Трехкомпонентный двигатель


трехкомпонентный жидкостный ракетный двигатель и способ его работы - патент РФ 2443894

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям, работающим на трех компонентах топлива: криогенном окислителе, углеводородном горючем и жидком водороде. В трехкомпонентном жидкостном ракетном двигателе, содержащем не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, газогенератор, насос окислителя и насосы горючего, при этом турбонасосный агрегат содержит два насоса горючего и два дополнительных насоса горючего, которые предназначены для последовательной во времени работы на первом и втором горючем, без смены окислителя, при этом насосы первого горючего, дополнительный насос первого горючего, насос второго горючего и дополнительный насос второго горючего соединены через пускоотсечные клапаны и регуляторы расхода с газогенератором и камерой сгорания. Все клапаны и регуляторы расхода соединены электрическими связями с блоком управления. Между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод с дренажным клапаном. Перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления. В способе работы трехкомпонентного ракетного двигателя после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее, постепенно увеличивая его расход, и одновременно снижают расход первого горючего по полного его отключения. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. После полного отключения первого горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего. Перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном. После выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего. Изобретение обеспечивает повышение надежности и увеличение мощности жидкостного ракетного двигателя. 2 н. и 7 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2443894

Изобретение относится к ракетной технике, конкретно к многокамерным жидкостным ракетным двигателям, выполненным по закрытой схеме, с дожиганием газогенераторного газа, работающим на окислителе и на двух видах горючего, например на углеводородном горючем и жидком водороде. В качестве окислителя может использоваться жидкий кислород.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение № 2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей и как маршевый двигатель космических аппаратов, включает в себя камеру сгорания с регенеративным трактом охлаждения, насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор. Выход конденсатора по линии хладагента соединен с входом в камеру сгорания и с входом в тракт регенеративного охлаждения камеры сгорания.

Недостатком этого двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата.

Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение № 2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси.

Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.

Известен ЖРД по патенту РФ на изобретение № 2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.

Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации. Большинство ЖРД используют такие компоненты топлива, что расход окислителя почти всегда больше расхода горючего. Следовательно, для мощных ЖРД, имеющих большую тягу и большое давление в камере сгорания, эта схема не приемлема, т.к. расхода горючего будет недостаточно для охлаждения камеры сгорания и привода основной турбины. Кроме того, не проработана система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение № 2232915, опубл. 10.09.2003 г, который содержит камеру сгорания, турбонасосный агрегат, газогенератор, систему запуска, средства для зажигания компонентов топлива и топливные магистрали. Выход насоса окислителя соединен с входом в газогенератор. Выход первой ступени насоса горючего соединен с каналами регенеративного охлаждения камеры и со смесительной головкой. Выход второй ступени насоса горючего соединен с регулятором расхода с электроприводом.

Недостаток - двигатель предназначен для работы на двух компонентах.

Известен трехкомпонентный ракетный двигатель по патенту РФ на изобретение № 2065985. Этот двигатель содержит камеру сгорания, три турбонасосных агрегата ТНА, предназначенных для перекачки окислителя, первого горючего и второго горючего и трехкомпонентный газогенератор. При этом двигатель может работать на одном горючем или одновременно на двух горючих. Однако двигатель имеет недостатки: сложность конструкции и большое количество клапанов и наличие трех турбонасосных агрегатов снижает надежность двигателя, т.к. отказ любого агрегата приведет к аварии. При такой схеме двигателя технически трудно реализовать многоразовый запуск, т.к. наиболее вероятные предполагаемые компоненты ракетного топлива: жидкий кислород, углеводородное топливо (керосин) и жидкий водород - не являются самовоспламеняющимися.

Известен трехкомпонентный жидкостный ракетный двигатель по патенту США № 4771600, прототип, который содержит одну камеру сгорания и от трех до шести турбонасосных агрегатов: для подачи окислителя, первого горючего и второго горючего. Охлаждение камеры сгорания выполняется вторым горючим (водородом), т.е. работа двигателя только на первом и только на втором горючем не предусмотрена. Это является одним из недостатков схемы. Кроме того, наличие 3 6 турбонасосных агрегатов, большого количества клапанов значительно снижает надежность двигателя. Для привода всех турбин турбонасосных агрегатов (ТНА) используют водород, подогретый в рубашке охлаждения камеры сгорания. Подогретый водород обладает большим энергетическим потенциалом и энергии водорода вполне достаточно для привода всех ТНА, но стоимость водорода на два-три порядка выше стоимости углеводородного горючего. Применение дорогостоящего водорода оправдана для второй и последующих ступеней ракеты-носителя, т.к. при сгорании водорода в камерах сгорания ЖРД они могут создать значительно большую силу тяги и обеспечить лучшие характеристики двигателей по сравнению с работающими на углеводородном топливе. В целом одновременно сжигание первого и второго (более дорогостоящего горючего, например, водорода) с момента запуска многоступенчатой ракеты-носителя до вывода полезной нагрузки на орбиту приведет к удорожанию программы запуска ракет-носителей и не оправдано с экономической точки зрения.

Недостатки: сложность схемы и плохие технические характеристики двигателя и ракеты, на которой двигатель установлен.

Задачи создания изобретения: обеспечение оптимальной работы ракетного двигателя в широком диапазоне режимов при минимальных затратах на запуск ракеты, повышение надежности, увеличение мощности и характеристик ЖРД.

Решение указанных задач достигнуто в трехкомпонентном жидкостном ракетном двигателе, содержащем не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, газогенератор, насос окислителя и насосы горючего, отличающемся тем, что турбонасосный агрегат содержит два насоса горючего и два дополнительных насоса горючего, которые предназначены для последовательной во времени работы на первом и втором горючем, без смены окислителя, при этом насосы первого горючего, дополнительный насос первого горючего, насос второго горючего и дополнительный насос второго горючего соединены через пускоотсечные клапаны и регуляторы расхода с газогенератором и камерой сгорания.

Двигатель имеет блок управления, а все клапаны и регуляторы расхода соединены электрическими связями с блоком управления. Между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод, содержащий дренажный клапан. Перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления.

Решение указанных задач достигнуто в способе работы трехкомпонентного ракетного двигателя, включающем подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, отличающемся тем, что после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее, постепенно увеличивая его расход, и одновременно снижают расход первого горючего по полного его отключения. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. Перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего. Перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном. После выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего. Сущность изобретения поясняется на фиг.1 3, где:

на фиг.1 приведена схема трехкомпонентного жидкостного ракетного двигателя,

на фиг.2 приведен вид А головки камеры сгорания,

на фиг.3 приведена схема охлаждения камеры сгорания.

Трехкомпонентный жидкостный ракетный двигатель (фиг.1 3) содержит не менее одной камеры сгорания 1, имеющей сильфон 2. Для примера приведен двигатель с одной камерой сгорания 1, имеющей сопло 3. Сопло 3 выполнено с системой регенеративного охлаждения (рубашкой охлаждения), образованной зазором «Б» между двойными стенками сопла 3. Регулируемый жидкостный ракетный двигатель имеет один общий для всех камер сгорания 1, если применено несколько камер сгорания 3, турбонасосный агрегат (ТНА) 4, содержащий, в свою очередь, газогенератор 5, турбину 6 и насос окислителя 7 (фиг.1). Кроме того, ТНА 4 содержит насос второго горючего 8, установленный непосредственно под насосом окислителя 7, дополнительный насос второго горючего 9, насос первого горючего 10 и дополнительный насос первого горючего 11. Все насосы, а именно 7, 8, 9, 10 и 11 установлены соосно с турбиной 6. Выход из турбины 6 через выхлопной коллектор турбины 12 и газовод(ы) 13 соединен с головкой (головками) 14 камеры (камер) сгорания 1. Конструкция головки 14 камеры сгорания 1 приведена на фиг.2. Головка 14 содержит выравнивающую решетку 15, среднюю плиту 16 и нижнюю плиту 17. Выше средней плиты 16 образована полость «В», между плитами 16 и 17 - полость «Г», ниже нижней плиты 17 - полость «Д» камеры сгорания 1. В головке камеры сгорания 1 установлены форсунки газогенераторного газа 18, которые сообщают полости «В» и «Д», и форсунки горючего 19, соединяющие полости «Г» и «Д».

Выход из насоса окислителя 7 (фиг.1) трубопроводом окислителя 20, содержащим клапан окислителя 21, соединен с входом в газогенератор 5. Выход из насоса второго горючего 8 трубопроводом 22 соединен с дополнительным насосом второго горючего 9. Выход из насоса первого горючего 10 трубопроводом 23 соединен с входом в дополнительный насос первого горючего 11. Выход из насоса второго горючего 8 трубопроводом 24, содержащим первый отсечной клапан второго горючего 25 и регулятор 26, соединен с главным коллектором (коллекторами) горючего 27, а выход из насоса и первого горючего 10 трубопроводом 28, содержащим пускоотсечной клапан первого горючего 29, регулятор расхода 30, соединен с главным коллектором (коллекторами) горючего 27. Выход из дополнительного насоса второго горючего 9 трубопроводом 31, содержащим пускоотсечной клапан 32 и регулятор 33, соединен с входом в газогенератор 5. Выход из дополнительного насоса первого горючего 11 трубопроводом 34, содержащим пускоотсечной клапан 35 и регулятор расхода 36, соединен также со входом в газогенератор 5. Между дополнительным насосом второго горючего 9 и пускоотсечным клапаном 32 подсоединен дренажный трубопровод 37 с дренажным клапаном 38. Перед дренажным клапаном 38 установлен датчик температуры 39, предназначенный для автоматического контроля процесса охлаждения насоса второго горючего 8 и дополнительного насоса второго горючего 9 перед запуском двигателя на втором горючем. Если этого не сделать, то второе горючее нагреется в подводящих трубопроводах и придет на вход насоса в газообразной фазе, что сорвет работу насоса, не приспособленного для перекачки газа.

Двигатель 6 содержит блок управления 40, который электрическими связями 41 соединен с пускоотсечными клапанами 25, 29 и 32 и дренажным клапаном 38, а также с датчиком температуры 39 и регуляторами 26, 30, 33 и 36 (фиг.1 и 3). Кроме того, в пневмогидравлической схеме двигателя предусмотрена система продувки инертным газом, содержащая баллон с инертным газом 42, трубопровод 43 и клапан 44.

Схема охлаждения камеры сгорания 1 двигателя приведена на фиг.3. К главному коллектору горючего 27, который установлен в районе критического сечения сопла 3, подведены трубопроводы 45 и 28.

Двигатель оборудован баллоном со сжатым инертным газом 42, который трубопроводом 43, содержащим клапан продувки 44, соединен с главным коллектором горючего 27.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖРД

Тяга двигателя (двухкамерного), земная, тс 1200
Тяга двигателя, пустотная, при работе на первом горючем, тс 1450
Тяга двигателя, пустотная, при работе на втором горючем, тс 1750
Давление в камере сгорания, кгс/см2 600
Давление в газогенераторе, кгс/см2 700
Давление на выходе из насоса окислителя, кгс/см2 800
Давление на выходе из первого насоса горючего, кгс/см2 850
Давление на выходе из второго насоса горючего, кгс/см2870
Давление на выходе из первого дополнительного насоса горючего, кгс/см2 1300
Давление на выходе из второго дополнительного насоса горючего, кгс/см2 990
Мощность ТНА, МВт330
Частота вращения ротора ТНА, об/мин 35000

Компоненты ракетного топлива

Окислительжидкий кислород
Первое горючеекеросин
Второе горючее жидкий водород

Двигатель запускается в два этапа: сначала на первом горючем, а потом - на втором горючем. Окислитель (предпочтительно жидкий кислород) при переключении не меняется. В качестве первого горючего предпочтительно использовать углеводородное горючее (керосин), а в качестве второго горючего - жидкий водород.

В исходном положении все клапаны двигателя закрыты. При запуске ЖРД на первом горючем с блока управления 40 по электрическим связям 41 команда подается на ракетные клапаны окислителя и горючего (ракетные клапаны на фиг.1 3 не показаны). После заливки насосов окислителя 7 и первого горючего 10 открывают клапаны 21 и 35 и пускоотсечной клапан 32, установленные за насосом окислителя 7, после насоса первого горючего 10 и после дополнительного насоса первого горючего 11. Окислитель и первое горючее поступают на вход в насосы окислителя 7, насос первого горючего 10, а также насос первого дополнительного горючего 11, одновременно окислитель и первое горючее подаются в газогенератор 5, где воспламеняются. Газогенераторный газ и первое горючее подается в камеры сгорания 1. Первое горючее охлаждает сопло 3 (сопла), проходя через зазор «Б» (фиг.2 и 3), выходит в полость «Г». Газогенераторный газ и первое горючее соответственно через форсунки 18 и 19 поступают в полость «Д» камеры (камер) сгорания 1.

Для переключения двигателя на второе горючее подают сигнал на перекрытие регуляторов 30 и 36. Одновременно открывают дренажный клапан 38 и охлаждают насосы 8 и 9. Контроль охлаждения осуществляет автоматически датчик температуры 39. При достижении температуры кипения второго горючего в месте установки датчика температуры (- 254°С для водорода) закрывают дренажный клапан 38 и открывают пускоотсечные клапаны 25 и 32, второе горючее поступает в газогенератор 5 и в камеру сгорания 1 одновременно с первым. Далее постепенно открывают регуляторы 26 и 33. Одновременно постепенно и синхронно закрывают регуляторы расхода 30 и 36 до полного закрытия, двигатель продолжает работать создавая ту же силу тяги, что и при работе на первом горючем, но он будет иметь более высокие удельные характеристики (удельную тягу), т.к. второе горючее более эффективное, чем первое.

При выключении двигателя прекращают подачу окислителя и второго горючего, закрыв сначала клапаны на входе в ТНА (на фиг.1 3 не показано) и клапаны 21, 29, 32 и 35. Потом повторно включают продувку рубашки камеры сгорания инертным газом, открыв продувочный клапан 44. Это уменьшает время догорания остатков топлива, засорение каналов системы регенеративного охлаждения камеры сгорания.

Применение изобретения позволило следующее.

1. Улучшить удельные энергетические характеристики ЖРД при его работе на заключительном этапе выполнения программы запуска ракеты-носителя.

2. Повысить надежность работы двигателя за счет постепенного переключения с первого горючего на второе. Это позволит исключить из программы работы двигателя период, когда он не работает и не создает силу тяги, что может неблагоприятно сказаться на программе выполнения полета ракеты, которой оборудованы такие двигатели.

3. Повысить надежность камеры сгорания и ТНА за счет:

- продувки камеры сгорания инертным газом при переключении на второе горючее и при выключении работы двигателя,

- ускорения охлаждения насоса второго горючего и дополнительного насоса второго горючего и обеспечения автоматического контроля за процессом охлаждения за счет применения специальной компоновки насосов в составе ТНА и применения дренажного клапана и датчика температуры,

- согласования работы пускоотсечных клапанов и регуляторов расхода применением блока управления.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Трехкомпонентный жидкостный ракетный двигатель, содержащий не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, газогенератор, насос окислителя и насосы горючего, отличающийся тем, что турбонасосный агрегат содержит два насоса горючего и два дополнительных насоса горючего, которые предназначены для последовательной во времени работы на первом и втором горючем, без смены окислителя, при этом насосы первого горючего, дополнительный насос первого горючего, насос второго горючего и дополнительный насос второго горючего соединены через пускоотсечные клапаны и регуляторы расхода с газогенератором и камерой сгорания.

2. Трехкомпонентный жидкостный ракетный двигатель по п.1, отличающийся тем, что двигатель содержит блок управления, а все пускоотсечные клапаны и регуляторы расхода соединены электрическими связями с блоком управления.

3. Трехкомпонентный жидкостный ракетный двигатель по п.1, отличающийся тем, что между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод, содержащий дренажный клапан.

4. Трехкомпонентный жидкостный ракетный двигатель по п.3, отличающийся тем, что перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления.

5. Способ работы трехкомпонентного ракетного двигателя, включающий подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, отличающийся тем, что после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее, постепенно увеличивая его расход, и одновременно снижают расход первого горючего до полного его отключения.

6. Способ работы трехкомпонентного ракетного двигателя по п.5, отличающийся тем, что в качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород.

7. Способ по п.5 или 6, отличающийся тем, что перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего.

8. Способ по п.7, отличающийся тем, что перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном.

9. Способ по п.5 или 6, отличающийся тем, что после выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего.

www.freepatent.ru

Трехкомпонентный жидкостный ракетный двигатель Текст научной статьи по специальности «Общие и комплексные проблемы технических и прикладных наук и отраслей народного хозяйства»

Секция «Энергодвигательные установки и системы терморегулирования»

ческих аппаратов, для которых эрозия является ограничивающим фактором.

Библиографические ссылки

1. Kessler M. R., Sottos N. R., White S. R. Self-healing structural composite materials [«Самозалечивающиеся» конструкционные композиционные ма-

териалы] // Composites Part A: Applied Science and Manufacturing. 2003. Vol. 34. № 8. P. 743-753.

2. Cho S. H., White S. R., Braun, P. V. Self-healing polymer coatings [«Самозалечивающиеся» полимерные покрытия] // Advanced Materials. 2009. Vol. 21. P. 645-649.

© Зуев Н. И., Голиковская К. Ф., 2010

УДК 629.7.036.5(075.8)

С. В. Ковалев Научный руководитель - М. В. Краев Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Красноярск

ТРЕХКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Рассмотрены преимущества и перспективы использования трехкомпонентного жидкостного ракетного двигателя.

В последние годы утвердилось направление развития ракетно-космической техники, связанное с созданием транспортных ракетно-космических комплексов.

Современное ракетостроение развивается в направлении увеличения груза, выводимого на орбиту, при одновременном снижении стоимости выведения 1 кг груза. Во многих проектах перспективных транспортных ракетных комплексов используется два вида горючего: углеводородное на начальном участке выведения и водород (или метан) на высотном участке работы при сокращении числа ступеней. Необходимость повышения энергетических характеристик двигательной установки в сочетании с высокой надежностью и многократностью использования и возможностью одновременной или последовательной работы на двух горючих требует разработки новых эффективных схем двигательных установок с применением высокоэффективных топлив. В связи с этим перспективным является использование трехкомпонентного ЖРД. Наиболее близким к предложенному является ЖРД, работающий на трехкомпонентном топливе, содержащий камеру, смесительную головку, три турбонасосных агрегата для подачи водорода, углеводородного горючего и кислорода, соответствующее устройство направляет перегретый водород к каждому турбонасосу.

Двигатель содержит трехкомпонентный газогенератор, соединенный через агрегаты автоматики и регулирования с насосом первого горючего и через магистраль с линией второго горючего, к линии питания первым горючим подведена магистраль про-

дувки инертным газом. Насос первого горючего установлен на одном валу с дополнительным насосом второго горючего. Турбины трех турбонасосных агрегатов питаются газогенераторным газом через трехпозиционный клапан переключаемый при переводе двигателя на двухкомпонентный режим.

Использование в одном двигателе комбинации двух горючих - углеводородного, обладающего высокой плотностью, и водорода, обеспечивающего высокие значения удельного импульса, расширяют возможности ракет-носителей. При этом редкие те-плофизические характеристики водорода дают возможность использовать его эффективно в качестве охладителя и рабочего тела для привода насосов.

Специалисты России не только нашли и экспериментально подтвердили целый ряд технических решений, благодаря которым новый агрегат сочетает в себе качества двигателей первой и второй ступеней, но и пошли дальше. Они сделали его многоразовым, что позволяет заметно удешевить космические запуски и в будущем создать возвращаемую ракету-носитель или многоразовую аэрокосмическую систему, избавившись, таким образом, от полей падения, зон отчуждения и прочих опасностей.

Библиографическая ссылка

1. Алемасов В. Е., Тишин А. П. Теория ракетных двигателей : учебник для студ. машиностроительных спец. вузов. М. : Машиностроение, 1980.

© Ковалев С. В., Краев М. В., 2010

cyberleninka.ru

Трехкомпонентный жидкостный ракетный двигатель и способ его работы

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям, работающим на трех компонентах топлива: криогенном окислителе, углеводородном горючем и жидком водороде. В трехкомпонентном жидкостном ракетном двигателе, содержащем не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, газогенератор, насос окислителя и насосы горючего, при этом турбонасосный агрегат содержит два насоса горючего и два дополнительных насоса горючего, которые предназначены для последовательной во времени работы на первом и втором горючем, без смены окислителя, при этом насосы первого горючего, дополнительный насос первого горючего, насос второго горючего и дополнительный насос второго горючего соединены через пускоотсечные клапаны и регуляторы расхода с газогенератором и камерой сгорания. Все клапаны и регуляторы расхода соединены электрическими связями с блоком управления. Между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод с дренажным клапаном. Перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления. В способе работы трехкомпонентного ракетного двигателя после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее, постепенно увеличивая его расход, и одновременно снижают расход первого горючего по полного его отключения. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. После полного отключения первого горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего. Перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном. После выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего. Изобретение обеспечивает повышение надежности и увеличение мощности жидкостного ракетного двигателя. 2 н. и 7 з.п. ф-лы, 3 ил.

 

Изобретение относится к ракетной технике, конкретно к многокамерным жидкостным ракетным двигателям, выполненным по закрытой схеме, с дожиганием газогенераторного газа, работающим на окислителе и на двух видах горючего, например на углеводородном горючем и жидком водороде. В качестве окислителя может использоваться жидкий кислород.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей и как маршевый двигатель космических аппаратов, включает в себя камеру сгорания с регенеративным трактом охлаждения, насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор. Выход конденсатора по линии хладагента соединен с входом в камеру сгорания и с входом в тракт регенеративного охлаждения камеры сгорания.

Недостатком этого двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата.

Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение №2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси.

Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.

Известен ЖРД по патенту РФ на изобретение №2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.

Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации. Большинство ЖРД используют такие компоненты топлива, что расход окислителя почти всегда больше расхода горючего. Следовательно, для мощных ЖРД, имеющих большую тягу и большое давление в камере сгорания, эта схема не приемлема, т.к. расхода горючего будет недостаточно для охлаждения камеры сгорания и привода основной турбины. Кроме того, не проработана система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2232915, опубл. 10.09.2003 г, который содержит камеру сгорания, турбонасосный агрегат, газогенератор, систему запуска, средства для зажигания компонентов топлива и топливные магистрали. Выход насоса окислителя соединен с входом в газогенератор. Выход первой ступени насоса горючего соединен с каналами регенеративного охлаждения камеры и со смесительной головкой. Выход второй ступени насоса горючего соединен с регулятором расхода с электроприводом.

Недостаток - двигатель предназначен для работы на двух компонентах.

Известен трехкомпонентный ракетный двигатель по патенту РФ на изобретение №2065985. Этот двигатель содержит камеру сгорания, три турбонасосных агрегата ТНА, предназначенных для перекачки окислителя, первого горючего и второго горючего и трехкомпонентный газогенератор. При этом двигатель может работать на одном горючем или одновременно на двух горючих. Однако двигатель имеет недостатки: сложность конструкции и большое количество клапанов и наличие трех турбонасосных агрегатов снижает надежность двигателя, т.к. отказ любого агрегата приведет к аварии. При такой схеме двигателя технически трудно реализовать многоразовый запуск, т.к. наиболее вероятные предполагаемые компоненты ракетного топлива: жидкий кислород, углеводородное топливо (керосин) и жидкий водород - не являются самовоспламеняющимися.

Известен трехкомпонентный жидкостный ракетный двигатель по патенту США №4771600, прототип, который содержит одну камеру сгорания и от трех до шести турбонасосных агрегатов: для подачи окислителя, первого горючего и второго горючего. Охлаждение камеры сгорания выполняется вторым горючим (водородом), т.е. работа двигателя только на первом и только на втором горючем не предусмотрена. Это является одним из недостатков схемы. Кроме того, наличие 3…6 турбонасосных агрегатов, большого количества клапанов значительно снижает надежность двигателя. Для привода всех турбин турбонасосных агрегатов (ТНА) используют водород, подогретый в рубашке охлаждения камеры сгорания. Подогретый водород обладает большим энергетическим потенциалом и энергии водорода вполне достаточно для привода всех ТНА, но стоимость водорода на два-три порядка выше стоимости углеводородного горючего. Применение дорогостоящего водорода оправдана для второй и последующих ступеней ракеты-носителя, т.к. при сгорании водорода в камерах сгорания ЖРД они могут создать значительно большую силу тяги и обеспечить лучшие характеристики двигателей по сравнению с работающими на углеводородном топливе. В целом одновременно сжигание первого и второго (более дорогостоящего горючего, например, водорода) с момента запуска многоступенчатой ракеты-носителя до вывода полезной нагрузки на орбиту приведет к удорожанию программы запуска ракет-носителей и не оправдано с экономической точки зрения.

Недостатки: сложность схемы и плохие технические характеристики двигателя и ракеты, на которой двигатель установлен.

Задачи создания изобретения: обеспечение оптимальной работы ракетного двигателя в широком диапазоне режимов при минимальных затратах на запуск ракеты, повышение надежности, увеличение мощности и характеристик ЖРД.

Решение указанных задач достигнуто в трехкомпонентном жидкостном ракетном двигателе, содержащем не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, газогенератор, насос окислителя и насосы горючего, отличающемся тем, что турбонасосный агрегат содержит два насоса горючего и два дополнительных насоса горючего, которые предназначены для последовательной во времени работы на первом и втором горючем, без смены окислителя, при этом насосы первого горючего, дополнительный насос первого горючего, насос второго горючего и дополнительный насос второго горючего соединены через пускоотсечные клапаны и регуляторы расхода с газогенератором и камерой сгорания.

Двигатель имеет блок управления, а все клапаны и регуляторы расхода соединены электрическими связями с блоком управления. Между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод, содержащий дренажный клапан. Перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления.

Решение указанных задач достигнуто в способе работы трехкомпонентного ракетного двигателя, включающем подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, отличающемся тем, что после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее, постепенно увеличивая его расход, и одновременно снижают расход первого горючего по полного его отключения. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. Перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего. Перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном. После выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего. Сущность изобретения поясняется на фиг.1…3, где:

на фиг.1 приведена схема трехкомпонентного жидкостного ракетного двигателя,

на фиг.2 приведен вид А головки камеры сгорания,

на фиг.3 приведена схема охлаждения камеры сгорания.

Трехкомпонентный жидкостный ракетный двигатель (фиг.1…3) содержит не менее одной камеры сгорания 1, имеющей сильфон 2. Для примера приведен двигатель с одной камерой сгорания 1, имеющей сопло 3. Сопло 3 выполнено с системой регенеративного охлаждения (рубашкой охлаждения), образованной зазором «Б» между двойными стенками сопла 3. Регулируемый жидкостный ракетный двигатель имеет один общий для всех камер сгорания 1, если применено несколько камер сгорания 3, турбонасосный агрегат (ТНА) 4, содержащий, в свою очередь, газогенератор 5, турбину 6 и насос окислителя 7 (фиг.1). Кроме того, ТНА 4 содержит насос второго горючего 8, установленный непосредственно под насосом окислителя 7, дополнительный насос второго горючего 9, насос первого горючего 10 и дополнительный насос первого горючего 11. Все насосы, а именно 7, 8, 9, 10 и 11 установлены соосно с турбиной 6. Выход из турбины 6 через выхлопной коллектор турбины 12 и газовод(ы) 13 соединен с головкой (головками) 14 камеры (камер) сгорания 1. Конструкция головки 14 камеры сгорания 1 приведена на фиг.2. Головка 14 содержит выравнивающую решетку 15, среднюю плиту 16 и нижнюю плиту 17. Выше средней плиты 16 образована полость «В», между плитами 16 и 17 - полость «Г», ниже нижней плиты 17 - полость «Д» камеры сгорания 1. В головке камеры сгорания 1 установлены форсунки газогенераторного газа 18, которые сообщают полости «В» и «Д», и форсунки горючего 19, соединяющие полости «Г» и «Д».

Выход из насоса окислителя 7 (фиг.1) трубопроводом окислителя 20, содержащим клапан окислителя 21, соединен с входом в газогенератор 5. Выход из насоса второго горючего 8 трубопроводом 22 соединен с дополнительным насосом второго горючего 9. Выход из насоса первого горючего 10 трубопроводом 23 соединен с входом в дополнительный насос первого горючего 11. Выход из насоса второго горючего 8 трубопроводом 24, содержащим первый отсечной клапан второго горючего 25 и регулятор 26, соединен с главным коллектором (коллекторами) горючего 27, а выход из насоса и первого горючего 10 трубопроводом 28, содержащим пускоотсечной клапан первого горючего 29, регулятор расхода 30, соединен с главным коллектором (коллекторами) горючего 27. Выход из дополнительного насоса второго горючего 9 трубопроводом 31, содержащим пускоотсечной клапан 32 и регулятор 33, соединен с входом в газогенератор 5. Выход из дополнительного насоса первого горючего 11 трубопроводом 34, содержащим пускоотсечной клапан 35 и регулятор расхода 36, соединен также со входом в газогенератор 5. Между дополнительным насосом второго горючего 9 и пускоотсечным клапаном 32 подсоединен дренажный трубопровод 37 с дренажным клапаном 38. Перед дренажным клапаном 38 установлен датчик температуры 39, предназначенный для автоматического контроля процесса охлаждения насоса второго горючего 8 и дополнительного насоса второго горючего 9 перед запуском двигателя на втором горючем. Если этого не сделать, то второе горючее нагреется в подводящих трубопроводах и придет на вход насоса в газообразной фазе, что сорвет работу насоса, не приспособленного для перекачки газа.

Двигатель 6 содержит блок управления 40, который электрическими связями 41 соединен с пускоотсечными клапанами 25, 29 и 32 и дренажным клапаном 38, а также с датчиком температуры 39 и регуляторами 26, 30, 33 и 36 (фиг.1 и 3). Кроме того, в пневмогидравлической схеме двигателя предусмотрена система продувки инертным газом, содержащая баллон с инертным газом 42, трубопровод 43 и клапан 44.

Схема охлаждения камеры сгорания 1 двигателя приведена на фиг.3. К главному коллектору горючего 27, который установлен в районе критического сечения сопла 3, подведены трубопроводы 45 и 28.

Двигатель оборудован баллоном со сжатым инертным газом 42, который трубопроводом 43, содержащим клапан продувки 44, соединен с главным коллектором горючего 27.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖРД

Тяга двигателя (двухкамерного), земная, тс 1200
Тяга двигателя, пустотная, при работе на первом горючем, тс 1450
Тяга двигателя, пустотная, при работе на втором горючем, тс 1750
Давление в камере сгорания, кгс/см2 600
Давление в газогенераторе, кгс/см2 700
Давление на выходе из насоса окислителя, кгс/см2 800
Давление на выходе из первого насоса горючего, кгс/см2 850
Давление на выходе из второго насоса горючего, кгс/см2 870
Давление на выходе из первого дополнительного насоса горючего, кгс/см2 1300
Давление на выходе из второго дополнительного насоса горючего, кгс/см2 990
Мощность ТНА, МВт 330
Частота вращения ротора ТНА, об/мин 35000

Компоненты ракетного топлива

Окислитель жидкий кислород
Первое горючее керосин
Второе горючее жидкий водород

Двигатель запускается в два этапа: сначала на первом горючем, а потом - на втором горючем. Окислитель (предпочтительно жидкий кислород) при переключении не меняется. В качестве первого горючего предпочтительно использовать углеводородное горючее (керосин), а в качестве второго горючего - жидкий водород.

В исходном положении все клапаны двигателя закрыты. При запуске ЖРД на первом горючем с блока управления 40 по электрическим связям 41 команда подается на ракетные клапаны окислителя и горючего (ракетные клапаны на фиг.1…3 не показаны). После заливки насосов окислителя 7 и первого горючего 10 открывают клапаны 21 и 35 и пускоотсечной клапан 32, установленные за насосом окислителя 7, после насоса первого горючего 10 и после дополнительного насоса первого горючего 11. Окислитель и первое горючее поступают на вход в насосы окислителя 7, насос первого горючего 10, а также насос первого дополнительного горючего 11, одновременно окислитель и первое горючее подаются в газогенератор 5, где воспламеняются. Газогенераторный газ и первое горючее подается в камеры сгорания 1. Первое горючее охлаждает сопло 3 (сопла), проходя через зазор «Б» (фиг.2 и 3), выходит в полость «Г». Газогенераторный газ и первое горючее соответственно через форсунки 18 и 19 поступают в полость «Д» камеры (камер) сгорания 1.

Для переключения двигателя на второе горючее подают сигнал на перекрытие регуляторов 30 и 36. Одновременно открывают дренажный клапан 38 и охлаждают насосы 8 и 9. Контроль охлаждения осуществляет автоматически датчик температуры 39. При достижении температуры кипения второго горючего в месте установки датчика температуры (- 254°С для водорода) закрывают дренажный клапан 38 и открывают пускоотсечные клапаны 25 и 32, второе горючее поступает в газогенератор 5 и в камеру сгорания 1 одновременно с первым. Далее постепенно открывают регуляторы 26 и 33. Одновременно постепенно и синхронно закрывают регуляторы расхода 30 и 36 до полного закрытия, двигатель продолжает работать создавая ту же силу тяги, что и при работе на первом горючем, но он будет иметь более высокие удельные характеристики (удельную тягу), т.к. второе горючее более эффективное, чем первое.

При выключении двигателя прекращают подачу окислителя и второго горючего, закрыв сначала клапаны на входе в ТНА (на фиг.1…3 не показано) и клапаны 21, 29, 32 и 35. Потом повторно включают продувку рубашки камеры сгорания инертным газом, открыв продувочный клапан 44. Это уменьшает время догорания остатков топлива, засорение каналов системы регенеративного охлаждения камеры сгорания.

Применение изобретения позволило следующее.

1. Улучшить удельные энергетические характеристики ЖРД при его работе на заключительном этапе выполнения программы запуска ракеты-носителя.

2. Повысить надежность работы двигателя за счет постепенного переключения с первого горючего на второе. Это позволит исключить из программы работы двигателя период, когда он не работает и не создает силу тяги, что может неблагоприятно сказаться на программе выполнения полета ракеты, которой оборудованы такие двигатели.

3. Повысить надежность камеры сгорания и ТНА за счет:

- продувки камеры сгорания инертным газом при переключении на второе горючее и при выключении работы двигателя,

- ускорения охлаждения насоса второго горючего и дополнительного насоса второго горючего и обеспечения автоматического контроля за процессом охлаждения за счет применения специальной компоновки насосов в составе ТНА и применения дренажного клапана и датчика температуры,

- согласования работы пускоотсечных клапанов и регуляторов расхода применением блока управления.

1. Трехкомпонентный жидкостный ракетный двигатель, содержащий не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, газогенератор, насос окислителя и насосы горючего, отличающийся тем, что турбонасосный агрегат содержит два насоса горючего и два дополнительных насоса горючего, которые предназначены для последовательной во времени работы на первом и втором горючем, без смены окислителя, при этом насосы первого горючего, дополнительный насос первого горючего, насос второго горючего и дополнительный насос второго горючего соединены через пускоотсечные клапаны и регуляторы расхода с газогенератором и камерой сгорания.

2. Трехкомпонентный жидкостный ракетный двигатель по п.1, отличающийся тем, что двигатель содержит блок управления, а все пускоотсечные клапаны и регуляторы расхода соединены электрическими связями с блоком управления.

3. Трехкомпонентный жидкостный ракетный двигатель по п.1, отличающийся тем, что между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод, содержащий дренажный клапан.

4. Трехкомпонентный жидкостный ракетный двигатель по п.3, отличающийся тем, что перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления.

5. Способ работы трехкомпонентного ракетного двигателя, включающий подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, отличающийся тем, что после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее, постепенно увеличивая его расход, и одновременно снижают расход первого горючего до полного его отключения.

6. Способ работы трехкомпонентного ракетного двигателя по п.5, отличающийся тем, что в качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород.

7. Способ по п.5 или 6, отличающийся тем, что перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего.

8. Способ по п.7, отличающийся тем, что перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном.

9. Способ по п.5 или 6, отличающийся тем, что после выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего.

www.findpatent.ru

Многоступенчатая ракета-носитель, трехкомпонентный ракетный двигатель, способ его работы и турбонасосная система подачи топлива

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям, работающим на трех компонентах: криогенном окислителе и на углеводородном горючем и криогенном горючем (жидком водороде). В многоступенчатой ракете-носителе, содержащей соединенные по параллельной схеме ракетные блоки первой и второй ступени ракеты-носителя с баками окислителя и горючего, соединенные узлами силовой связи и оборудованные по меньшей мере одним двигателем первой и одним двигателем второй ступеней, согласно изобретению в блоке второй ступени установлен бак второго горючего, каждый двигатель второй ступени выполнен содержащим камеру сгорания и турбонасосную систему подачи топлива. В трехкомпонентном ракетном двигателе, содержащем не менее одной камеры сгорания с соплом, имеющим систему регенеративного охлаждения, два турбонасосных агрегата, в который встроен газогенератор, турбину, насос окислителя, установленный под ним, насосы горючего, согласно изобретению выходы всех насосов соединены с входом в газогенератор, выход из газогенератора газоводом соединен с каждой камерой сгорания. В способе работы трехкомпонентного ракетного двигателя, включающем подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через сопло, согласно изобретению после выработки первого горючего во второй газогенератор подают второе горючее. Изобретение обеспечивает повышение тяговооруженности ракеты-носителя на конечном этапе вывода полезной нагрузки на орбиту и улучшение эксплуатационных характеристик ракеты-носителя. 4 н. и 8 з.п. ф-лы, 8 ил.

 

Изобретение относится к ракетной технике, конкретно к ракетам-носителям и жидкостным ракетным двигателям ЖРД, работающим на трех компонентах топлива, преимущественно на криогенном окислителе, углеводородном горючем и жидком водороде.

Известна многоступенчатая ракета-носитель по патенту РФ №2306242, которая содержит пакет из двух ступеней: центрального блока второй ступени и четырех боковых блоков первой ступени, выполненных с возможностью отстыковки. Возможна установка третьей, четвертой и последующих ступеней ракеты. В ракетных блоках всех ступеней установлены баки окислителя и первого горючего, а в нижней части установлены двухкомпонентные ракетные двигатели. Второе горючее на ракете не применяется.

Известны многоступенчатая ракета-носитель и способ ее запуска по патенту РФ №2331550, прототип многоступенчатой ракеты-носителя и способа ее запуска. Ее конструкции аналогична ракете-носителю по патенту РФ №2306242. При запуске осуществляют запуск одновременно ракетных двигателей первой и второй ракетных ступеней, а после выработки топлива блоки первой ступени отбрасываются, а двигатель второй ступени продолжает работу. Второе горючее на этой ракете-носителе также не применяется. В качестве первого горючего используется керосин, обладающий низкими энергетическими свойства по сравнению с водородом.

Недостатками этой ракеты являются ограниченная тяговооруженность, а следовательно, плохие технические характеристики: скорость на конечном участке работы двигателей второй ступени, малая полезная нагрузка, невозможность использования ракеты для межпланетных перелетов.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей и как маршевый двигатель космических аппаратов, включающий в себя камеру сгорания с регенеративным трактом охлаждения и турбонасосный агрегат - ТНА. Турбонасосный агрегат содержит насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор.

Недостатком ТНА двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата.

Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение №2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси.

Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.

Известен ЖРД по патенту РФ на изобретение №2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.

Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации. Кроме того, не проработаны система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.

Известен трехкомпонентный ракетный двигатель по патенту РФ на изобретение №2065985. Это двигатель содержит камеру сгорания, три турбонасосных агрегата ТНА, предназначенных для перекачки окислителя, первого горючего и второго горючего и трехкомпонентный газогенератор. При этом двигатель может работать на одном горючем или одновременно на двух горючих. Однако двигатель имеет недостатки: сложность конструкции, большое количество клапанов и наличие трех турбонасосных агрегатов снижает надежность двигателя, т.к. отказ любого агрегата приведет к аварии. При такой схеме двигателя технически трудно реализовать многоразовый запуск, т.к. наиболее вероятные предполагаемые компоненты ракетного топлива: жидкий кислород, углеводородное топливо (керосин и жидкий водород) не являются самовоспламеняющимися.

Известен трехкомпонентный жидкостный ракетный двигатель по патенту США №4771600, прототип ракетного двигателя, который содержит одну камеру сгорания и от трех до шести турбонасосных агрегата: для подачи окислителя, первого горючего и второго горючего. Охлаждение камеры сгорания выполняется вторым горючим (водородом), т.е. работа двигателя только на первом и только на втором горючем не предусмотрена. Это является одним из недостатков схемы. Кроме того, наличие 3…6 турбонасосных агрегатов, большого количества клапанов значительно снижает надежность двигателя. Для привода всех турбин турбонасосных агрегатов (ТНА) используют водород, подогретый в рубашке охлаждения камеры сгорания. Подогретый водород обладает большим энергетическим потенциалом и энергии водорода вполне достаточно для привода всех ТНА, но стоимость водорода на два-три порядка выше стоимости углеводородного горючего. Применение дорогостоящего водорода оправдано для второй и последующих ступеней ракеты-носителя, т.к. при сгорания водорода в камерах сгорания ЖРД они могут создать значительно большую силу тяги и обеспечить лучшие характеристики двигателей, по сравнению с работающими на углеводородном топливе. В целом одновременно сжигание первого и второго (более дорогостоящего горючего, например, водорода) с момента запуска многоступенчатой ракеты-носителя до вывода полезной нагрузки на орбиту приведет к удорожанию программы запуска ракет-носителей и не оправдано с экономической точки зрения.

Заявленный технический результат достигнут в многоступенчатой ракете-носителе, содержащей соединенные по параллельной схеме ракетные блоки первой и второй ступени ракеты-носителя с баками окислителя и горючего, соединенные узлами силовой связи и оборудованные по меньшей мере одним двигателем первой и одним двигателем второй ступеней, отличающейся тем, что в блоке второй ступени установлен бак второго горючего, каждый двигатель второй ступеней выполнен содержащим камеру сгорания и турбонасосную систему подачи топлива.

Заявленный технический результат достигнут в трехкомпонентном ракетном двигателе, содержащем не менее одной камеры сгорания с соплом, имеющим систему регенеративного охлаждения, два турбонасосных агрегата, в который встроен газогенератор, турбину, насос окислителя, установленный под ним, насосы горючего, отличающийся тем, что выходы всех насосов соединены с входом в газогенератор, выход из газогенератора газоводом соединен с каждой камерой сгорания. Двигатель имеет блок управления, а все клапаны соединены электрической связью с блоком управления. Между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод, содержащий дренажный клапан. Перед дренажным клапаном установлены датчик температуры и датчик давления, соединенные электрической связью с блоком управления.

Заявленный технический результат достигнут в способе работы трехкомпонентного ракетного двигателя, включающем подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через сопло, отличающийся тем, что после выработки первого горючего во второй газогенератор подают второе горючее. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. Перед подачей второго горючего в газогенератор и камеру сгорания охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры и датчику давления, установленным перед дренажным клапаном. После выключения двигателя трубопроводы горючего продувают инертным газом для удаления остатков второго горючего.

Заявленный технический результат достигнут в турбонасосной системе топливоподачи, содержащей два турбонасосных агрегата, отличающейся тем, что каждый турбонасосный агрегат содержит турбину, установленный под ним газогенератор, и соединенные с ней общим валом насос окислителя, насосы горючего и дополнительный насос горючего, при этом первый турбонасосный агрегат предназначен для последовательной или одновременной работы на первом горючем, а второй - для работы на втором горючем, без смены окислителя, в обеих турбонасосных агрегатах между газогенератором и насосом окислителя установлена теплизоляционная прокладка, непосредственно под окислителем первого турбонасосного агрегата установлена вторая теплоизоляционная перегородка. В обеих турбонасосных агрегатах между газогенератором и насосом окислителя и между насосом окислителя и насосом соответствующего горючего установлены по два уплотнения к полостям, между которыми подсоединены трубопроводы подачи инертного газа.

Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Новизна подтверждается проведенными патентными исследованиями, изобретательский уровень - достижением нового эффекта: повышение надежности ТНА за счет уменьшения времени его охлаждения вторым горючим и обеспечение одновременной работы двигателя на первом и втором горючем.

Промышленная применимость обусловлена тем, что все элементы, входящие в компоновку ТНА, известны из уровня техники и широко применяются в двигателестроении.

Сущность изобретения поясняется на фиг.1…8, где:

на фиг.1 приведена схема ракеты-носителя,

на фиг.2 - компоновка трехкомпонентного ракетного двигателя,

на фиг.3 - схема трехкомпонентного ракетного двигателя,

на фиг.4 - головка камеры сгорания, вид А,

на фиг.5 - вид Б,

на фиг.6 - схема первого ТНА, разрез В-В,

на фиг.7 - схема второго ТНА, разрез Г-Г,

на фиг.8 - схема газогенератора.

Ракета-носитель (фиг.1) содержит, по меньшей мере, один ракетный блок первой ступени 1 с двигателями первой ступени 2, имеющими камеру сгорания 3 и двухкомпонентный ТНА 4, а также ракетный блок второй ступени 5 с двигателями второй ступени 6, имеющими камеру сгорания 7 и трехкомпонентный ТНА 8. Все двигатели установлены на рамах 9. На всех камерах сгорания 3 и 7 или только на камере сгорания 7 установлены приводы 10 для их качания в одной или двух плоскостях с целью управления вектором тяги. При этом трехкомпонентный ТНА 8 закреплен на раме 9 жестко, а камера сгорания 7 соединена с трехкомпонентным ТНА 8 через сильфон 11. Ракетные блоки первой и второй ступеней 1 и 5 соединены узлами силовой связи 12.

На всех ракетных ступенях установлены баки окислителя 13 и баки горючего 14, кроме того, на второй ракетной ступени 5 установлен бак второго горючего 15. Баки окислителя трубопроводом окислителя 16, содержащим главный клапан окислителя 17, соединен с двигателями 2 и 6. Каждый бак первого горючего 14 трубопроводом горючего 18, содержащим главный клапан первого горючего 19, соединен с двигателями первой и второй ступеней, соответственно 2 и 6. Бак второго горючего 15 трубопроводом второго горючего 20, содержащим главный клапан второго горючего 21, соединен с двигателем второй ступени 6. На ракете установлен блок управления 22, соединенный электрическими связями 23 с двигателями первой и второй ступеней, соответственно 2 и 6 и с узлами силовой связи 12. Далее подробно опишем конструкцию трехкомпонентного ракетного двигателя 6 второй ступени 5.

Трехкомпонентный ракетный двигатель 6 (фиг.2) для второй ступени 5 ракеты-носителя (фиг.2…4) содержит камеру сгорания 7, закрепленную на раме 9 с возможностью качания и имеющей для этого приводы 10 и сильфон 11 (фиг.1 и 2). Для примера приведен двигатель 6 с одной камерой сгорания 7 и с соплом 24 и двумя турбонасосными агрегатами (ТНА), первым 25 и вторым 36, при этом первый ТНА 1 соединен с камерой сгорания 7 при помощи газовода 27, а второй ТНА 26 - при помощи газовода 28. Оба ТНА 25 и 26 закреплены на силовой раме 9 при помощи узлов крепления 29 и 30 соответственно. Рулевые приводы 10 присоединены с одной стороны к силовой раме 9, а с другой - к силовому кольцу 31, закрепленному на сопле 24.

Камера сгорания 7 (фиг.3) имеет внутреннюю полость 32, с которой соединен датчик давления 33, и головку 34.

ПНЕВМОГИДРАВЛИЧЕСКАЯ СХЕМА ПЕРВОГО ТУРБОНАСОСНОГО АГРЕГАТА 25 (фиг.3)

Первый турбонасосный агрегат 25 содержит последовательно установленные выхлопной коллектор 35, турбину 36, газогенератор 37, насос окислителя 38, насос первого горючего 39 и дополнительный насос первого горючего 40.

Выход из насоса окислителя 38 (фиг.2) трубопроводом окислителя 41, содержащим клапан окислителя 42, соединен с входом в трехкомпонентный двухзонный газогенератор 37. Выход из насоса окислителя 38 трубопроводом 42, содержащим пускоотсечной клапан 43, соединен с входом в газогенератор 37. Выход из насоса первого горючего 39 трубопроводом 44, содержащим пускоотсечной клапан 46, соединен с входом дополнительного насоса первого горючего 39 и трубопроводом 45, содержащим пускоотсечной клапан 46, соединен с коллектором горючего 47. Выход из насоса первого горючего 39 трубопроводом 48, содержащим регулятор 49 и пускоотсечной клапан 50, соединен с входом в газогенератор 37. С внутренней полостью газогенератора 37 соединен датчик давления 51.

ПНЕВМОГИДРАВЛИЧЕСКАЯ СХЕМА ВТОРОГО ТУРБОНАСОСНОГО АГРЕГАТА 26 (фиг.3)

Второй турбонасосный агрегат 26 содержит последовательно установленные выхлопной коллектор 52, турбину 53, газогенератор 54, насос окислителя 55, насос второго горючего 56, дополнительный насос второго горючего 57. Выход из насоса окислителя 55 трубопроводом 58, содержащим пускоотсечной клапан 59, соединен с газогенератором 54. Выход из дополнительного насоса горючего 57 трубопроводом 60, содержащим регулятор 61 и пускоотсечной клапан 62, соединен с газогенератором 54. Между регулятором 61 и пускоотсечным клапаном 62 подсоединен дренажный трубопровод 63 с дренажным клапаном 64. Перед дренажным клапаном 64 установлены датчик температуры 65 и датчик давления 66. Насосы второго горючего 56 и дополнительный насос второго горючего 57 соединены трубопроводом 67. К выходу дополнительного насоса 57 подсоединен трубопровод 68 с пускоотсечным клапаном 69 и гибким трубопроводом 70, который соединен с коллектором горючего 47. Такой же гибкий шланг 70 установлен за пускоотсечным клапаном 46. На газогенераторе 54 установлен датчик давления 71.

Дренажный трубопровод 63 с дренажным клапаном 64 предназначены для захолаживания насоса второго горючего 56 и дополнительного насоса второго горючего 57 перед запуском двигателя 6 на втором горючем.

Датчики 33, 51, 65, 66 и 71 электрическими связями 23 соединены с блоком управления 22 и предназначены для автоматического контроля работы двигателя 6.

Двигатель 6 оборудован баллоном с инертным газом 72, который трубопроводом 73, содержащим клапаны 74-76 подсоединен к коллектору горючего 47 для продувки при выключении двигателя 6 и к промежуточным полостям 106 (фиг.6) и 131 (фиг.7). Камера сгорания 7 и сопло 24 имеют рубашку охлаждения 77.

КОНСТРУКЦИЯ ГОЛОВКИ КАМЕРЫ СГОРАНИЯ (фиг.4 и 5)

Головка 34 камеры сгорания 7 (фиг.4 и 5) содержит выравнивающую решетку 78, верхнюю плиту 79, нижнюю плиту 80. Над верхней плитой 79 образована полость 81, между выравнивающей решеткой 78 и верхней плитой 79 выполнена полость 81, между плитами 79 и 80 - полость 82. Форсунки окислителя 83 сообщают полости 81 и 32, а форсунки горючего 84 соединяют полости 82 и 32.

КОНСТРУКЦИЯ ПЕРВОГО ТНА 25 (фиг.6)

Первый турбонасосный агрегат 25 (фиг.5) содержит выполненные в виде единого агрегата выхлопной коллектор 35, турбину 36, установленный под ним газогенератор 37, насос окислителя 38, насос первого горючего 39, дополнительный насос первого горючего 40.

Турбина 36 содержит корпус 85, рабочее колесо турбины 86 и сопловой аппарат 87. Рабочее колесо 86 установлено на валу 88. Вал 88 установлен на подшипниках 89 и 90.

Газогенератор 37 содержит наружный корпус 91, внутренний корпус 92 и торец 93. Между внутренним корпусом 92 и подшипником 89 выполнена теплоизоляция 94. Газогенератор 37 содержит верхнюю плиту 95, нижнюю плиту 96, форсунки окислителя 97 и форсунки горючего 98. Внутри газогенератора выполнена рабочая полость 99, между плитой 96 и торцом 93 выполнена полость 100, а между плитами 95 и 96 выполнена полость 101. Для охлаждения подшипника 89 внутри вала 88 предусмотрена система отверстий 102.

Между газогенератором 37 и насосом окислителя 38, а также между этим насосом и насосом первого горючего 39 установлены теплоизоляционные прокладки 103 и 104 соответственно. На валу 88 между газогенератором 37 и насосом окислителя 38 установлены два уплотнения 105, между которыми образована промежуточная полость 106. Аналогично образована промежуточная полость 106 между насосом окислителя 38 и насосом первого горючего 39.

Насос окислителя горючего 38 содержит крыльчатку 107, насос первого горючего 39 содержит крыльчатку 108, дополнительный насос первого горючего 40 содержит крыльчатку 109 (фиг.6). Все крыльчатки 107…109 установлены на валу 88. К полостям 106 подсоединены трубопроводы подвода инертного газа 73. К выходу из полостей 106 подсоединены трубопроводы сброса 110 (фиг.5 и 6).

КОНСТРУКЦИЯ ВТОРОГО ТНА (фиг.7)

Второй турбонасосный агрегат 26 (фиг.7) содержит выполненные в виде единого агрегата выхлопной коллектор 52, турбину 53, установленный под ним газогенератор 54, насос окислителя 55, насос второго горючего 56, дополнительный насос второго горючего 57.

Турбина 53 содержит внешний корпус 111, рабочее колесо турбины 112 и сопловой аппарат 113. Рабочее колесо 112 установлено на валу 114. Вал 114 установлен на подшипниках 115 и 116.

Газогенератор 54 содержит наружный корпус 117, внутренний корпус 118 и торец 119. Между внутренним корпусом 118 и подшипником 115 выполнена теплоизоляция 120. Газогенератор 54 содержит верхнюю плиту 121, нижнюю плиту 122, форсунки окислителя 123 и форсунки горючего 124. Внутри газогенератора 54 выполнена рабочая полость 125, между нижней плитой 122 и торцом 119 выполнена полость 126, а между плитами 121 и 122 выполнена полость 127. Для охлаждения подшипника 115 внутри вала 114 предусмотрена система отверстий 128.

Между газогенератором 54 и насосом окислителя 55 установлена теплоизоляционная прокладка 129. На валу 114 между газогенератором 54 и насосом окислителя 55 установлены по два уплотнения 130, между которыми образована промежуточная полость 131. Аналогично образована промежуточная полость 131 между насосом окислителя 55 и насосом первого горючего 56. Насос окислителя 55 содержит крыльчатку 132, насос первого горючего 39 содержит крыльчатку 133, дополнительный насос первого горючего 40 содержит крыльчатку 134 (фиг.6). Все крыльчатки 132…134 установлены на валу 88.

К полостям 106 подсоединены через клапан 75 трубопроводы подвода инертного газа 73. К выходу из полостей 131 подсоединены трубопроводы сброса 135 (фиг.7). Более детально конструкция газогенератора показана на фиг.8.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖРД

Тяга двигателя земная, тс 400
Тяга двигателя, пустотная, при работе на первом горючем, тс 600
Тяга двигателя, пустотная, при работе на втором горючем, тс 650
Давление в камере сгорания, кгс/см2 500
Давление в газогенераторе, кгс/см2 600
Давление на выходе из насоса окислителя, кгс/см2 700
Давление на выходе дополнительного насоса окислителя, кгс/см2 1200
Давление на выходе из первого насоса горючего, кгс/см2 750
Давление на выходе из второго насоса горючего, кгс/см2 770
Давление на выходе из второго дополнительного насоса горючего, кгс/см2 800
Мощность ТНА, МВт 320
Частота вращения ротора ТНА, об/мин 40000
Компоненты ракетного топлива
Окислитель жидкий кислород
Горючее керосин
Второе горючее жидкий водород
Масса двигателя, сухая, кг 1550

Двигатель может работать: сначала на первом горючем, а потом - на втором горючем или одновременно на двух горючих. При переключении двигателя на другое горючее его можно не выключать. В качестве второго горючего предпочтительно использовать жидкий водород.

При запуске ЖРД на первом горючем с блока управления 22 подается команда на клапаны 17 и 19 (фиг.1), установленные перед насосом окислителя 38 (фиг.3) и перед насосом первого горючего 39 для их заполнения компонентами топлива. Потом открывают клапаны 43, 46 и 50. Окислитель и первое горючее поступают на вход в насосы окислителя 38, насос первого горючего 39, потом окислитель и первое горючее подаются в газогенератор 37, где воспламеняются. Газогенераторный газ подается в камеру сгорания 7 по газоводу 27, а первое горючее подается в камеру сгорания 7 по трубопроводу 45 через пускоотсечной клапан 46, гибкий трубопровод 70, коллектор горючего 47, рубашку охлаждения 77 и головку 34 камеры сгорания 7, при этом охлаждает сопло 24.

После выработки первого горючего ракетные двигатели 2 первых ракетных ступеней выключаются и с блока управления 22 подается сигнал на узлы силовой связи 12, например пироболты, которые разъединяют связи между блоками первой ступени 1 и блоком второй ракетной ступени 5, расположенным осесимметрично в центре ракеты-носителя. Блоки первых ракетных ступеней 1 отбрасываются. После выключения подачи первого горючего открывают клапан 74 и продувают инертным газом рубашку охлаждения 77 сопла 24 и камеры сгорания 7.

Для переключения двигателя 6 ракетного блока второй ступени 5 на второе горючее с блока управления 22 подают сигнал на открытие пускоотсечного клапана 59 (фиг.3), который открывается и часть второго горючего подается в газогенератор 37, конкретно в форсунки горючего 98 (фиг.6). Одновременно открывают главный клапан второго горючего 21 и подают второе горючее на вход в насос второго горючего 56, размещенного во второй ракетной ступени 5. Потом открывают дренажный клапан 64 (фиг.3) и охлаждают насос второго горючего 56 и дополнительный насос второго горючего, при этом наличие жидкой фазы контролируется датчиком температуры 65 и датчиком давления 66. Этот процесс не займет много времени, т.к. насос второго горючего 56 расположен непосредственно под насосом окислителя 38, работающим на криогенном окислителе (жидком кислороде), имеющим температуру около - 183°С. Так как второе криогенное горючее (преимущественно жидкий водород) имеет температуру -254°С, то при попадании на относительно «теплые» металлические детали турбонасосного агрегата 26 часть второго топлива испаряется, т.е. переходит в газообразную фазу. Насос второго горючего 56 и дополнительный насос второго горючего 57 не приспособлены для перекачки газообразных или двухфазных сред, поэтому газообразное второе горючее сбрасывается в атмосферу через дренажный трубопровод 63 и дренажный клапан 64 без утилизации. При достижении по датчику температуры 65 температуры жидкой фазы второго горючего закрывают дренажный клапан 64. Потом открывают пускоотсечные клапаны 59, 62 и 69, и часть второго горючего поступает по трубопроводу 60 в форсунки 98 газогенератора 54. Одновременно по трубопроводу 58 через пускоотсечной клапан 59 весь расход окислителя поступает в газогенератор 54 через форсунки 97. Большая часть второго горючего по трубопроводу 68 через пускоотсечной клапан 69 и коллектор горючего 47 подается в сопло 24 и камеру сгорания 7 вместо первого горючего. Таким образом в газогенератор 54 поступает уже второе горючее вместо первого, где оно также воспламеняется, и двигатель начинает работать на втором более эффективном горючем, т.е. он будет иметь более высокие технические характеристики и лучшие удельные характеристики (удельную тягу, приведенную к единице расхода топлива), т.к. второе горючее более эффективно, чем первое. Использование второго горючего с момента старта ракеты могло бы улучшить техническую характеристику ракеты носителя на старте, но из-за высокой стоимости второго горючего необоснованно увеличатся затраты на запуск ракеты-носителя. Переключение с одного горючего на другое, в отличие от прототипа, осуществляется плавно. Кроме того, двигатель может длительно работать одновременно на двух горючих.

Охлаждение камеры сгорания 7 с соплом 24 при любых режимах осуществляется первым или вторым горючим. Это дает много преимуществ. Хладоресурс второго (например, жидкого водорода) очень большой и достаточный для охлаждения камеры сгорания с соплом на любом режиме.

При выключении двигателя прекращают подачу окислителя и второго горючего, закрыв клапаны 17, 21, 50, 62 и 69. После выключения двигателя 6 открывают соответствующий продувочный клапан 74 и осуществляют продувку двигателя инертным газом из баллона 72. Регулирование режима работы двигателя осуществляется одним из регуляторов 49 или 61. Управление вектором тяги осуществляют приводами 10 (фиг.1 и 2), путем качания камер сгорания 7 в одной или двух плоскостях. Сильфон 11 и аналогичные гибкие трубопроводы 70 на магистралях первого и второго горючего позволяют отклонять камеры сгорания 7, не разворачивая ТНА 25 и 26. Это уменьшает влияние гироскопических сил на подшипники ТНА 25 и 26 при маневрах ракеты-носителя, что повышает его надежность.

Применение изобретения позволило:

1. Повысить тяговооруженность ракеты-носителя на конечном этапе вывода полезной нагрузки на орбиту.

2. Улучшить технические характеристики ракеты-носителя: скорость на конечном участке работы двигателей второй ступени.

3. Обеспечить управляемость ракеты-носителя за счет качания только камер сгорания, без качания ТНА и без применения рулевых двигателей или камер сгорания. Качание может осуществляться в одной плоскости для ракет-носителей с большим количеством однокамерных двигателей или с одним четырехкамерным двигателем либо в двух плоскостях для единственного однокамерного двигателя.

4. Увеличить полезную нагрузку.

5. Использовать ракету-носитель для межпланетных перелетов.

6. Улучшить удельные энергетические характеристике ЖРД (приведенные к единице тяги или к единице веса двигателя) при его работе на заключительном этапе выполнения программы запуска ракеты-носителя.

7. Ускорить охлаждение насоса второго горючего и дополнительного насоса второго горючего при переключении двигателя на работу со вторым горючим.

8. Обеспечить надежное охлаждение камеры сгорания с соплом за счет использования большей части расхода одного горючего из двух, имеющихся в баках ракеты-носителя.

9. Предотвратить замерзание первого горючего (жидких углеводородов) в рубашке охлаждения при переключении на второе горючее

1. Многоступенчатая ракета-носитель, содержащая соединенные по параллельной схеме ракетные блоки первой и второй ступени ракеты-носителя с баками окислителя и горючего, соединенные узлами силовой связи и оборудованные, по меньшей мере, одним двигателем первой и одним двигателем второй ступеней, отличающаяся тем, что в блоке второй ступени установлен бак второго горючего, каждый двигатель второй ступени выполнен содержащим камеру сгорания и турбонасосный агрегат, установленный параллельно оси камеры сгорания или под углом к ней, в состав турбонасосного агрегата входят турбина, двухзонный газогенератор, насос окислителя, дополнительный насос окислителя, насос второго горючего и насос первого горючего.

2. Трехкомпонентный ракетный двигатель, содержащий не менее одной камеры сгорания с соплом, имеющим систему регенеративного охлаждения, два турбонасосных агрегата, в который встроен газогенератор, турбину, насос окислителя, установленный под ним, насосы горючего, отличающийся тем, что выходы всех насосов соединены с входом в газогенератор, выход из газогенератора газоводом соединен с каждой камерой сгорания.

3. Трехкомпонентный ракетный двигатель по п.2, отличающийся тем, что двигатель имеет блок управления, а все клапаны соединены электрической связью с блоком управления.

4. Трехкомпонентный ракетный двигатель по п.3, отличающийся тем, что между дополнительным насосом второго горючего и пускоотсечным клапаном второго горючего подсоединен дренажный трубопровод, содержащий дренажный клапан.

5. Трехкомпонентный ракетный двигатель по п.4, отличающийся тем, что перед дренажным клапаном установлен датчик температуры и датчик давления, соединенные электрической связью с блоком управления.

6. Способ работы трехкомпонентного ракетного двигателя, включающий подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через сопло, отличающийся тем, что после выработки первого горючего во второй газогенератор подают второе горючее.

7. Способ работы трехкомпонентного ракетного двигателя по п.6, отличающийся тем, что в качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород.

8. Способ по п.7, отличающийся тем, что перед подачей второго горючего в газогенератор и камеру сгорания, охлаждают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры и датчику давления, установленным перед дренажным клапаном.

9. Способ по п.8, отличающийся тем, что после выключения двигателя трубопроводы горючего продувают инертным газом для удаления остатков второго горючего.

10. Турбонасосная система топливоподачи, содержащая два турбонасосных агрегата, отличающаяся тем, что каждый турбонасосный агрегат содержит турбину, установленный под ним газогенератор, и соединенные с ней общим валом насос окислителя, насосы горючего и дополнительный насос горючего, при этом первый турбонасосный агрегат предназначен для последовательной или одновременной работы на первом горючем, а второй - для работы на втором горючем, без смены окислителя.

11. Турбонасосная система топливоподачи по п.10, отличающаяся тем, что в обоих турбонасосных агрегатах между газогенератором и насосом окислителя установлена теплоизоляционная прокладка, непосредственно под окислитель первого турбонасосного агрегата установлена вторая теплоизоляционная перегородка.

12. Турбонасосная система топливоподачи по п.10 или 11, отличающаяся тем, что в обоих турбонасосных агрегатах между газогенератором и насосом окислителя и между насосом окислителя и насосом соответствующего горючего установлены по два уплотнения, к полостям, между которыми подсоединены трубопроводы подачи инертного газа.

www.findpatent.ru

Трехкомпонентный жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения. Трехкомпонентный жидкостный ракетный двигатель (ЖРД), содержащий камеру, газогенератор, агрегаты управления и регулирования, по крайней мере, один турбонасосный агрегат с, как минимум, двумя насосами для двух горючих, причем газовый тракт после, как минимум, одной турбины соединен с смесительной головкой камеры, согласно изобретению насос горючего с меньшей плотностью установлен на отдельном валу, а в газовый тракт, соединяющий газогенератор и турбину, помещен смеситель, связанный трубопроводом с коллектором, установленным после тракта охлаждения камеры, или турбоприводом, связанным с выходной полостью насоса одного из горючих, причем агрегат регулирования установлен на трубопроводе, соединяющем выход из насоса окислителя и смесительную головку газогенератора, или на трубопроводе, соединяющем коллектор после тракта охлаждения камеры и смесительную головку газогенератора, или на трубопроводе, соединяющем выход из насоса горючего с меньшей плотностью и смесительную головку газогенератора. Изобретение обеспечивает повышение удельного импульса тяги и снижение массы ЖРД. 3 ил.

 

Предлагаемое изобретение относится к области ракетного двигателестроения, ориентированного на космические транспортные системы.

Одним из главных требований, предъявляемых к жидкостному ракетному двигателю (ЖРД) является требование по обеспечению максимально возможного значения удельного импульса тяги (экономичности) при сочетании с максимально возможным значением средней плотности топлива. Двухкомпонентные комбинации топлив не удовлетворяют данным требованиям. Так, например, кислородно-углеводородное топливо имеет высокое значение плотности, но низкое значение экономичности, а кислородно-водородное топливо - низкое значение плотности и высокое значение экономичности.

При совместном горении в камере ЖРД трехкомпонентных композиций, например кислород-керосин-водород или кислород-метан (сжиженный природный газ)-водород, можно получить более оптимальное сочетания плотности топлива и экономичности, что позволяет уменьшить стартовую массу ракеты-носителя (РН) на ~10% или увеличить массу полезного груза (ПГ) на ~5%. Применение трехкомпонентных двигателей по сравнению с двухкомпонентными (кислородно-углеводородными и кислородно-водородными в составе одной РН) позволяют уменьшить массу конструкции РН и стоимость двигательной установки.

Также важным преимуществом трехкомпонентных двигателей является возможность изменения по траектории полета процентного содержания в топливе горючих, что дополнительно улучшает массовые характеристики РН, делая возможность перехода к одноступенчатым летательным аппаратам, в том числе многоразового применения.

Известен трехкомпонентный жидкостный ракетный двигатель (см. патент РФ №2065068, кл. F02K 9/46), содержащий камеру, агрегаты подачи окислителя горючего, агрегаты управления и регулирования с магистралями, трехкомпонентный газогенератор.

Известен трехкомпонентный жидкостный ракетный двигатель, содержащий камеру, турбонасосные агрегаты подачи трех компонентов, агрегаты управления и регулирования с магистралями, имеющий трехкомпонентный газогенератор, соединенный через пускоотсечной клапан и регулирующий элемент с насосом первого горючего и через трехпозиционный клапан с магистралью второго горючего, один из выходов трехпозиционного клапана соединен с магистралью питания газогенератора первым горючим, к которой через пускоотсечной клапан и дозирующее устройство подведена магистраль высокого давления инертного газа, причем на одном валу с насосом первого горючего установлен дополнительный насос второго горючего, соединенный магистралью через трехпозиционный клапан с основным насосом второго горючего, выход из дополнительного насоса второго горючего соединен через обратный клапан с рубашкой охлаждения камеры, а вход турбины насоса первого горючего соединен через трехпозиционный клапан с газовой магистралью после газогенератора и с входом в турбину насоса второго горючего (см. патент РФ №2065985 МПК F02K 9/46 от 27.08.1996 г. - прототип).

Недостатком ЖРД, принятого за прототип, является то, что на одном валу установлены насосы первого и второго горючих. При близких значениях плотности это решение является правильным. Однако при использовании горючих с существенно разными значениями плотности (водород в 6 и 12 раз имеет меньшую плотность, чем метан и керосин соответственно) это приводит к низким значениям коэффициентов полезного действия и увеличенным значениям массы системы подачи. Так, например, для кислородно-керосиновых и кислородно-метановых систем подачи значения оборотов ротора составляют 20000-40000 об/мин, а для подачи водорода 60000-125000 об/мин.

Вторым недостатком ЖРД, принятого за прототип, является то, что его конструкция обеспечивает работу как на трехкомпонентном режиме (например, кислород-керосин-водород), так и на двухкомпонентном режиме (кислород-водород). На обоих режимах камеры охлаждаются водородом. Это приводит к снижению удельных энерго-массовых характеристик. Так, например, применение водорода вместо метана приводит к увеличению гидросопротивления тракта охлаждения камеры в ~2 раза (~120 ктс/см2 вместо ~60 ктс/см2), повышению температуры генераторного газа на 8-12% (~900 К вместо ~800 К), увеличению мощности водородного насоса на 10÷15%.

Третьей особенностью ЖРД, принятого за прототип, является то, что применение трехкомпонентного газогенератора не обеспечивает оптимальные характеристики генераторного газа (газовая постоянная R, температура Тгг и разброс температуры ΔT). Это связано с тем, что процессы распыла, испарения и горения водорода и, например, керосина с кислородом разные. Более существенное отличие этих процессов происходит в периферийной зоне, где сказывается влияние стенки (разные коэффициенты вязкости).

Задачей предлагаемого изобретения является устранение отмеченных недостатков прототипа, а именно, в конечном итоге, повышение удельного импульса тяги (экономичности) и снижение массы ЖРД.

Поставленная задача решается тем, что в известном трехкомпонентном ЖРД, содержащем камеру, газогенератор, агрегаты управления и регулирования, по крайней мере, один турбонасосный агрегат с, как минимум, двумя насосами для двух горючих, причем газовый тракт после, как минимум, одной турбины соединен с смесительной головкой камеры, согласно изобретению насос горючего с меньшей плотностью установлен на отдельном валу, а в газовый тракт, соединяющий газогенератор и турбину, помещен смеситель, связанный трубопроводом с коллектором, установленным после тракта охлаждения камеры, или турбоприводом, связанным с выходной полостью насоса одного из горючих, причем агрегат регулирования установлен на трубопроводе, соединяющем выход из насоса окислителя и смесительную головку газогенератора, или на трубопроводе, соединяющем коллектор после тракта охлаждения камеры и смесительную головку газогенератора, или на трубопроводе, соединяющем выход из насоса горючего с меньшей плотностью и смесительную головку газогенератора.

Сущность предлагаемого ЖРД иллюстрируется принципиальными схемами, приведенными на фиг. 1, фиг. 2 и фиг. 3 следующими обозначениями:

1, 2, 3 - магистрали подвода компонентов топлива в насосы;

4, 5, 6 - насосы;

7, 8, 9, 10 - магистрали отвода компонентов из насосов;

11 - камера;

12 - газогенератор;

13 - магистраль подвода горючего в смеситель или в газогенератор;

14 - смеситель;

15, 16 - турбины;

17 - агрегат регулирования.

Предлагаемый двигатель (фиг. 1, фиг. 2 и фиг. 3) состоит из магистралей подвода компонентов топлива 1, 2 и 3, насосов 4, 5 и 6, магистралей отвода компонентов топлива из насосов 7, 8, 9 и 10, камеры 11, газогенератора 12, магистрали подвода горючего в смеситель или в газогенератор 13, смесителя 14, турбин 15 и 16, агрегата регулирования 17.

Двигатель работает следующим образом.

Компоненты топлива поступают из баков ракеты-носителя (РН) по магистралям 1, 2 и 3 на вход насосов 4, 5 и 6. Из насосов компоненты топлива по магистралям 7, 8, 9 и 10 поступают на охлаждение и в смесительную головку камеры 11, в смесительную головку газогенератора 12 (фиг. 1, фиг. 3) или в смеситель 14 (фиг. 2) соответственно. По магистрали 13 горючее после охлаждения камеры поступает в смеситель 14 (фиг. 1, фиг. 3) или в смесительную головку газогенератора (фиг. 2). После смесителя газ подается на турбины 15 и 16. Для обеспечения регулирования двигателя по режиму установлен агрегат регулирования 17 на магистрали 9 (фиг. 1), или на магистрали 13 (фиг. 2), или на магистрали 10 (фиг. 3).

Установка насоса горючего с меньшей плотностью на отдельном валу позволяет в каждом турбонасосном агрегате получить максимально возможные КПД турбин и насосов за счет оптимальных оборотов роторов, а значит, высокие значения давлений за насосами и в камере сгорания, что увеличивает степень расширения продуктов сгорания в сопле и удельный импульс тяги двигателя.

Установка между газогенератором и турбинами смесителя позволяет обеспечить максимально эффективное взаимодействие окислителя с горючим, в газогенераторе, т.е. вступление в реакцию в полном количестве одного или другого (в зависимости от расходов), а затем при балластировке вторым горючим обеспечить высокие (по R) и стабильные (по Т) параметры газа, подаваемого на турбины. Это в свою очередь дополнительно увеличивает мощность турбин, а значит давления за насосами, в камере сгорания, и, соответственно, удельный импульс тяги.

Агрегат регулирования как исполнительный орган позволяет иметь простую систему регулирования, которая изменением температуры газа в газогенераторе меняет режим работы двигателя по тяге.

Изменение температуры газа в газогенераторе обеспечивается изменением агрегатом регулирования расхода кислорода (фиг. 1), или расхода высокоплотного горючего (фиг. 2), или расхода низкоплотного горючего (фиг. 3) в смесительную головку газогенератора.

Трехкомпонентный жидкостный ракетный двигатель, содержащий камеру, газогенератор, агрегаты управления и регулирования, по крайней мере, один турбонасосный агрегат с, как минимум, двумя насосами для двух горючих, причем газовый тракт после, как минимум, одной турбины соединен с смесительной головкой камеры, отличающийся тем, что насос горючего с меньшей плотностью установлен на отдельном валу, а в газовый тракт, соединяющий газогенератор и турбину, помещен смеситель, связанный трубопроводом с коллектором, установленным после тракта охлаждения камеры, или турбоприводом, связанным с выходной полостью насоса одного из горючих, причем агрегат регулирования установлен на трубопроводе, соединяющем выход из насоса окислителя и смесительную головку газогенератора, или на трубопроводе, соединяющем коллектор после тракта охлаждения камеры и смесительную головку газогенератора, или на трубопроводе, соединяющем выход из насоса горючего с меньшей плотностью и смесительную головку газогенератора.

www.findpatent.ru

трехкомпонентный жидкостный ракетный двигатель - патент РФ 2481488

Изобретение относится к ракетной технике и может быть использовано преимущественно в ЖРД. Трехкомпонентный жидкостный ракетный двигатель, содержащий камеру сгорания, имеющую систему регенеративного охлаждения сопла вторым горючим, три турбонасосных агрегата, в том числе турбонасосный агрегат окислителя, турбонасосный агрегат первого горючего, турбонасосный агрегат второго горючего с первым насосом второго горючего, все турбонасосные агрегаты содержат основную турбину насосы, при этом он дополнительно содержит второй турбонасосный агрегат второго горючего со вторым насосом второго горючего, выход которого соединен трубопроводом второго горючего с входом в первый насос второго горючего, при этом турбонасосные агрегат окислителя, первого горючего и первый турбонасосный агрегат второго горючего имеют газогенераторы, конструктивно совмещенные со своими турбонасосными агрегатами. Изобретение обеспечивает повышение удельных характеристик, надежности ЖРД. 20 з.п. ф-лы, 17 ил.

Изобретение относится к жидкостным ракетным двигателям - ЖРД, работающим на трех компонентах топлива; окислителе и двух горючих, и направлено на улучшение удельных характеристик и снижение затрат на запуск ракеты, на которой он установлен и на значительное улучшение ее многих характеристик: дальности полета и т.д. Наиболее оптимальный вариант - использование в качестве окислителя жидкого кислорода, первого горючего - углеводородного - керосина, второго горючего - жидкого водорода.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение № 2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей и как маршевый двигатель космических аппаратов, включает в себя камеру сгорания с регенеративным трактом охлаждения, насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор. Выход конденсатора по линии хладагента соединен с входом в камеру сгорания и с входом в тракт регенеративного охлаждения камеры сгорания. Выход из конденсатора по линии теплоносителя соединен с входом в насос одного из компонентов. Выход из насоса того же компонента сообщен с входом конденсатора по линии хладагента. Второй вход конденсатора сообщен с выходом турбины. Выход насоса другого компонента сообщен с входом в камеру сгорания. Недостатком двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата.

Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение № 2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси. Жидкостной ракетный двигатель содержит камеру сгорания с трактом регенеративного охлаждения, насосы подачи компонентов топлива и турбину. Двигатель содержит установленные последовательно перед насосом подачи одного из компонентов топлива основного турбонасосного агрегата насос бустерного турбонасосного агрегата и смеситель. Выход насоса основного турбонасосного агрегата соединен как с форсуночной головкой камеры сгорания, так и с трактом регенеративного охлаждения камеры сгорания. Тракт регенеративного охлаждения, в свою очередь, связан с турбинами основного и бустерного турбонасосных агрегатов, выходы которых соединены со смесителем.

Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.

Известен ЖРД по патенту РФ на изобретение № 2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.

Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации. Большинство ЖРД используют такие компоненты топлива, что расход окислителя почти всегда больше расхода горючего. Следовательно, для мощных ЖРД, имеющих большую тягу и большое давление в камере сгорания эта схема не приемлема, т.к. расхода горючего будет недостаточно для охлаждения камеры сгорания и привода основной турбины.

Кроме того, не проработана система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение № 2232915, опубл. 10.09.2003 г., который содержит камеру, турбонасосный агрегат, газогенератор, систему запуска, средства для зажигания компонентов топлива и топливные магистрали. Выход насоса окислителя соединен с входом в газогенератор. Выход первой ступени насоса горючего соединен с каналами регенеративного охлаждения камеры и со смесительной головкой. Выход второй ступени насоса горючего соединен с регулятором расхода с электроприводом. Другой вход регулятора соединен с пусковым бачком со штатным горючим. Выход из регулятора соединен с газогенератором. Выход из газогенератора соединен с входом в турбину турбонасосного агрегата, выход из которой соединен со смесительной головкой. Регулятор расхода снабжен гидроприводом предварительной ступени, который через кавитирующий жиклер и гидрореле соединен с пусковым бачком со штатным горючим. Гидрореле соединено со второй ступенью насоса горючего. Дроссель, установленный на выходе первой ступени насоса горючего, выполнен совместно с управляемым клапаном предварительной ступени.

Недостатком является сложная пневмогидравлическая схема двигателя, наличие большого числа клапанов и регуляторов и обвязывающих трубопроводов и, как следствие, большой вес и низкая надежность и проблемы при запуске и выключении двигателя.

Известен: ЖРД по патенту РФ № 2302547, МКП F02K 9/48, опубл. 10.07.2007 г. Этот ЖРД содержит камеру сгорания с соплом, газогенератор и турбонасосный агрегат, содержащий насосы окислителя, горючего и пусковую турбину, также он содержит баллон воздуха высокого давления, подсоединенный через клапан к пусковой турбине и запальные устройства на камере сгорания и газогенераторе.

Недостатки этой конструкции следующие.

1. Форсирование ЖРД увеличением давления в камере сгорания ограничено давлением 200 250 атм. Дальнейшее увеличение давления потребует увеличения мощности турбины ТНА до сотен тыс. кВт, что теоретически возможно путем увеличения температуры газа перед турбиной ТНА, но не осуществимо из-за снижения прочности и ресурса деталей ротора турбины. Кроме того, учитывая, что в качестве второго горючего чаще всего применяют водород, имеющий очень низкую плотность, для повышения давления второго горючего необходимо применить 10 15 и более ступеней насоса. При этом габариты ТНА (длина значительно превысит габариты (преимущественно длину)) камеры сгорания. Это создаст непреодолимые трудности при компоновке ЖРД и при управлении вектором тяги.

2. В ТНА одновременно используются горючее и окислитель очень высокого давления, при их взаимодействии возможны самовоспламенение, взрыв и разрушение ТНА.

3. ЖРД допускает только одноразовое включение в полете.

4. Недостаточно эффективен контроль работы ЖРД и сложности в управлении вектором тяги.

Многоразовое включение применяется на маломощных ЖРД последней ступени ракет-носителей. Использовать аналогичные системы воспламенения топлива на первых ступенях проблематично, т.к. требует иметь мощный источник энергии для запуска ЖРД (раскрутки ротора ТНА и запальников) из-за больших расходов окислителя и горючего, часто имеющих низкую температуру (для криогенных компонентов топлива).

Известен трехкомпонентный ЖРД по пат. США № 4771600, кл.60-256, опубл. 1988 г. Этот ЖРД содержит камеру сгорания с соплом, имеющим регенеративное охлаждение при помощи водорода и три турбонасосных агрегата, работающих на газифицированном водороде, подогретом в системе регенерации сопла.

Недостаток - относительно низкий энергетический потенциал газифицированного водорода для привода трех основных турбин трех ТНА: окислителя, первого горючего и ТНА второго горючего ЖРД, спроектированные по такой схеме могут обеспечить создание давления в камере сгорания не более 120 кгс/см2.

Этот недостаток частично устранен в трехкомпонентном ЖРД по пат РФ 2065985, МКП F02К 9/26, опубл. 27.08.1996 г., прототип.

Этот трехкомпонентный ЖРД содержит камеру сгорания с регенеративным охлаждением вторым горючим (преимущественно водородом) и один общий трехкомпонентный газогенератор, работающий на окислителе, первом и втором горючем ЖРД на определенном этапе переключается в режим работы на окислителе и втором (водороде) горючем.

Эта схема ЖРД обеспечивает работу камеры сгорания при 200 300 кгс/см2. Дальнейшее форсирование ЖРД по давлению в камере сгорания, например до 800 1000 кгс/см2, невозможно и, кроме того, двигатель, изготовленный по такой схеме будет иметь значительный вес из-за большого диаметра трубопроводов и клапанов, разводящих газогенераторный газ на три основные турбины. Кроме того, режим запуска и переключения двигателя с трех на два компонента будут проходить весьма длительно и неопределенно из-за влияния многих факторов, в первую очередь температуры компонентов ракетного топлива.

Этот двигатель имеет ряд недостатков, обусловленных несовершенством пневмогидравлической схемы.

Этот двигатель имеет ряд недостатков, обусловленных несовершенством пневмогидравлической схемы.

1. ЖРД может работать только в двух режимах: на первом и втором горючем и на втором горючем. Работать только на первом горючем ЖРД не может, так как система регенеративного охлаждения ЖРД спроектирована только для охлаждения вторым горючим (водородом). Переключение охлаждения на первое (углеводородное горючее невозможно по двум причинам: охлаждение первым горючим будет малоэффективным из-за низких скоростей первого горючего в системе регенеративного охлаждения, спроектированной для работы на втором имеющем меньшую плотность горючем, и при переключении сопло камеры сгорания останется без охлаждения.

2. Этот ЖРД должен иметь значительно переразмеренный турбонасосный агрегат второго горючего, способный кратковременно увеличить расход второго горючего в 2 3 раза (возможно и желательно более чем в 5 10 раз) при переключении режима работы ЖРД.

3. Невозможно создать ЖРД с давлением в камере сгорания более 250 кгс/м2. по следующим причинам. При увеличении расхода второго горючего через систему регенеративного охлаждения сопла в 2 раза гидравлическое сопротивление системы регенеративного охлаждения возрастет в 4 раза, а при увеличении в 3 раза - в 9 раз (в итоге при исходном гидравлическом сопротивлении регенеративной системы охлаждения 50 кгс/см2 потери давления второго горючего только в системе охлаждения достигнут 450 кгс/см 2 и более, что значительно снизит реальное давление в камере сгорания. Даже если удастся спроектировать насос второго горючего на давление на выходе в 900 1000 кгс/см2, не удастся спроектировать ЖРД с давлением в камере сгорания более 300 кгс/см2.

4. Насос второго горючего на давление 800 1000 кгс/см2 получается многоступенчатым, содержащим 10 15 ступеней и более, и он имеет очень большие габариты, особенно длину. Длина ТНА второго горючего может оказаться больше длины камеры сгорания, это приведет к значительным трудностям при компоновке двигателя и сделает невозможным его качание для управления вектором тяги.

Задачей создания изобретения является значительное улучшение удельных характеристик ЖРД, повышение его надежности, улучшение управляемости и уменьшение экономических затрат на запуск ракет, на которых этот ЖРД установлен.

Решение указанных задач достигнуто в трехкомпонентном жидкостном ракетном двигателе, содержащем камеру сгорания, имеющую систему регенеративного охлаждения сопла вторым горючим, три турбонасосных агрегата, в том числе турбонасосный агрегат окислителя, турбонасосный агрегат первого горючего, турбонасосный агрегат второго горючего с первым насосом второго горючего, все турбонасосные агрегаты содержат основную турбину, насосы, согласно изобретению он дополнительно содержит второй турбонасосный агрегат второго горючего, с вторым насосом второго горючего, выход которого соединен трубопроводом второго горючего с входом в первый насос второго горючего, при этом турбонасосный агрегат окислителя, первого горючего и первый турбонасосный агрегат второго горючего имеют газогенераторы, конструктивно совмещенные со своими турбонасосными агрегатами.

Камера сгорания содержит головку, цилиндрическую часть, сопло, три верхних коллектора в верхней цилиндрической части сопла и один нижний коллектор в нижней части сопла, выход из первой основной турбины турбонасосного агрегата окислителя соединен газоводом с головкой камеры сгорания, а выход из насоса горючего соединен с нижним коллектором, выход из первого верхнего коллектора соединен с газогенератором второго горючего, а выход из второй основной турбины турбонасосного агрегата первого горючего соединен с третьим верхним коллектором, выход из насоса второго горючего соединен с первым верхним коллектором. На камере сгорания и газогенераторах установлены запальные устройства, соединенные электрическими связями с бортовым компьютером. Трехкомпонентный жидкостный ракетный двигатель может содержать центральный шарнир, выполненный на газоводе, на продольной оси камеры сгорания. Центральный шарнир может быть выполнен цилиндрическим. Центральный шарнир может быть выполнен сферическим. Трехкомпонентный жидкостный ракетный двигатель может содержать датчики числа оборотов валов турбонасосных агрегатов, соединенные электрической связью с бортовым компьютером. Турбонасосные агрегаты могут быть установлены в плоскостях симметрично относительно продольной оси камеры сгорания разнесены на 90° и их продольные оси параллельны продольной оси камеры сгорания. Валы турбонасосных агрегатов выполнены с возможностью вращения в противоположные стороны любых двух их них. Турбонасосные агрегаты могут быть выполнены одинакового веса.

На камере сгорания может быть выполнено верхнее силовое кольцо, к которому подсоединены одна или две пары приводов для управления вектором тяги. Газогенератор окислителя может быть установлен между первой основной турбиной и насосом окислителя. Газогенератор горючего может быть установлен над второй основной турбиной. Газовод может быть выполнен П-образной формы со скругленными углами. Трубопровод газифицированного горючего может быть выполнен прямолинейным. Боковая стенка газогенераторов первого горючего и второго горючего выполнена с возможностью регенеративного охлаждения и содержит внутреннюю и внешнюю оболочки с зазором между ними.

Все ТНА закреплены на нижнем силовом кольце, которое выполнено на сопле камеры сгорания.

Крепление всех ТНА может быть выполнено при помощи тяг с шарнирами.

Крепление всех ТНА может быть выполнено к расширяющейся части сопла.

Крепление всех ТНА может быть выполнено к критической части сопла.

Крепление всех ТНА может быть выполнено парами тяг.

Сущность изобретения поясняется на чертежах фиг.1 17, где

- на фиг.1 приведена пневмо-гидравлическая схема ЖРД,

- на фиг.2 приведена конструктивная схема ЖРД,

- на фиг.3 приведена конструкция камеры сгорания,

- на фиг.4 приведен ТНА окислителя,

- на фиг.5 приведен ТНА первого горючего,

- на фиг.6 приведен ТНА второго горючего,

- на фиг.7 приведен второй ТНА второго горючего,

- на фиг.8 приведена схема коммутации запальных устройств,

- на фиг 9 приведена система запуска ЖРД,

- на фиг.10 приведен вид в плане,

- на фиг.11 приведена схема качания ЖРД в одной плоскости,

- на фиг.12 приведена схема качания ЖРД в двух плоскостях,

- на фиг.13 приведена электрическая схема ЖРД,

- на фиг.14 приведена схема ЖРД, допускающего многократное включение на втором горючем,

- на фиг.15 приведена схема крепления всех ТНА к расширяющейся части сопла камеры сгорания,

- на фиг.16 приведена схема крепления всех ТНА к критическому сечению сопла,

- на фиг.17 приведена схема крепления всех ТНА, установленных под углом,

- на фиг.18 приведена схема крепления всех ТНА при помощи четырех пар тяг.

Трехкомпонентный жидкостный ракетный двигатель - ЖРД (фиг.1 18) содержит камеру сгорания 1 с соплом 2, турбонасосный агрегат окислителя ТНА 3, турбонасосный агрегат первого горючего 4 и турбонасосный агрегат второго горючего 5 и второй турбонасосный агрегат второго горючего 6.

Камера сгорания 1 (фиг.1 и 2) содержит головку 7 и цилиндрическую часть 8 и сопло 2. Сопло 2 содержит сужающуюся часть 9 и расширяющуюся часть 10 с нижним коллектором 11. На камере сгорания 1 выполнены три верхних коллектора соответственно первый 12 и второй 13 и третий 14. Как сужающаяся 9, так и расширяющаяся 10 части сопла 2 выполнены с возможностью регенеративного охлаждения и содержат две стенки; внутреннюю стенку 15 и наружную стенку 16 с зазором 17 между ними для прохождения охлаждающего горючего. Полость зазора 17 сообщается с полостью нижнего коллектора 11.

Краткое описание всех ТНА

Как указано ранее, предложенный двигатель содержит четыре ТНА 3 6 (фиг.1 и 2). Приведено краткое описание конструкции этих турбонасосный агрегатов - ТНА, более подробное описание турбонасосных агрегатов будет выполнено далее. ТНА окислителя 3 содержит основную турбину 18, встроенный в ТНА газогенератор 19, насос окислителя 20, дополнительный насос окислителя 21 и первую пусковую турбину 22. ТНА первого горючего 4 содержит встроенный газогенератор первого горючего 23, вторую основную турбину 24, насос первого горючего 25 и вторую пусковую турбину 26. Первый ТНА второго горючего 5 содержит третью основную турбину 27, встроенный в ТНА газогенератор второго горючего 28, первый насос второго горючего 29 и третью пусковую турбину 30. Второй ТНА второго горючего 6 содержит четвертую основную турбину 31, второй насос второго горючего 32 и четвертую пусковую турбину 33.

Предложенный ЖРД работает на трех компонентах ракетного топлива:

- окислителе - «О»,

- первом горючем «Г1».

Все компоненты ракетного топлива хранятся в топливных баках: баке окислителя 34, первого горючего 35 и второго горючего - 36, (фиг.1 и 2) и подводятся к соответствующим ТНА 3 5 при помощи трубопровода окислителя 37, содержащего ракетный клапан окислителя 38, трубопровода первого горючего 39, содержащего ракетный клапан первого горючего 40 и трубопровода второго горючего 41, содержащего ракетный клапан второго горючего 42.

Основной особенностью предложенного трехкомпонентного ЖРД является то, что ТНА второго горючего 5 и второй ТНА второго горючего 6 соединены последовательно по линии второго горючего трубопроводом 43, т.е. выход из первого насоса второго горючего 29 соединен со входом во второй насос второго горючего 32, выход из которого трубопроводом 44, содержащим клапан 45 соединен с нижним коллектором 11 для обеспечения охлаждения сопла 2 камеры сгорания 1. Выход из первой основной турбины 18 газоводом 46 соединен со входом в головку 7 камеры сгорания 1 для подачи «кислого» газа, т.е. продуктов сгорания с избытком окислителя в камеру сгорания 1 на всех режимах работы ЖРД. Для обеспечения работоспособности газогенератора окислителя 19 он имеет системы подачи в него окислителя и второго горючего. Спроектировать газогенератор окислителя 19 для работы на первом горючем нецелесообразно, так как после переключения в ЖРД в режим работы на втором горючем потребуется переключить и газогенератор окислителя 19 на второе горючее. Это существенно усложнит схему ЖРД. Окислитель в газогенератор окислителя 19 подается по трубопроводу окислителя 47, который соединяет выход из насоса окислителя 20 с газогенератором окислителя 19. Выход из насоса окислителя 20 также трубопроводом окислителя 48 соединен со входом в дополнительный насос окислителя 21 для подачи в него 5 10% от всего расхода окислителя, повышения его давления и использования для питания газогенераторов турбонасосного агрегата первого горючего 4 и первого ТНА второго горючего 5. Для питания газогенератора окислителя 19 вторым горючим второй насос второго горючего 32 трубопроводом второго горючего 49, содержащим регулятор расхода 50 с приводом 51 и клапан 52, соединен с газогенератором окислителя 19.

Газогенератор первого горючего 23 также имеет системы питания первым горючим и окислителем. Для подачи первого горючего выход из насоса первого горючего 25 трубопроводом первого горючего 53, содержащим клапан 54, соединен с газогенератором первого горючего 23. Для подачи окислителя выход из дополнительного насоса окислителя 21 трубопроводом окислителя 55, содержащим регулятор расхода окислителя 56 с приводом 57 и клапан 58, соединен с газогенератором первого горючего 23. Выход из газогенератора газогенератором первого горючего 23. Выход из газогенератора первого горючего 23 соединен со входом во вторую основную турбину 23. Выход из второй основной турбины 24 трубопроводом 59 соединен с первым верхним коллектором 12 для подачи в камеру сгорания 1 газифицированного первого горючего.

Газогенератор второго горючего 28 также имеет системы питания вторым горючим и окислителем. Система питания вторым горючим газогенератора второго горючего 28 содержит трубопровод второго горючего 60, который соединяет третий верхний коллектор 14 с газогенератором второго горючего 28 для его полной газификации посредством сжигания со значительным избытком горючего.

Система питания окислителем газогенератора второго горючего 28 включает трубопровод окислителя 61 со вторым регулятором расхода окислителя 62 с приводом 63 и клапан 64. Выход из газогенератора второго горючего 28 соединен с входом в третью основную турбину 27, а выход из третьей основной турбины 27 трубопроводом газифицированного второго горючего 65 соединен с входом в четвертую основную турбину 31, выход из которой трубопроводом 66 соединен со вторым верхним коллектором 13 для подачи в камеру сгорания 1 газифицированного в результате неполного сгорания второго горючего. Второй ТНА второго горючего 6 не имеет газогенератора.

Камера сгорания

Далее более подробно описана конструкция камеры сгорания 1 (фиг.3). Внутри камеры сгорания 1 (фиг.3) выполнены верхняя плита 67, средняя плита 68 и внутренняя плита 69 с зазорами (полостью) между ними 70 и 71. Выше верхней плиты 67 выполнена полость 72. Полость 70 сообщается с полостью первого верхнего коллектора 12, полость 71 - с полостью второго верхнего коллектора 13, зазор 17 - с полостью третьего коллектора 14. Внутри головки 7 камеры сгорания 1 установлены форсунки окислителя 73 и форсунки первого горючего 74 и форсунки второго горючего 75. Форсунки окислителя 73 сообщают полость 72 с внутренней полостью 76 камеры сгорания 1. Форсунки первого горючего 74 сообщают полость 70 с внутренней полостью 76, форсунки второго горючего 75 сообщают полость 71 с внутренней полостью 76. На головке 7 камеры сгорания 1 установлены запальные устройства 77, а к ней присоединен газовод 46.

На газоводе 46 на продольной оси камеры сгорания 1 выполнен центральный шарнир 78. Центральный шарнир 78 может быть выполнен цилиндрическим для обеспечения качания камеры сгорания 1 в одной плоскости или сферическим для обеспечения качания в двух плоскостях. Центральный шарнир 78 закреплен на силовой раме 79, которая установлена внутри корпуса ракеты 80 (фиг.1 и 2). Для обеспечения качания камеры сгорания 1 применен один или два привода 81. В качестве привода 81 может быть использован гидроцилиндр 82, который при помощи шарнира 83 с одной стороны к силовой раме 79, а с другой - при помощи шарнира 84 на верхнем силовом кольце 85. Верхнее силовое кольцо 85 может быть установлено на головке 7 или цилиндрической части 8 камеры сгорания 1.

Система продувки содержит баллон инертного газа 86, который трубопроводом 87, содержащим клапан 88, соединен с нижним коллектором 11.

Подробное описание турбонасосных агрегатов

Далее приведено более подробное описание всех четырех ТНА 3 6 (Фиг.4 7).

Всего в схеме ЖРД приведено четыре ТНА различной конструкции:

- турбонасосный агрегат окислителя ТНА 3,

- турбонасосный агрегат первого горючего 4,

- первый турбонасосный агрегат второго горючего 5,

- второй турбонасосный агрегат второго горючего 6.

Турбонасосный агрегат окислителя.

Турбонасосный агрегат окислителя 3 (фиг.4), как упоминалось ранее, содержит первую основную турбину 18, насос окислителя 20, дополнительный насос окислителя 21, первую пусковую турбину 22. Первая основная турбина 18 содержит входной корпус с полостью 89, сопловой аппарат 91, рабочее колесо 92, выходной корпус 93 с полостью 94.

Турбонасосный агрегат окислителя 3 содержит вал 95, установленный на опорах 96, 97 и 98, на нем установлен первый датчик частоты вращения 99. Газогенератор окислителя 19 (фиг.4) содержит боковую стенку 100, выполненную из двух оболочек: внутренней 101 и внешней 102 с зазором 103 между ними. На боковой стенке 100 выполнен коллектор 104, полость которого сообщается с зазором 103. Газогенератор окислителя 19 содержит головку 106 с полостью 107 и форсунки окислителя и первого горючего, соответственно, 108 и 109. Форсунки окислителя 108 сообщают полость 107 с внутренней полостью 110, а форсунки первого горючего 109 сообщают полость 111, которая выполнена у нижнего торца газогенератора окислителя 19 над его головкой 106 и соединена с зазором 103 - с внутренней полостью 110. Между газогенератором окислителя 19 и валом 95 установлена теплоизоляция 112. Газогенератор окислителя 19 имеет запальное устройство 113. К газогенератору окислителя 19, конкретно к полости 107 внутри головки 106, присоединен трубопровод окислителя 50, содержащий клапан. Другой конец трубопровода окислителя 47 соединен с выходом из насоса окислителя 20.

Окислитель в газогенератор окислителя 19 подается по трубопроводу 47, который соединяет выход из насоса окислителя 20 с газогенератором окислителя 19. Выход из насоса окислителя 20 также трубопроводом 47 соединен со входом в дополнительный насос окислителя 21 для подачи в него 5 10% от всего расхода окислителя, повышения его давления и использования для питания газогенераторов турбонасосного агрегата первого горючего 4 и первого ТНА второго горючего 5.

Для подачи окислителя в газогенератор первого горючего 23 выход из дополнительного насоса окислителя 21 трубопроводом окислителя 55, содержащим регулятор расхода окислителя 56 с приводом 57 и клапан 58, соединен с газогенератором первого горючего 23. К газогенератору окислителя 19, конкретно к коллектору 104, присоединен трубопровод высокого давления второго горючего 46, содержащий регулятор расхода горючего 47 с приводом 48 и клапан высокого давления горючего 49, другой конец подсоединен ко второму турбонасосному агрегату второго горючего 6, конкретно - выходу из второго насоса второго горючего 32.

Первая пусковая турбина 22 содержит входной корпус 114 с полостью 115, сопловой аппарат 116, рабочее колесо 117, выходной корпус 118 с полостью 119. К выходу из пусковой турбины 21 присоединена выхлопная труба 120. К входному корпусу 114 первой пусковой турбины 22 присоединен трубопровод высокого давления 121 с первым пусковым клапаном 122.

Турбонасосный агрегат первого горючего

Турбонасосный агрегат первого горючего 4 (фиг.5), как было приведено ранее, содержит встроенный газогенератор первого горючего 23, вторую основную турбину 24, насос первого горючего 25 и вторую пусковую турбину 26.

Газогенератор первого горючего 23 установлен соосно с ТНА первого горючего 4 над второй основной турбиной 24. Газогенератор первого горючего 23 (фиг.5) содержит боковую стенку 123, выполненную из двух оболочек: внутренней 124 и внешней 125 с зазором 126 между ними. На боковой стенке 123 выполнен коллектор 127. Газогенератор первого горючего 23 содержит головку 128 с полостью 129 внутри нее, внешнюю и внутреннюю плиты 130 и 131 соответственно и полость 132 между ними, а также форсунки окислителя и первого горючего, соответственно, 133 и 134. Форсунки окислителя 133 сообщают полость 129 с внутренней полостью 135, а форсунки первого горючего 134 сообщают полость 132, которая соединена с зазором 126 с внутренней полостью 135. Газогенератор первого горючего 23 имеет запальное устройство 136. ТНА 4 имеет вал 137, установленный на опорах 138, 139 и 140. На валу 137 установлен датчик частоты вращения 141.

Вторая основная турбина 24 содержит входной корпус 142 с полостью 143, сопловой аппарат 144, рабочее колесо 145, выходной корпус 146 с полостью 147.

Вторая пусковая турбина 26 содержит входной корпус 148 с полостью 149, сопловой аппарат 150, рабочее колесо 151, выходной корпус 152 с полостью 153. К выходу из второй пусковой турбины 26 присоединена выхлопная труба 154. К входному корпусу 148 второй пусковой турбины 26 присоединен трубопровод высокого давления 155 с вторым пусковым клапаном 156. ТНА первого горючего имеет систему охлаждения опор.

Система охлаждения опор содержит осевое отверстие 157, выполненное внутри вала 137 и радиальные отверстия 158 и 159, выходящие соответственно в полости 160 и 161.

Первый турбонасосный агрегат второго горючего

Первый турбонасосный агрегат второго горючего 5 (фиг.6), как было указано ранее, содержит третью основную турбину 27, встроенный в ТНА газогенератор второго горючего 28, первый насос второго горючего 29 и третью пусковую турбину 30.

Третья основная турбина 27 содержит, в свою очередь, входной корпус 162 с полостью 163, сопловой аппарат 164, рабочее колесо 165, выходной корпус 166 с полостью 167 и выходным обтекателем 168.

Газогенератор второго горючего 28 установлен соосно с ТНА второго горючего 5 между третьей основной турбиной 27 и первым насосом второго горючего 29. Газогенератор второго горючего 28 (фиг.6) содержит боковую стенку 169, выполненную из двух оболочек: внутренней 170 и внешней 171 с зазором 172 между ними. На боковой стенке 169 выполнен коллектор 173. Газогенератор второго горючего 28 содержит головку 174 с полостью 175 внутри нее, внешнюю и внутреннюю плиты 176 и 177 соответственно и полость 178 между ними, а также форсунки окислителя и второго горючего соответственно 179 и 180. Форсунки окислителя 179 сообщают полость 175 с внутренней полостью 181, а форсунки второго горючего 180 сообщают полость 178, которая соединена с зазором 172 с внутренней полостью 181. Газогенератор первого горючего 28 имеет запальное устройство 182 и тепловую изоляцию 183. ТНА 5 имеет вал 184, установленный на опорах 185, 186 и 187. На валу 184 установлен третий датчик частоты вращения 188.

Третья пусковая турбина 30 содержит входной корпус 189 с полостью 190, сопловой аппарат 191 и рабочее колесо 192, выходной корпус 193 с полостью 194 и раскручивающим аппаратом 195. К третей пусковой турбине 30 присоединена выхлопная труба 196.

Система запуска третьей пусковой турбины содержит трубопровод высокого давления 197 и третий пусковой клапан 198.

Второй турбонасосный агрегат второго горючего

Второй ТНА второго горючего 6 (фиг.7), как упоминалось ранее, содержит четвертую основную турбину 31, второй насос второго горючего 32 и четвертую пусковую турбину 33. Четвертая основная турбина 31 содержит, в свою очередь, входной корпус 199 с полостью 200, выходной корпус 201 с полостью 202, сопловой аппарат 203, рабочее колесо 204.

Кроме того, второй ТНА второго горючего 6 содержит второй насос второго горючего 32, четвертую пусковую турбину 33 с входным корпусом 205 с полостью 206, выходной корпус 207 с полостью 208, сопловой аппарат 209 и рабочее колесо 210. Второй ТНА второго горючего 6 имеет вал 211. Вал 211 установлен на опорах 212, 213 и 214. На валу 211 этого ТНА установлен четвертый датчик частоты вращения 215. К четвертой пусковой турбине 33 присоединена выхлопная труба 216.

Для ускорения и стабилизации процесса запуска второго ТНА второго горючего 6 предназначена четвертая пусковая турбина 33, которая работает на сжатом воздухе (газе), который трубопроводом высокого давления 217, содержащим бортовой пусковой клапан 218 соединен с входным корпусом 205, точнее с полостью 206 четвертой пусковой турбины 33.

Система запуска ЖРД

Для запуска предложенного ЖРД, особенно, если он установлен на первой ступени ракеты целесообразно использовать наземную систему запуска, содержащую наземный баллон 219, наземный трубопровод 220, наземный клапан 221, быстроразъемное соединение 222 и обратный клапан 223 (фиг.9.) Быстроразъемное соединение 222 выполнено на торце ракеты (линия разъема), а обратный клапан 223 - на ракете.

Система повторного запуска ЖРД

ЖРД может быть оборудован системой повторного запуска, которая содержит дополнительный баллон 224, дополнительный трубопровод 225 с дополнительным клапаном 226, подключенный к трубопроводам высокого давления 121, 155, 197 и 217 (фиг.9).

Система продувки ЖРД

Система продувки ЖРД приведена на фиг.1, содержит баллон инертного газа 86, к которому присоединены трубопроводы продувки 87 с клапаном продувки 88. Трубопровод продувки 87 присоединен к нижнему коллектору 11. Система продувки обеспечивает продувку магистралей первого и/или второго горючего.

Система управления ЖРД

На ЖРД установлен бортовой компьютер 227 (фиг.1 и 13), к которому электрическими связями 228 присоединены все датчики, клапаны и регуляторы, а также все запальные устройства. К бортовому компьютеру 227 электрическими связями 228 (фиг.10) подключены:

- пусковые клапаны 122, 156, 198, 218,

- запальные устройства 77, 113 и 136,

- ракетные клапаны 38, 40 и 42,

- клапаны 45, 52, 58 и 88,

- привод 57 регулятора расхода окислителя 56, привод 51 регулятора расхода второго горючего 50, привод 57 регулятора расхода окислителя 56,

- датчики частоты вращения 99, 141, 188 и 215.

Крепление турбонасосных агрегатов

Крепление всех THA 3 6 выполнено при помощи тяг 229 232 соответственно (фиг.12 14). На расширяющейся части 10 сопла 2 (фиг.12 или на критической части (в месте стыка сужающейся части 9 и расширяющейся части 10) фиг.13 выполнен нижний силовой пояс 233, к которому крепятся при помощи шарниров 234 тяги 229 232. К THA 3 6 тяги 229 232 крепятся при помощи шарниров 235. Возможно крепление всех THA при помощи пар тяг (фиг.14). Такая схема крепления исключит влияние температурных напряжений на силовые нагрузки на сопло 2 и влияние гироскопического момента (сил Кориолиса) при маневрировании ракеты.

РАБОТА ТРЕХКОМПОНЕНТНОГО ЖРД

1. Запуск ЖРД

Запуск ЖРД осуществляется следующим образом.

Открывают ракетные клапаны 38, 40 и 42 (фиг.1). Окислитель, первое и второе горючее из баков 34 36 поступают во все THA 3 6.

Открывают пусковые клапаны 122, 156, 198 и 218 (фиг.9) и сжатый воздух (газ) из наземного баллона сжатого воздуха 219 по трубопроводам 121, 155, 197 и 217 поступает в первую, вторую, третью и четвертую пусковые турбины 22, 26, 30 и 33 и раскручивает валы 95, 137, 184 и 211. Датчики частоты вращения контролирует процесс запуска ЖРД в динамике и в работе. Потом открывают первый клапан горючего 40, клапан окислителя 38, клапан высокого давления горючего 45, второй клапан горючего 42, клапан высокого давления окислителя 56. Окислитель и горючее поступают в газогенераторы 19 и 23. Потом с бортового компьютера 227 по линии связи 228 подают сигнал на клапаны 77, 113 и 136. Компоненты ракетного топлива (первое и второе горючее и окислитель) воспламеняются в трех газогенераторах 19, 23 и 28, где сгорают в первом - с избытком окислителя, а во втором - с избытком первого горючего, в третье - с избытком второго горючего. Газифицированное горючее и кислый газогенераторный газ поступают в камеру сгорания 1, точнее в ее внутреннюю полость 76, где воспламеняются при помощи запальных устройств 77. Горючее перед этим нагревается в зазоре 17, охлаждая внутреннюю стенку 15 сопла 2 до 100 200°С. В дальнейшем температура продуктов неполного сгорания второго горючего повышается до 1200 1500°С в газогенераторе второго горючего 28, но уменьшается до 900 1000°С во второй основной турбине 24. Тем не менее энергетического потенциала продуктов неполного сгорания второго горючего (т.е. с избытком второго горючего) будет вполне достаточно для привода четвертой основной турбины 31.

2. Регулирование ЖРД

Регулирование силы тяги ЖРД осуществляют приводом 63 регулятора расхода окислителя 62, привод 51 регулятора расхода второго горючего 50, привод 57 регулятора расхода окислителя 56, используя заранее запрограммированные сигналы с компьютера 227, передаваемые по электрическим связям 228.

3. Переключение ЖРД на режим работы только на втором горючем (водороде)

Переключение ЖРД в режим работы только на втором горючем (фиг.6) включает операции выключения ТНА первого горючего 4 и запуск второго ТНА второго горючего 6. По команде с бортового компьютера 227 по электрическим связям 228 подаются сигналы на закрытие клапанов 45 и 52, при этом работа ТНА первого горючего 4 прекращается. Одновременно закрывают ракетный клапан первого горючего 40. Второе горючее поступает в первый и второй ТНА второго горючего 5 и 6. Если необходимо, то работу этих ТНА форсируют. Одновременно открывают пусковой клапан 221, и сжатый воздух (газ) из бортового баллона сжатого воздуха 219 по трубопроводу высокого давления 221 поступает в полость 132 входного корпуса 206 и далее на рабочее колесо 210 четвертой пусковой турбины 33. В результате вал 211 раскручивается и начинает работать второй насос второго горючего 32. Второе горючее по трубопроводу 60 через клапан поступает в коллектор 145 и далее в газогенератор 140. Подается электрический сигнал на запальное устройство 182 и второе горючее воспламеняется в газогенераторе 28. После выхода ТНА 6 на расчетный режим, что контролируется датчиком частоты вращения 188, закрывают пусковой клапан. Второй ТНА второго горючего подает продукты неполного сгорания второго горючего по трубопроводу 140 через клапан 142 в первый или второй верхний коллекторы 12 или 13 (фиг.1 и 7).

Применение двух турбонасосных агрегатов второго горючего позволит, используя параллельные гидравлические схемы, снизить потери давления второго горючего от насосов до камеры сгорания и повысить давление в камере сгорания. Это можно считать самым существенным преимуществом предложенной схемы по сравнению с прототипом.

4. Управление вектором тяги

Управление вектором тяги осуществляется при помощи приводов качания 84. Привода качания могут использоваться парно для повышения надежности. Симметрично расположение двух ТНА 3 и 6 относительно продольной оси камеры сгорания 1, одинаковый вес ТНА 3 и 6 и вращение валов 211 и 95 в разные стороны повышает точность управления ракетой, так как исключает влияние асимметрии веса и гироскопических от вращения роторов ТНА моментов на управление.

5. Выключение ЖРД

Выключение ЖРД выполняется в обратном порядке. После закрытия всех клапанов горючего и окислителя открывают клапан продувки 88 и инертным газом продувают камеру сгорания 1 двигателя для очистки от остатков первого и/или второго горючего.

6. Повторное включение

Для повторного включения открывают дополнительный пусковой клапан 226 и сжатый воздух по дополнительному трубопроводу 225 из дополнительного баллона 224 подается в пусковые турбины 22, 26,30 и 33, которые раскручивают THA 3 6 (фиг.9).

Применение изобретения позволит:

Значительно улучшить удельные характеристики ЖРД: удельную тягу и удельный вес:

- за счет полной газификации окислителя и горючего перед подачей в камеру сгорания, что обеспечивает большую мощность турбин и насосов и за счет значительно более высокого давление в камере сгорания (800 1000 кгс/см2) и высокую энтальпию компонентов ракетного топлива еще до подачи в камеру сгорания,

- за счет использования двух турбонасосных агрегатов второго горючего, что позволит, используя последовательные гидравлические схемы по линии второго горючего, повысить давление на выходе второго горючего до 1000 кгс/см2 и соответственно повысить давление в камере сгорания.

Повысить надежность ЖРД за счет разнесения насосов горючего и окислителя на значительное расстояние и исключение взаимного проникновения окислителя и горючего и их воспламенение.

Повысить надежность запуска ЖРД, исключив влияние внешних факторов и температуры компонентов ракетного топлива.

Уменьшить длину THA и насосов второго горючего за счет применения двух последовательно соединенных THA.

Улучшить управляемость вектором тяги ЖРД за счет использования центрального силового шарнира и симметричного расположения относительно камеры сгорания четырех THA, имеющих вес, соизмеримый с весом камеры сгорания, и приблизительно одинаковые гироскопические моменты роторов.

Изобретение может использоваться на ракетах любого назначения, в том числе военного. Наиболее оптимально использование ракет, оснащенных такими ЖРД для вывода на орбиту спутников систем глобального дистанционного позиционирования.

Так как двигатель обладает сверхвысокими удельными энергетическими и весовыми характеристиками, то страна, первая внедрившая этот двигатель, будет несколько сот лет обладать решающим преимуществом в ракетной технике.

Имея такой патент на изобретение, предприятиям России, изготавливающим такие ЖРД, кроме восстановления приоритета в мирном освоении космоса и обеспечения обороноспособности страны, будет значительно легче продавать их за рубеж союзникам и дружественным странам, одновременно можно повысить цену реализации единицы уникальной продукции во много раз, при более низкой себестоимости из-за простоты конструкции и технологичности или выводить спутники связи и систем глобального дистанционного позиционирования по международным договорам для других стран.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Трехкомпонентный жидкостный ракетный двигатель, содержащий камеру сгорания, имеющую систему регенеративного охлаждения сопла вторым горючим, три турбонасосных агрегата, в том числе турбонасосный агрегат окислителя, турбонасосный агрегат первого горючего, турбонасосный агрегат второго горючего с первым насосом второго горючего, все турбонасосные агрегаты содержат основную турбину, насосы, отличающийся тем, что он дополнительно содержит второй турбонасосный агрегат второго горючего со вторым насосом второго горючего, выход которого соединен трубопроводом второго горючего с входом в первый насос второго горючего, при этом турбонасосные агрегат окислителя, первого горючего и первый турбонасосный агрегат второго горючего имеют газогенераторы, конструктивно совмещенные со своими турбонасосными агрегатами.

2. Трехкомпонентный жидкостный ракетный двигатель по п.1, отличающийся тем, что камера сгорания содержит головку, цилиндрическую часть, сопло, три верхних коллектора в верхней цилиндрической части сопла и один нижний коллектор в нижней части сопла, выход из первой основной турбины турбонасосного агрегата окислителя соединен газоводом с головкой камеры сгорания, а выход из насоса горючего соединен с нижним коллектором, выход из первого верхнего коллектора соединен с газогенератором второго горючего, а выход из второй основной турбины турбонасосного агрегата первого горючего соединен с третьим верхним коллектором, выход из насоса второго горючего соединен с первым верхним коллектором.

3. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что на камере сгорания и газогенераторах установлены запальные устройства, соединенные электрическими связями с бортовым компьютером.

4. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что он содержит центральный шарнир.

5. Трехкомпонентный жидкостный ракетный двигатель по п.4, отличающийся тем, что центральный шарнир выполнен цилиндрическим.

6. Трехкомпонентный жидкостный ракетный двигатель по п.4, отличающийся тем, что центральный шарнир выполнен сферическим.

7. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что он содержит датчики числа оборотов валов турбонасосных агрегатов, соединенные электрической связью с бортовым компьютером.

8. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что турбонасосные агрегаты установлены в плоскостях симметрично относительно продольной оси камеры сгорания, разнесены на 90° и их продольные оси параллельны продольной оси камеры сгорания.

9. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что валы турбонасосных агрегатов выполнены с возможностью вращения в противоположные стороны.

10. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что турбонасосные агрегаты выполнены одинакового веса.

11. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что на камере сгорания выполнено верхнее силовое кольцо, к которому подсоединены одна или две пары приводов для управления вектором тяги.

12. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что газогенератор окислителя установлен между первой основной турбиной и насосом окислителя.

13. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что газогенератор горючего установлен над второй основной турбиной.

14. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что газовод выполнен П-образной формы со скругленными углами.

15. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что трубопровод газифицированного горючего выполнен прямолинейным.

16. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что боковая стенка газогенератора горючего выполнена с возможностью регенеративного охлаждения и содержит внутреннюю и внешнюю оболочки с зазором между ними.

17. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что он содержит, по меньшей мере, один дополнительный баллон сжатого воздуха с дополнительным трубопроводом высокого давления, дополнительный пусковой клапан.

18. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что крепление всех ТНА выполнено к нижнему силовому кольцу, которое выполнено на сопле, при помощи тяг с шарнирами.

19. Трехкомпонентный жидкостный ракетный двигатель по п.18, отличающийся тем, что крепление всех ТНА выполнено к расширяющейся части сопла.

20. Трехкомпонентный жидкостный ракетный двигатель по п.18, отличающийся тем, что крепление всех ТНА выполнено к критической части сопла.

21. Трехкомпонентный жидкостный ракетный двигатель по п.18, отличающийся тем, что крепление всех ТНА выполнено парами тяг.

www.freepatent.ru

Трехкомпонентный жидкостный ракетный двигатель и способ его работы

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям, работающим на трех компонентах топлива: криогенном окислителе, на углеводородном горючем и на жидком водороде. В трехкомпонентном жидкостном ракетном двигателе, содержащем не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, многокомпонентный газогенератор, насос окислителя и насосы горючего, согласно изобретению газогенератор выполнен четырехкомпонентным, работающим на окислителе, первом горючем, втором горючем в жидкой фазе и втором горючем в газообразной фазе, при этом турбонасосный агрегат содержит насос первого горючего, насос второго горючего и дополнительный насос второго горючего, которые предназначены для последовательной во времени работы двигателя на первом и втором горючем, без смены окислителя, при этом насос второго горючего и дополнительный насос второго горючего установлены непосредственно под насосом окислителя и соединены через пускоотсечные клапаны с главным коллектором горючего и газогенератором. Двигатель содержит блок управления, с которым соединены все клапаны. Перед пускоотсечным клапаном второго горючего подстыкован дренажный трубопровод, содержащий дренажный клапан. Перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления. Способ работы трехкомпонентного ракетного двигателя включающий подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, при этом после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. Перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего. Перед подачей второго горючего в газогенератор и камеру сгорания, захолаживают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном. После выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего. Изобретение обеспечивает повышение надежности, увеличение мощности жидкостного ракетного двигателя. 2 н. и 7 з.п. ф-лы, 4 ил.

 

Изобретение относится к ракетной технике, конкретно к многокамерным жидкостным ракетным двигателям, выполненным по закрытой схеме, с дожиганием газогенераторного газа, работающим на окислителе и на двух видах горючего, например, на углеводородном горючем и жидком водороде. В качестве окислителя может использоваться жидкий кислород.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей и как маршевый двигатель космических аппаратов, включает в себя камеру сгорания с регенеративным трактом охлаждения, насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор. Выход конденсатора по линии хладагента соединен с входом в камеру сгорания и с входом в тракт регенеративного охлаждения камеры сгорания. Выход из конденсатора по линии теплоносителя соединен с входом в насос одного из компонентов. Выход из насоса того же компонента сообщен с входом конденсатора по линии хладагента. Второй вход конденсатора сообщен с выходом турбины. Выход насоса другого компонента сообщен с входом в камеру сгорания.

Недостатком этого двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата.

Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение №2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси.

Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.

Известен ЖРД по патенту РФ на изобретение №2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.

Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации. Большинство ЖРД используют такие компоненты топлива, что расход окислителя почти всегда больше расхода горючего. Следовательно, для мощных ЖРД, имеющих большую тягу и большое давление в камере сгорания, эта схема не приемлема, т.к. расхода горючего будет недостаточно для охлаждения камеры сгорания и привода основной турбины. Кроме того, не проработана система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2232915, опубл. 10.09.2003 г., который содержит камеру, турбонасосный агрегат, газогенератор, систему запуска, средства для зажигания компонентов топлива и топливные магистрали. Выход насоса окислителя соединен с входом в газогенератор. Выход первой ступени насоса горючего соединен с каналами регенеративного охлаждения камеры и со смесительной головкой. Выход второй ступени насоса горючего соединен с регулятором расхода с электроприводом.

Недостакок - двигатель предназначен для работы на двух компонентах.

Известен трехкомпонентный ракетный двигатель по патенту РФ на изобретение №2065985. Этот двигатель содержит камеру сгорания, три турбонасосных агрегата ТНА, предназначенных для перекачки окислителя, первого горючего и второго горючего, и трехкомпонентный газогенератор. При этом двигатель может работать на одном горючем или одновременно на двух горючих. Однако двигатель имеет недостатки: сложность конструкции и большое количество клапанов, и наличие трех турбонасосных агрегатов снижает надежность двигателя, т.к. отказ любого агрегата приведет к аварии. При такой схеме двигателя технически трудно реализовать многоразовый запуск, т.к. наиболее вероятные предполагаемые компоненты ракетного топлива: жидкий кислород, углеводородное топливо (керосин) и жидкий водород) не являются самовоспламеняющимися.

Известен трехкомпонентный жидкостный ракетный двигатель по патенту США №4771600, прототип, который содержит одну камеру сгорания и от трех до шести турбонасосных агрегатов: для подачи окислителя, первого горючего и второго горючего. Охлаждение камеры сгорания выполняется вторым горючим (водородом), т.е. работа двигателя только на первом и только на втором горючем не предусмотрена. Это является одним из недостатков схемы. Кроме того, наличие 3…6 турбонасосных агрегатов, большого количества клапанов значительно снижает надежность двигателя. Для привода всех турбин турбонасосных агрегатов (ТНА) используют водород, подогретый в рубашке охлаждения камеры сгорания. Подогретый водород обладает большим энергетическим потенциалом, и энергии водорода вполне достаточно для привода всех ТНА, но стоимость водорода на два-три порядка выше стоимости углеводородного горючего. Применение дорогостоящего водорода оправдано для второй и последующих ступеней ракеты-носителя, т.к. при сгорании водорода в камерах сгорания ЖРД они могут создать значительно большую силу тяги и обеспечить лучшие характеристики двигателей, по сравнению с работающими на углеводородном топливе. В целом одновременно сжигание первого и второго (более дорогостоящего горючего, например, водорода) с момента запуска многоступенчатой ракеты-носителя до вывода полезной нагрузки на орбиту приведет к удорожанию программы запуска ракет-носителей и не оправдано с экономической точки зрения.

Недостатки: плохие технические и удельные характеристики двигателя и ракеты, на которой двигатель установлен из-за низкого давления в камере сгорания.

Задачи создания изобретения: обеспечение оптимальной работы ракетного двигателя в широком диапазоне режимов при минимальных затратах на запуск ракеты, повышение надежности, увеличение мощности и характеристик ЖРД.

Заявленный технический результат достигнут в трехкомпонентном жидкостном ракетном двигателе, содержащем не менее одной камеры сгорания с реактивным соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, многокомпонентный газогенератор, насос окислителя и насосы горючего, отличающийся тем, что газогенератор выполнен четырехкомпонентным, работающим на окислителе, первом горючем, втором горючем в жидкой фазе и втором горючем в газообразной фазе, при этом турбонасосный агрегат содержит насос первого горючего, насос второго горючего и дополнительный насос второго горючего, которые предназначены для последовательной во времени работы двигателя на первом и втором горючем, без смены окислителя, при этом насос второго горючего и дополнительный насос второго горючего установлены непосредственно под насосом окислителя и соединены через пускоотсечные клапаны с главным коллектором горючего и газогенератором. Трехкомпонентный жидкостный ракетный двигатель отличается тем, что двигатель содержит блок управления, с которым соединены все клапаны. Перед пускоотсечным клапаном второго горючего подстыкован дренажный трубопровод, содержащий дренажный клапан. Перед" дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления.

Заявленный технический результат достигнут в способе работы трехкомпонентного ракетного двигателя, включающем подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, отличающемся тем, что после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее. В качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород. Перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего. Перед подачей второго горючего в газогенератор и камеру сгорания захолаживают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном. После выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего.

Сущность изобретения поясняется на фиг.1…4, где:

- на фиг.1 приведена схема трехкомпонентного жидкостного ракетного двигателя,

- на фиг.2 приведен вид А головки камеры сгорания,

- на фиг, 3 приведена схема охлаждения камеры сгорания,

- на фиг.4 приведена схема четырехкомпонентного газогенератора.

Трехкомпонентный жидкостный ракетный двигатель (фиг.1…4) содержит не менее одной камеры сгорания 1, имеющей сильфон 2. Для примера приведен двигатель с двумя камерами сгорания 1, имеющими сопла 3. Сопла 3 выполнены с регенеративным охлаждением, образованным зазором «Г» между двойными стенками сопла 3. Трехкомпонентный жидкостный ракетный двигатель имеет один общий для всех камер сгорания 1 турбонасосный агрегат (ТНА) 4, содержащий в свою очередь, газогенератор 5, турбину 6 и насос окислителя 7. Кроме того, ТНА содержит насос второго горючего 8, установленный под газогенератором 5, дополнительный насос второго горючего 9, насос первого горючего 10. Все насосы, а именно 7, 8, 9 и 10, установлены соосно с турбиной 6. Выход из турбины 6 через выхлопной коллектор турбины 12 и газовод(ы) 13 соединен с головкой (головками) 14 камеры (камер) сгорания 1.

Выход из насоса окислителя 7 трубопроводом окислителя 15, содержащим клапан окислителя 16, соединен с входом в газогенератор 5 и камеры сгорания (камер сгорания) 1. Выход из насоса второго горючего 8 трубопроводом 17 соединен с дополнительным насосом второго горючего 9. Выход из насоса первого горючего 10 трубопроводом 18, содержащим клапан 19, соединен с входом в главный коллектор горючего 20. Выход из дополнительного насоса второго горючего 9 трубопроводом 21, содержащим пускоотсечной клапан второго горючего 22, соединен со входом четырехкомпонентного газогенератора 5, а выход из насоса первого горючего 10 трубопроводом 23, содержащим пускоотсечной клапан первого горючего 24, соединен с главным коллектором (коллекторами) горючего 20 и трубопроводом 25, содержащим пускоотсечной клапан 26, и регулятор 27 соединен с входом в газогенератор 5. Выход их рубашки охлаждения камеры сгорания 1 трубопроводом 29, содержащим пускоотсечной клапан 30 и регулятор 31, также соединен со входом в газогенератор 5. Перед пускоотсечным клапаном 24 подсоединен дренажный трубопровод 32 с дренажным клапаном 33 и датчиком температуры 34, предназначенными для захолаживания насоса второго горючего 8 и дополнительного насоса второго горючего 9 и автоматического контроля процесса захолаживания перед запуском двигателя на втором горючем. Если этого не сделать, то второе горючее нагреется в подводящих трубопроводах и придет на вход насоса в газообразной фазе, это сорвет работу насоса.

Двигатель оборудован баллоном со сжатым инертным газом 35, который трубопроводом 36, содержащим клапан продувки 37, и соединен с главным коллектором горючего 20.

Двигатель содержит блок управления 38, который электрическими связями 39 соединен с клапанами 16, 19, 24, 33 и датчиком температуры 34 (фиг.1 и 3).

Конструкция головки 14 камеры сгорания 1 приведена на фиг.2. Головка 14 содержит выравнивающую решетку 40, среднюю плиту 41 и нижнюю плиту 42. Выше средней плиты 15 образована полость Д, между плитами 41 и 42 - полость «Е», ниже нижней плиты 42 - полость «Ж» камеры сгорания 1. В головке камеры сгорания 1 установлены форсунки газогенераторного газа 43, которые сообщают полости «Д» и «Ж», и форсунки горючего 44, соединяющие полости «Е» и «Ж». На камере сгорания в ее верхней части выполнены два коллектора: первый и второй коллекторы горючего 45 и 46 соответственно, при этом полость коллектора 45 сообщается с полостью «Е», а полость коллектора 46 с полостью «Г». Полости «Г» и «Е» не сообщаются и разделены перегородкой, расположенной между коллекторами 45 и 46.

Конструкция четырехкомпонентного газогенератора 5 приведена на фиг.4. Четырехкомпонентный газогенератор 5 содержит корпус газогенератора 47, который выполнен тороидальной формы и установлен между турбиной 6 и насосом окислителя 7. При этом турбина 6 содержит рабочее колесо 48 и сопловой аппарат 49. Рабочее колесо 48 установлено на общем валу 50, на этом же валу установлена крыльчатка 31 насоса окислителя 7. Вал 50 установлен на подшипниках 52, которые защищены уплотнениями 53, защитным кожухом 54, имеющим цилиндрическую форму и установленным концентрично валу 50, и внутренней стенкой корпуса 55, имеющей также цилиндрическую форму. На нижнем торце 56 корпуса газогенератора выполнен коллектор 57, а внутри корпуса средняя и верхняя плиты, соответственно 58 и 59. Под средней плитой 58 образована полость «И», а между плитами 58 и 59 - полость «К». Четырехкомпонентный газогенератор 5 имеет внутреннюю полость «Л». В четырехкомпонентном газогенераторе установлено три группы форсунок: основные форсунки горючего 60, дополнительные форсунки второго горючего 61 и форсунки окислителя 62. К полости «И» подведен трубопровод 21, к полости «К» подведен трубопровод 25, а к коллектору 57 подсоединен трубопровод 29 для подвода подогретого первого или второго горючего.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖРД

Тяга двигателя (двухкамерного) земная, тс 1000
Тяга двигателя, пустотная, при работе на первом горючем, тс 1250
Тяга двигателя, пустотная, при работе на втором горючем, тс 1450
Давление в камере сгорания, кгс/см2 500
Давление в газогенераторе, кгс/см2 650
Давление на выходе из насоса окислителя, кгс/см 720
Давление на выходе из первого насоса горючего, кгс/см2 750
Давление на выходе из второго насоса горючего, кгс/см 770
Давление на выходе из первого дополнительного насоса горючего, кгс/см2 1200
Давление на выходе из второго дополнительного насоса горючего, кгс/см2 990
Мощность ТНА, МВт 300,
Частота вращения ротора ТНА, об/мин 30000
Компоненты ракетного топлива
Окислитель жидкий кислород
Первое горючее керосин
Второе горючее жидкий водород

Двигатель запускается в два этапа: сначала на первом горючем, а потом - на втором горючем. Окислитель (предпочтительно жидкий кислород) при переключении не меняется. В качестве первого горючего предпочтительно использовать углеводородное горючее (керосин), а в качестве второго горючего - жидкий водород.

В исходном положении все клапаны двигателя закрыты. При запуске ЖРД на первом горючем с блока управления 38 подается команда на ракетные клапаны окислителя и горючего, установленные под соответствующими баками окислителя и горючего (баки и ракетные клапаны на фиг.1…4 не показаны). После заливки насоса окислителя 7 и первого горючего 8 открывают клапаны 16 и 28 и пускоотсечной клапан 26, установленные соответственно, за насосом окислителя 7 и после насоса первого горючего 10. Окислитель и первое горючее подаются в газогенератор 5 и в камеру сгорания (камеры сгорания) 1, где воспламеняются. Газогенераторный газ по газоводу 13 подается в камеру(ы) сгорания 1. Первое горючее 1 охлаждает сопло 3 (сопла), проходя через зазор «Г» (фиг.1), образующий рубашку охлаждения, и выходит в коллектор 46 (фиг.2). Газогенераторный газ и первое горючее соответственно через форсунки 43 и 44 поступают в полость «Ж» камеры (камер) сгорания 1.

Для переключения двигателя на второе горючее подают сигнал на закрытие клапана 28 и пускоотсечного клапана 26. Потом открывают продувочный клапан 37 и выполняют продувку трубопроводов горючего и рубашки охлаждения камеры сгорания 1 от остатков первого горючего, для предотвращения его догорания и замерзания при использовании в качестве второго горючего криогенных жидкостей, например водорода. Потом открывают дренажный клапан 33 и захолаживают насосы 8 и 9. Контроль захолаживания осуществляет автоматически датчик температуры 34. При достижении температуры кипения второго горючего в месте установки датчика температуры (-254°С) блок управления 38 автоматически закрывает дренажный клапан 33 и открывает клапаны 16, 19 и пускоотсечной клапан 22. Часть второго горючего поступает по трубопроводу 21 через клапан 22 в газогенератор 5, где воспламеняется и сгорает при оптимальном соотношении компонентов топлива. Большая часть второго горючего по трубопроводу 16 через клапан 19 поступает в рубашку охлаждения камеры сгорания 1 (зазор «Г») вместо первого горючего. Охладив «камеру сгорания 1 с соплом 3, второе горючее выходит в коллектор 46 и далее по трубопроводу 29 через клапан 30 и регулятор 31 поступает в четырехкомпонентный газогенератор 5, где сгорает с избытком горючего. Двигатель продолжает работать на втором горючем, но он будет иметь более высокие удельные характеристики (удельную тягу), т.к. второе горючее более эффективное, чем первое.

При выключении двигателя прекращают подачу окислителя и второго горючего, закрыв сначала клапаны 16, 19 и 22. Потом повторно включают продувку рубашки камеры сгорания инертным газом, открыв продувочный клапан 37. Это уменьшает время догорания остатков топлива, засорение каналов системы регенеративного охлаждения камеры сгорания. Управление величиной силы тяги двигателя осуществляется, соответственно, при работе на первом горючем регулятором 27, при работе на втором горючем - регулятором 31.

Применение изобретения позволило:

1. Улучшить абсолютные и удельные (приведенные к единице расхода топлива или к единице веса двигателя) энергетические характеристики ЖРД при его работе на заключительном этапе выполнения программы запуска ракеты-носителя, на которой он установлен, за счет использования четырехкомпонентного газогенератора, работающего на избытке горючего, что позволяет, в случае использования в качестве второго горючего водорода, получить большую мощность на турбине газогенератора, что, в свою очередь необходимо для создания большого давления за насосами и в камерах сгорания. При больших давлениях характеристики ЖРД значительно улучшаются.

2. Повысить надежность камеры сгорания и ТНА за счет:

- продувки камеры сгорания инертным газом при переключении на второе горючее и при выключении работы двигателя,

- ускорения захолаживания насоса второго горючего и дополнительного насоса второго горючего и обеспечение автоматического контроля за процессом захолаживания за счет применением специальной компоновки насосов в составе ТНА и применения дренажного клапана и датчика температуры,

- за счет автоматического согласования работы клапанов применением блока управления.

1. Трехкомпонентный жидкостный ракетный двигатель, содержащий не менее одной камеры сгорания с соплом, имеющим систему регенеративного охлаждения, газогенератор, турбонасосный агрегат, содержащий турбину, многокомпонентный газогенератор, насос окислителя и насосы горючего, отличающийся тем, что газогенератор выполнен четырехкомпонентным, работающим на окислителе, первом горючем, втором горючем в жидкой фазе и втором горючем в газообразной фазе, при этом турбонасосный агрегат содержит насос первого горючего, насос второго горючего и дополнительный насос второго горючего, которые предназначены для последовательной во времени работы двигателя на первом и втором горючем без смены окислителя, при этом насос второго горючего и дополнительный насос второго горючего установлены непосредственно под насосом окислителя и соединены через пускоотсечные клапаны с главным коллектором горючего и газогенератором.

2. Трехкомпонентный жидкостный ракетный двигатель по п.1, отличающийся тем, что двигатель содержит блок управления, с которым соединены все клапаны.

3. Трехкомпонентный жидкостный ракетный двигатель по п.1 или 2, отличающийся тем, что перед пускоотсечным клапаном второго горючего подстыкован дренажный трубопровод, содержащий дренажный клапан.

4. Трехкомпонентный жидкостный ракетный двигатель по п.3, отличающийся тем, что перед дренажным клапаном установлен датчик температуры, соединенный электрической связью с блоком управления.

5. Способ работы трехкомпонентного ракетного двигателя, включающий подачу в газогенератор и, по меньшей мере, в одну камеру сгорания окислителя и горючего, их воспламенение и выброс продуктов сгорания через реактивное сопло, отличающийся тем, что после выработки первого горючего в газогенератор и каждую камеру сгорания подают второе горючее.

6. Способ работы трехкомпонентного ракетного двигателя по п.5, отличающийся тем, что в качестве окислителя используют жидкий кислород, в качестве первого горючего - углеводородное топливо, а в качестве второго горючего - жидкий водород.

7. Способ по п.5 или 6, отличающийся тем, что перед подачей второго горючего трубопроводы горючего и систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков первого горючего.

8. Способ по п.7, отличающийся тем, что перед подачей второго горючего в газогенератор и камеру сгорания захолаживают насос второго горючего и дополнительный насос второго горючего, сбрасывая второе горючее через дренажный клапан до получения в дренажном трубопроводе жидкой фазы, что контролируют по датчику температуры, установленному перед дренажным клапаном.

9. Способ по п.5 или 6, отличающийся тем, что после выключения двигателя систему регенеративного охлаждения каждого сопла продувают инертным газом для удаления остатков второго горючего.

www.findpatent.ru


Смотрите также