преобразователя установлен неуправляемый выпрямитель, то рекуперация энергии торможения в сеть в данной схеме невозможна. При торможении происходит подзаряд конденсатора фильтра С. Ограничение напряжения на конденсаторах осуществляется путем подключения разрядного сопротивления через транзистор VT7. Таким образом, энергия торможения рассеивается в разрядном сопротивлении.

studfiles.net

Управление мощной нагрузкой постоянного тока. Часть 3.

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).

У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.Тут вариантов три:

  • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
  • применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.

    Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

  • Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.

При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.

easyelectronics.ru

Как работает транзистор: схемы

Для усиления электрических импульсов используются полупроводниковые триоды. Так как работает транзистор за счет изменения напряжения в сети, он может регулировать силу тока в определенном электрическом устройстве.

Виды транзисторов

Транзистор – это полупроводниковый активный радиоэлемент, который необходим для генерирования, преобразования и усиления электрического сигнала (его частоты и силы). Его еще называют полупроводниковым триодом. Этот элемент схемы необходим для работы практически всех известных электрических устройств (коммутатор зажигания, диодный мост, блок питания, переключатель нагрузки, датчик и т. д.). Он был запатентован в начале 20-го века при участии известного ученого-физика Юлия Эдгара Лилиенфельда, но его совершенствование произошло только на базе уже существующего биполярного в 60-х. Только спустя 20 лет Шокли, Бардином и Браттейном были созданы первые биполярные триоды.

Фото — конструкция

Конструктивно транзистор состоит из трех электродов: база, эмиттер, коллектор. Здесь эмиттером и коллектором представлены основные детали устройства, база выполняет функции управления сетью, усиления тока и его преобразования. Схема с этим электрическим элементом обозначается в виде трех электродных отводов, заключенных в круг. Стрелка указывает направление тока в эмиттере.

Фото — виды триодов

Существует два типа транзисторов: полевой и биполярный, они отличаются друг от друга принципом работы и областью использования. Полевой элемент управляется входящим напряжение сети, в то время, как биполярный – током. Рассмотрим их работу более подробно.

Фото — структура

Полевой транзистор – это однопереходный элемент, т. к. в нем протекает заряд только с одним знаком (+ или -). Поэтому они называются униполярными. Эти детали классифицируются по типу управления:

  1. С р-n переходом или барьером Шоттки;
  2. С изолированным затвором MOSFET;
  3. МДП или металл-диэлектрик-проводник.

Изолированный элемент практически ничем не отличается от неизолированного, за исключением дополнительного слоя диэлектрика между затвором и каналом. Его называют МОП-транзистором из-за конструкции: металл-оксид-полупроводник.

Фото — устройство полевого

Биполярный транзистор известен своим свойством пропускать заряды с разным знаком через одну базу. В этом элементе ток продвигается через базу на коллектор. Бывает таких исполнений:

  1. n-p-n;
  2. p-n-p;
  3. С изолированным отводом IGBT.

npn – это транзисторы с обратной проводимостью. pnp – с прямой. Одним из подвидов обратного полупроводникового триода является оптотрон, который открывается не за счет тока, а при распознавании света. Элемент в таком режиме работы используется в разных датчиках освещенности, выключателях и т. д.

Фото — устройство биполярного

Помимо этого, данные элементы могут разниться по мощности, размеру, используемому материалу для базы. Мощность транзисторов находится в пределах от 100 мВт до 1 Вт и более, современная электроника использует все виды, в зависимости от назначения и конструктивных особенностей прибора.

Ранее биполярные транзисторы имели относительно большой размер, сравнительно с современными деталями. Сейчас электроника использует даже так называемые «острова» — это элементы, которые представлены на схеме в виде точки. Они практически незаметны постороннему глаз, но позволяют пропускать и контролировать сильные импульсы.

У каждого типа транзисторов есть определенные достоинства и недостатки:

  1. Полевые могут разрушаться при низких температурах и высокой влажности;
  2. Полевой регулятор сигналов очень чувствителен к статическому электричеству. Учитывая, что через усилитель проходят разряды тока до нескольких тысяч Вольт, его затвор может быть легко разрушен;
  3. Биполярные модели имеют малое сопротивление;
  4. Электронная схема с общей базой для подключения обратных транзисторов должна подключаться к двум разным источникам питания.

Принцип работы для начинающих

Полевой триод управляется воздействием на носители тока электрического поля, а не током входной базовой цепи. Основа этого элемента – кремниево-фосфорная пластина типа n, которая от смеси кремния и бора отличается большим количеством свободных электродов. На этой пластине находится затвор с каналом – он называется p-областью. Этот канал имеет два окончания – сток и исток, которые также имеют область p, но только с увеличенным количеством электронов. Благодаря этому, между каналом и затвором создается p-n переход.

Фото — принцип работы

Контактные выводы соединяют между собой затвор, исток и сток. Если к истоку подключен плюс, а к стоку минус от источника питания, то система канала начнет получать ток. Он будет создаваться за счет движения электронов между проводниками цепи. Это называется ток стока. Обратите внимание на то, что когда к истоку подключен положительный вывод, область обеднения расширяется, а канал сужается, за счет чего значительно увеличивается сопротивление стока. Соответственно, если область обеднения будет сужаться, то ток стока увеличиваться. Так работает полевой транзистор.

Фото — разница между триодами

Биполярный обратный npn работает за счет цепи эмиттер-коллектор. Когда к схеме подключается ток, то транзистор открывается. Если изменить напряжение тока, поступающего на базу, то можно будет управлять током в цепи. Этот принцип работы используется в большинстве моделей современной электроники.

Главным образом электротехника применяет транзисторы полярного и униполярного типа для усиления сигналов разнообразных датчиков или регулирования тока сети питания. Примечательной особенностью этих элементов является то, что на них можно собирать разные логические микросхемы, выступающие в роли логического умножителя, отрицателя и т. д.

Видео: объяснение работы транзистораhttps://www.youtube.com/watch?v=37V3gDGvhPQ

Работа в схеме

Транзисторы – это одни из самых популярных и необходимых элементов схем в электронике. Рассмотрим, как эти элементы используются на триггере и регенераторе. Импульсный триггер Шмиттта – это генератор, в котором все входящее напряжение делится компаратором на три диапазона. Он состоит из транзисторов, которые соединены между собой гальванической связью и резистором, резисторов нагрузки и конденсатора.

Фото — работа транзистора в триггере Шмитта

Когда триггер подключается к источнику питания, то один его МОП-транзистор открывается, а второй закрывается. После этого в цепи появляется некоторое напряжение, уровень которого зависит от обвязки элементов схемы.

Использование полупроводниковых триодов в регенераторе необходимо для упрощения регулирования частоты тока. Главным достоинством использования транзисторной схемы здесь является то, что образующийся каскад может контролировать волны любой величины, начиная от ультразвука.

Фото — схема регенератора

Состоит такой регенератор из двух биполярных транзисторов 0,5 В, катушки и резистора. Такую схему можно подключить как автогенератор, тогда большая часть катушки уйдет в коллекторный отвод, а меньшая – в базовый. Напряжение к транзисторам подается через резисторы, с их помощью можно изменять напряжение и сопротивление сигнала между эмиттером и базой.

Похожие статьи

www.asutpp.ru

регулируемый транзисторный редуктор трехфазного асинхронного двигателя, питающегося от однофазной сети - патент РФ 2402864

Изобретение относится к области электротехники и может быть использовано в электроприводе для питания асинхронных трехфазных и синхронных электродвигателей. Техническим результатом является повышение энергетических показателей, надежности и экономичности и снижение габаритов. Регулируемый транзисторный редуктор трехфазного асинхронного двигателя, питающегося от однофазной сети, содержит две полупроводниковые вентильные группы на основе диодов и на основе транзисторов соответственно, предназначенные для присоединения к статорным обмоткам двигателя, соединенным в звезду. Первая вентильная группа выполнена в виде диодного выпрямительного моста, первый вход переменного напряжения которого соединен с фазой питающей сети, второй вход переменного напряжения соединен с нулем питающей сети. Вторая вентильная группа выполнена на шести транзисторах, предназначенных для обеспечения векторно-алгоритмической коммутации обмоток, по два транзистора структур p-n-p и n-p-n на каждую обмотку двигателя. Коллекторы транзисторов структуры p-n-p подсоединены к коллекторам транзисторов структуры n-p-n и к началам статорных обмоток. Эмиттеры транзисторов структуры p-n-p подключены к полюсу выпрямленного напряжения диодного моста, а эмиттеры транзисторов структуры n-p-n подключены к минусу выпрямленного напряжения диодного моста. 7 ил.

Предлагаемое изобретение относится к однофазно-трехфазным дискретным низкочастотным преобразователям частоты, ведомым однофазной сетью, и может быть использовано в электроприводе для питания асинхронных трехфазных и синхронных электродвигателей.

Известен трехфазный низкочастотный полупроводниковый преобразователь частоты, ведомый трехфазной сетью, образованный из трех трехфазных нулевых тиристорных выпрямителей. Выходы тиристорных выпрямителей предназначены для подключения к входам трех обмоток статора, включенных в звезду. При этом аноды тиристоров подключены к соответствующим фазам трехфазной сети, а катоды связаны между собой, образуя нулевую точку, которая соединена с входом соответствующей обмотки. Выходы обмоток статора предназначены для соединения с нулем питающей сети (Бернштейн И.Я. Тиристорные преобразователи частоты без звена постоянного тока / И.Я.Бернштейн. - М.: Энергия, 1968. - С.42, рис.2-10а.).

Основными недостатками этого низкочастотного полупроводникового преобразователя частоты, ведомого трехфазной сетью, являются низкая надежность и повышенные габариты вследствие использования большого числа тиристоров.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является низкочастотный преобразователь частоты асинхронного двигателя, статорные обмотки которого соединены в звезду, содержащий три полупроводниковые вентильные группы. Первая вентильная группа выполнена на основе трех диодов, катоды которых предназначены для подключения к плюсу питающей сети постоянного тока напряжением 300 В и нулевому проводу, который подключен к выходам трех статорных обмоток. Вторая вентильная группа содержит три биполярных транзистора, эмиттеры которых предназначены для соединения с минусом питающей сети постоянного тока. Третья вентильная группа содержит три полевых транзистора, истоки которых подключены к соответствующим анодам трех диодов, образующих первую вентильную группу, а стоки подключены к общему минусу питающей сети постоянного тока. Коллекторы трех биполярных транзисторов второй вентильной группы подключены к соответствующим затворам полевых транзисторов, а также через резисторы к напряжению 9 B, а эмиттеры трех биполярных транзисторов предназначены для подключения через истоки полевых транзисторов к соответствующим статорным обмоткам двигателя. Таким образом, преобразователь выполнен на трех полевых транзисторах, трех биполярных транзисторах и трех диодах (Дубровский А. Усовершенствование регулятора частоты вращения трехфазных асинхронных двигателей / Дубровский А. // Радио. - 2002. - № 11 - С.41).

Основными недостатками описанного низкочастотного полупроводникового преобразователя частоты являются пониженные энергетические показатели асинхронного двигателя ввиду наличия нулевого провода, подключенного к статорной обмотке, использования стабилизированного источника питания постоянного тока, наличия постоянной составляющей в сети, питающей обмотки двигателя, так как ток протекает по обмоткам только в одном направлении, что вызывает подмагничивание обмоток статора, пониженная надежность, повышенные габариты и стоимость вследствие необходимости применения большого количества транзисторов на разные напряжения, диодов и дополнительного источника постоянного напряжения и отсутствия потенциальной развязки между напряжениями 300 B и 9 B.

В предлагаемом изобретении решается задача повышения энергетических показателей, надежности, экономичности, а также снижения габаритов устройства.

Для решения поставленной задачи в регулируемом транзисторном редукторе трехфазного асинхронного двигателя, питающегося от однофазной сети, содержащем полупроводниковые первую вентильную группу на основе диодов и вторую вентильную группу на основе транзисторов, предназначенных для присоединения к статорным обмоткам двигателя, соединенным в звезду, согласно изобретению первая вентильная группа на основе диодов выполнена в виде диодного однофазного выпрямительного моста, имеющего первый вход переменного напряжения, предназначенный для соединения с фазой питающей сети, второй вход переменного напряжения, предназначенный для соединения с нулем питающей сети, первый выход, являющийся плюсом выпрямленного напряжения, и второй выход, являющийся минусом выпрямленного напряжения. Вторая вентильная группа выполнена на шести транзисторах, предназначенных для обеспечения векторно-алгоритмической коммутации обмоток, по два транзистора структур p-n-p и n-p-n, соединяющихся с одной статорной обмоткой двигателя. Коллекторы транзисторов структуры p-n-p подсоединены к коллекторам транзисторов структуры n-p-n и к началам статорных обмоток, тогда как эмиттеры транзисторов структуры p-n-p подключены к плюсу выпрямленного напряжения диодного моста, а эмиттеры транзисторов структуры n-p-n подключены к минусу выпрямленного напряжения диодного моста.

Повышение энергетических показателей обусловлено исключением постоянной составляющей в цепи питания обмоток статора за счет протекания тока в двух направлениях по обмоткам статора.

Повышение надежности, экономичности и уменьшение габаритов регулируемого транзисторного редуктора трехфазного асинхронного двигателя, питающегося от однофазной сети, обусловлено как упрощением силовой системы управления в связи с уменьшением количества силовых коммутирующих элементов, так и отсутствием нулевого провода в статорной цепи, а также отсутствием дополнительного низковольтного источника напряжения, потенциально связанного с источником напряжения значительно большей величины.

Предлагаемое изобретение поясняется чертежами, где на фиг.1 приведена принципиальная электрическая схема предлагаемого регулируемого транзисторного редуктора трехфазного асинхронного двигателя, питающегося от однофазной сети, на фиг.2 - векторная диаграмма вращения, состоящая из трех фиксированных положений магнитного потока поля статора, на фиг.3 - векторная диаграмма вращения, состоящая из четырех фиксированных положений магнитного потока поля статора, фиг.4 - векторная диаграмма вращения, состоящая из шести фиксированных положений магнитного потока поля статора; на фиг.5 - пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг.2, на фиг.6 - пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг.3, на фиг.7 - пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг.4.

Кроме того, на чертежах изображено следующее:

- Ф - фаза;

- 0 - ноль;

- + - плюс источника постоянного тока;

- - - минус источника постоянного тока;

- I, II, III, IV, V, VI - последовательные фиксированные положения магнитного потока статора;

- Uсети=f(t) - изменение питающего напряжения во времени;

- Uвыпр=f(t) - выпрямленное напряжение сети;

- A, B, C - статорные обмотки двигателя;

- VT1-VT6 - транзисторы;

- дугообразные линии со стрелками - направление изменяющегося магнитного потока поля статора двигателя;

- прямые линии со стрелками - направления магнитного потока и тока в обмотках статора.

Регулируемый транзисторный редуктор трехфазного асинхронного двигателя, питающегося от однофазной сети, содержит полупроводниковые первую вентильную группу на основе диодов и вторую вентильную группу на основе транзисторов, предназначенных для присоединения к статорным обмоткам двигателя, соединенным в звезду. Первая вентильная группа на основе диодов выполнена в виде диодного однофазного выпрямительного моста, у которого первый вход переменного напряжения предназначен для соединения с фазой питающей сети, второй вход переменного напряжения предназначен для соединения с нулем питающей сети, первый выход является плюсом выпрямленного напряжения, второй выход - минусом выпрямленного напряжения. Вторая вентильная группа выполнена на шести транзисторах, предназначенных для обеспечения векторно-алгоритмической коммутации обмоток, по два транзистора структур p-n-p и n-p-n на каждую обмотку двигателя. Коллекторы транзисторов структуры p-n-p подсоединены к коллекторам транзисторов структуры n-p-n и к статорной обмотке. Эмиттеры транзисторов структуры p-n-p подключены к положительному выходу постоянного напряжения диодного моста, то есть к плюсу выпрямленного напряжения, а эмиттеры транзисторов структуры n-p-n подключены к отрицательному выходу постоянного напряжения диодного моста, то есть к минусу выпрямленного напряжения.

При этом можно использовать только транзисторы типа p-n-p или n-p-n, включая их соответствующим образом.

Пример выполнения регулируемого транзисторного редуктора трехфазного асинхронного двигателя, питающегося от однофазной сети, собранного на транзисторах.

Устройство содержит полупроводниковую первую вентильную группу, выполненную в виде диодного однофазного выпрямительного моста 1, у которого первый вход переменного напряжения предназначен для соединения с фазой питающей сети, второй вход переменного напряжения предназначен для соединения с нулем питающей сети, первый выход является плюсом выпрямленного напряжения, второй выход - минусом выпрямленного напряжения, и полупроводниковую вторую вентильную группу, выполненную на транзисторах 2, 3, 4, 5, 6, 7 (VT1, VT2, VT3, VT4, VT5, VT6). Транзисторы 2, 4, 6 (VT1, VT3, VT5) имеют структуру p-n-p, а транзисторы 3, 5, 7 (VT2, VT4, VT6) имеют структуру n-p-n.

Положительный выход постоянного напряжения диодного моста 1 подключен к эмиттерам транзисторов 2, 4, 6 (VT1, VT3, VT5). Отрицательный выход постоянного напряжения диодного моста 1 подключен к эмиттерам транзисторов 3, 5, 7 (VT2, VT4, VT6). Коллектор транзистора 2 (VT1) соединен с коллектором транзистора 3 (VT2) и соединен с началом статорной обмотки 8 двигателя (обмотка A). Коллектор транзистора 4 (VT3) соединен с коллектором транзистора 5 (VT4) и связан с началом статорной обмотки 9 двигателя (обмотка В). Коллектор транзистора 6 (VT5) соединен с коллектором транзистора 7 (VT6) и связан с началом статорной обмотки 10 двигателя (обмотка С). Концы обмоток 8, 9, 10 (обмотки A, B, C) двигателя соединены в звезду (фиг.1).

Регулируемый транзисторный редуктор трехфазного асинхронного двигателя, питающегося от однофазной сети, работает следующим образом.

Для получения вращающегося магнитного поля методом векторно-алгоритмического понижения частоты статорной обмотки необходимо включать транзисторы в определенной последовательности.

Для обеспечения вращения поля статора в последовательности I-II-III, показанной на фиг.2 векторной диаграммой вращения поля статора (фиксированное положение магнитного потока), необходимо включать транзисторы 2, 3, 4, 5, 6, 7 (VT1, VT2, VT3, VT4, VT5, VT6) следующим образом:

в I полупериод выпрямленного напряжения (фиг.5) - одновременно VT1, VT4 - I положение вектора поля статора;

во II полупериод выпрямленного напряжения (фиг.5) - одновременно VT3, VT6 - II положение вектора поля статора;

в III полупериод выпрямленного напряжения (фиг.5) - одновременно VT5, VT2 - III положение вектора поля статора.

Для обеспечения вращения поля статора в последовательности I-II-III-IV, показанной на фиг.3 векторной диаграммой вращения поля статора (фиксированное положение магнитного потока), необходимо включать транзисторы 2, 3, 4, 5, 6, 7 (VT1, VT2, VT3, VT4, VT5, VT6) следующим образом:

в I полупериод выпрямленного напряжения (фиг.6) - одновременно VT1, VT4 - I положение вектора поля статора;

во II полупериод выпрямленного напряжения (фиг.6) - одновременно VT3, VT6 - II положение вектора поля статора;

в III полупериод выпрямленного напряжения (фиг.6) - одновременно VT3, VT2 - III положение вектора поля статора;

в IV полупериод выпрямленного напряжения (фиг.6) - одновременно VT5, VT4 - IV положение вектора поля статора.

Для обеспечения вращения поля статора в последовательности I-II-III-IV-V-VI, показанной на фиг.4 векторной диаграммой вращения поля статора (фиксированное положение магнитного потока), необходимо включать транзисторы 5, 6, 7 (VT2, VT1, VT3) следующим образом:

В I полупериод выпрямленного напряжения (фиг.7) - одновременно VT1, VT4 - I положение вектора поля статора,

во II полупериод выпрямленного напряжения (фиг.7) - одновременно VT1, VT6 - II положение вектора поля статора,

в III полупериод выпрямленного напряжения (фиг.7) - одновременно VT3, VT6 - III положение вектора поля статора,

в IV полупериод выпрямленного напряжения (фиг.7) - одновременно VT3, VT2 - IV положение вектора поля статора,

в V полупериод выпрямленного напряжения (фиг.7) - одновременно VT5, VT2 - V положение вектора поля статора,

в VI полупериод выпрямленного напряжения (фиг.7) - одновременно VT5, VT4 - VI положение вектора поля статора.

Кроме того, для изменения частоты можно пропускать на одном такте переключения векторов не одну полуволну питающего напряжения, а две, три и так далее. Последовательности включения транзисторов при пропускании на одном такте переключения векторов двух и трех полуволн питающего напряжения аналогичны вышеописанным (см. фиг.2-7). При необходимости реверса меняется соответственно алгоритм работы транзисторов.

Таким образом, предлагаемое изобретение может быть использовано в однофазной сети для регулировки скорости бытовых приборов, имеющих трехфазный асинхронный короткозамкнутый двигатель, при высоких показателях надежности и экономичности и малых габаритах.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Регулируемый транзисторный редуктор трехфазного асинхронного двигателя, питающегося от однофазной сети, содержащий полупроводниковые первую вентильную группу на основе диодов и вторую вентильную группу на основе транзисторов, предназначенных для присоединения к статорным обмоткам двигателя, соединенным в звезду, отличающийся тем, что первая вентильная группа на основе диодов выполнена в виде диодного однофазного выпрямительного моста, имеющего первый вход переменного напряжения, предназначенный для соединения с фазой питающей сети, второй вход переменного напряжения, предназначенный для соединения с нулем питающей сети, первый выход, являющийся плюсом выпрямленного напряжения, и второй выход, являющийся минусом выпрямленного напряжения, вторая вентильная группа выполнена на шести транзисторах, предназначенных для обеспечения векторно-алгоритмической коммутации обмоток, по два транзистора структур p-n-p и n-p-n, соединяющихся с одной статорной обмоткой двигателя, при этом коллекторы транзисторов структуры p-n-p подсоединены к коллекторам транзисторов структуры n-p-n и к началам статорных обмоток, тогда как эмиттеры транзисторов структуры p-n-p подключены к плюсу выпрямленного напряжения диодного моста, а эмиттеры транзисторов структуры n-p-n подключены к минусу выпрямленного напряжения диодного моста.

www.freepatent.ru


Смотрите также