Принцип работы турбобура. Турбобуры забойные двигатели


Турбобур: принцип работы, устройство, характеристики

Гидравлические забойные двигатели типа турбобур – это основной элемент буровых установок. Характеристика турбобура влияет на множество факторов, которые определяют функциональную мощность всей добывающей конструкции. Это обусловлено тем, что именно к валу турбины и присоединяется долото.

Устройство турбобура: описание

Данный гидравлический забойный двигатель представляет собой достаточно сложную и компактную конструкцию, которая обеспечивает работу добывающие установки, а именно – функционирование долота.

Сам турбобур можно разделить на следующие элементы:

  • турбинный вал;
  • опора осевая и радиальная;
  • статоры.

Различают две группы деталей: вращающиеся и не вращающиеся.

К не вращающейся группе относятся:

  1. Переводник. С его помощью бурильная колонна присоединяется к турбобуру.
  2. Цилиндрический корпус. Является основой всего комплекса.
  3. Кольца пяты. Функциональный элемент.
  4. Диска статора. Через его окна буровая жидкость попадает внутрь.
  5. Средняя опора. Обеспечивает поддержку отдельных элементов.
  6. Ниппель. Обеспечивает фиксацию деталей внутри корпуса.

К вращающейся группе относятся:

  • вал;
  • диски ротора;
  • пяты.

В основе функционирования оборудования для бурения лежат идентичные ступени гидравлического вида, элементами которых являются:

  • направляющий элемент – неподвижный статор;
  • рабочее колесо – подвижный ротор.

Статорные колеса крепко зафиксированы в корпусе, а роторные – непосредственно на турбинном валу. В подавляющем большинстве ситуаций, на нижний конец турбобура навинчивается долото, а верхний подсоединяется к бурильным трубам с помощью резьбы.

В идеальном варианте, конструкция турбобура должна:

  • обеспечивать достаточны крутящий момент;
  • стабильно работать при низкочастотном вращении;
  • иметь постоянную энергетическую характеристику;
  • быть независимым от свойств бурового раствора.

Несмотря на конкретные требования, на данный момент не существует модели двигателя, который бы полностью им удовлетворял.

При выборе следует учитывать конкретные условия, при которых будет осуществляться бурение – это позволит подобрать оптимальный вариант среди всех доступных моделей Они различаются как по наклону лопаток, так и по особенностям циркулирования промывочной жидкости и ряду других функциональных характеристик. Также следует учитывать особенности выбранного долота.

Принцип работы турбобура: основные моменты

В основе функционирования турбобура лежит давление потока жидкости. Именно за счет неё возможно эффективное бурение. Она, под воздействием давления, постепенно проходит через все ступени турбобура, тем самым создавая рабочий реактивный момент. На этом и базируется принцип работы.

Через бурильную колонну сам поток попадает на I ступень турбобура. Направление данной жидкости задается посредством статора. Именно в нем происходит формирование закрутки и достигается заданная скорость. Механическая энергия преобразуется из кинетической в роторе, и используется для непосредственного вращения вала.

Вышеперечисленные детали являют собой составляющие ступеней двигателя. Система, в которую входят статоры, подпятников и опор промежуточного типа, фиксируется с помощью ниппеля с повышенным осевым усилием. За счет этого на торцах элементов создается сила трения, которые и удерживают детали в неподвижном состоянии. Охлаждение подпятников обеспечивается за счет постоянно поступающей жидкостью, которая проходит через верхнюю часть турбобура, а именно – проходит через подпятниковые дисковые окна.

Жидкость промывочная поступает непосредственно в двигатель гидравлический, и только после этого – в нижележащую валовую полость.

Ниппель – это опора радиального вида для двигателя. По этой причине внутренняя площадь полностью покрыта резиной.

Бурение турбобуром: основные сведения

Турбобуры применяются для бурения скважин. Данная процедура подразумевает несколько процессов:

  • спуск турбобура;
  • опускание долота;
  • обеспечение циркуляции жидкости промывочной;
  • корректировка забойной нагрузки.

За счет изменения забойной нагрузки, а также постоянного удерживания допустимого давления в системе циркуляции трубопровода, в турбобуре поддерживается стабильный перепад. Он подстраивается таким образом, чтобы соответствовать установленной частот вращения. Именно она и определяет мощность, которую и развивает турбобур.

Устройство турбобура способствует обеспечению достаточной вариативности относительно частоты вращения. Сама конструкция содержит турбобур с долотом, который устанавливается на колонну бурильной трубы, а также снабжен:

  • спуско-подъемным устройством;
  • аппаратом для обеспечения циркуляции жидкости;
  • аппаратурой, фиксирующей её давление;
  • автомат подачи буро-инструмента.

Последние два программно связаны между собой, так что при указанном расходе жидкости для промывки поддерживается максимально возможное давление.

Система бурения располагается над местом будущей скважины. Исходя из геологического исследования и прогнозов относительно особенностей почв, подбирается конкретный вид долота. Если грунт состоит из нескольких слоев, то скважина создается с помощью долот нескольких видов.

В зависимости от глубины забоя, процесс может приостанавливаться для монтажа специальных труб – они препятствуют обрушению грунта со стенок скважны.

Турбобур может использоваться в различных климатических условиях, и является универсальным двигателем, обеспечивая надежную работу и высокую эффективность. Последнее возможно при ответственном подходе к процессу оптимизации режимов отработки.

Турбинный принцип работы гораздо более производительный, чем роторный, а показатели крутящего момента не зависит от глубины забоя, свойств горных пород или режимов бурения.

Во время бурения управляющему узлу (человеку или автомату) после доведения до забоя необходимо производить нагрузку на долото до тех пор, пока на выбросе насоса давление стабильно повышается.

Турбобур в действии

Читайте также:

snkoil.com

Турбобуры и винтовые забойные двигатели

В отличие от роторного, в турбинном бурении, максимальное значение крутящего момента зависит только лишь от сопротивления породы вращению долота. Максимальное значение крутящего момента на бурильных трубах при этом не зависит ни от глубины скважины и механических свойств горных пород, ни от режимов бурения (частота вращения, осевая нагрузка). В связи с этим, при использовании турбобуров, стойкость труб, на порядок превышает стойкость труб при роторном бурении. Помимо этого, мощность, передаваемая к долоту от источника, значительно выше при турбинном бурении, на противовес роторному. Однако на ряду со всеми преимуществами роторного бурения, главным образом, успех турбинного бурения зависит от оптимизации режимов отработки современных, высокопроизводительных долот.

Турбобур, ввиду принципа работы является быстроходной машиной, В связи с этим особое внимание уделяется разработке и внедрению низкооборотных, высокомоментных турбобуров, которые способны максимально эффективно работать с шарошечными долотами, имеющими герметизированную маслонаполненную опору.

Основные требования к турбобурам:– достаточный крутящий момент;– устойчивая работа при низких частотах вращения;– долговечность, и высокая проходку за рейс;– постоянная энергетическая характеристика;– независимость энергетической характеристики от температуры и давления;– независимость от реологических свойств бурового раствора, и присутствия в нем добавок и наполнителей;– гашение вибрации бурового инструмента от http://www.zyp.com.ua/;– экономический эффект.

Воплотить эти требования в одной конструкции довольно сложно, поэтому до сих пор не существует единого мнения о максимизации эффективности развития технологии турбинного бурения. До внедрения в серийное производство, с целью объективной оценки, и выбора наилучшей конструкции, проводят сравнительные испытания новых турбобуров.

? Секционные унифицированные шпиндельные турбобуры.

? Высокомоментные турбобуры с сиcтемой гидроторможения.

? Многосекционные турбобуры.

? Турбобуры с независимой подвеской.

? Турбобуры с плавающим статором.

? Турбобуры с полым валом.

? Турбобуры с редуктором-вставкой.

? Винтовые забойные двигатели.

см. также:? Гидравлические двигатели – общие понятия.

Более подробную информацию вы можете найти в рубрике “Буровой инструмент” в разделе “Статьи“.

vseoburenii.com

Турбобуры

 Чтобы получить консультацию по турбобурам, позвоните по тел. 8 (342) 294-55-52 или напишите через эту форму, для каких работ планируете использовать турбобур, в каких породах, с каким буровым долотом. Мы проконсультируем Вас по параметрам и предложим нужную модель турбобура. 

 У нас Вы можете приобрести турбобуры следующих модификаций:

 

  • ТСШ - секционные, шпиндельные
  • АШ - секционные, шпиндельные с наклонной линией давления
  • Т - прямое исполнение
  • Т12РТ - для комплектации роторно-турбинных и реактивно-турбинных буров (РТБ)
  • Т12М3Б - односекционные, бесшпиндельные
  • ТПС - секционные, шпиндельные с плавающим статором
  • ТВ - секционные, малогабаритные

А также турбобуры-отклонители: ТО, ТРОи реактивно-турбинные буры РТБ.

 

Принцип действия турбобура

 Турбобур устанавливается над буровым долотом (породоразрушающим инструментом). Поток, проходя через ступени турбины, создаёт реактивный момент на лопатках ротора, которые в свою очередь заставляют вращаться вал турбобура с закреплённым на нём долотом.

 

  Отличие турбобуров от винтовых забойных двигателей - в возможности работы при более высоких температурах на забое, более высокой скорости вращения долота, более прямолинейного ствола скважины и большим сроком службы. За счёт более высоких оборотов долота обеспечиваются более высокие скорости проходки в твёрдых породах.

  Общая производительность бурения остаётся неизменной на протяжении всего долбления в отличие от ВЗД, производительность которого снижается в ходе бурения и вызывает увеличение времени на спуско-подъёмные операции.

 

Конструкция турбобура- корпус- турбинный вал- осевая опора- статор+ротор- радиальные опоры

Осевой и турбинный валы турбобура соединены с помощью резьбы.

Статор жестко соединен с корпусом турбобура.

 

  Роторно-турбинные и реактивно-турбинные буры

  Качество проводки верхних участков вертикальных скважин большого диаметра отлично достигается с помощью роторно-турбинных (диаметрами 394...640 мм) и реактивно-турбинных (диаметрами 760... 5000 мм) буров (РТБ).

 

   Роторно-турбинные буры изготовливаются из двух и более турбобуров с двумя несущими продольными стяжками, устройством для смены отработанных турбобуров над устьем выработки и противозахватным устройством.   Реактивно-турбинные буры изготовливают без указанных устройств, но они должны быть снабжены утяжелителями. Обе конструкции РТБ имеют шламоуловители.

   Эффективность работы реактивно-турбинных буров сильно увеличивается в условиях приводящих к искривлению ствола скважины; в разрезах с крутым падением пластов и переменными углами их залегания, частой сменой пластов породы, различных по твердости, включая крепкие и очень крепкие, закарстованностью, в сложных условиях с сальникообразованием и прихватами бурильной колонны.

 

Все турбобуры и реактивно-турбинные буры имеют сертификацию.

 

 

 

 

sbm59.ru

Турбобур - забойный гидравлический двигатель

СОДЕРЖАНИЕ: Турбобур - забойный гидравлический двигатель Турбобур - забойный гидравлический двигатель для бурения глубоких скважин преимущественно на нефть и газ. На первом этапе турбинного бурения (1924—34) применялся турбобур , изобретённый в СССР в 1922 М. А. Капелюшниковым совместно с Н. А. Корневым и С. М.

Турбобур - забойный гидравлический двигатель

Турбобур - забойный гидравлический двигатель для бурения глубоких скважин преимущественно на нефть и газ. На первом этапе турбинного бурения (1924—34) применялся турбобур , изобретённый в СССР в 1922 М. А. Капелюшниковым совместно с Н. А. Корневым и С. М. Волохом. В этом турбобуре высокооборотная одноступенчатая турбина передавала вращение долоту через планетарный, заполненный маслом редуктор.

В 1935—50 применялся безредукторный турбобурс многоступенчатой турбиной, вал которой непосредственно вращает долото (авторы П. П. Шумилов, Р. А. Иоаннесян, Э. И. Тагиев, М. Т. Гусман). В многоступенчатом турбобуре общий перепад давлений дифференцируется по ступеням турбины, а момент на валу определяется суммой моментов, развиваемых каждой ступенью. Многоступенчатый турбобур — машина открытого типа, вал его вращается в радиальных и осевых резинометаллических подшипниках, смазкой и охлаждающей жидкостью для которых является циркулирующая промывочная жидкость — глинистый раствор. Для получения максимальных значений кпд лопатки турбины профилируют так, чтобы безударный режим их обтекания совпадал с максимумом мощности турбины. Выполняют турбины цельнолитыми, общее число ступеней турбины достигает 120, рабочие диаметры турбобура для бурения глубоких и сверхглубоких скважин — 164, 172, 195, 215, 240, 280 мм, частота вращения вала турбины от 150 до 800—1000 об/мин. Рабочий момент на валу турбобура зависит от его диаметра и составляет от 1 до 5—6 кнм (1 нм = 0,1 кгсм). С 1950 для увеличения вращающего момента на валу применяют многосекционные турбобуры, в которых последовательно соединяются 2—3 секции турбин турбобура с общим числом ступеней 300—450. Это позволило наряду с увеличением вращающего момента снизить частоту вращения вала турбины до 300—400 об/мин (для более эффективной работы шарошечных долот). В этих турбобурах шаровая осевая опора вынесена в специальный шпиндель, присоединяемый к нижней секции турбобура. В шпинделе имеются также радиальные опоры и сальник, позволяющий использовать гидромониторные долота. С 1970 для дальнейшего снижения частоты вращения вала турбины в турбобурах применяют ступени гидродинамического торможения, позволившие бурить при 150— 250 об/мин. С начала 70-х гг. внедряются турбобуры с независимой подвеской секции и с демпфирующими устройствами, которые обладают увеличенным сроком межремонтной работы и улучшают условия работы шарошечных долот за счёт снижения вибрации бурильной колонны. Для работы с гидромониторными долотами, без дополнительного нагружения буровых насосов, начато применение турбобуров с разделённым потоком на нижней секции, который отличается тем, что перепад давлений, срабатываемый в его нижней секции, равен перепаду давлений в штуцерах гидромониторного долота. При этом нижняя секция турбобура работает на части потока, подаваемого в скважину.

В разведочном бурении для отбора керна в полом валу турбобура размещается съёмная грунтоноска. Для бурения в условиях борьбы с кривизной ствола скважины используют турбобур с вращающимся корпусом.

В турбинном бурении наибольшая величина крутящего момента обусловлена только сопротивлением породы вращению долота (труб и механизмов между долотом и турбобуром в случае их установки). В роторном бурении максимальный крутящий момент труб определяется сопротивлением породы вращению долота, сопротивлением трению труб о стенки скважины и вращающейся жидкости и инерционным эффектом упругих крутильных колебаний. Максимальный крутящий момент в трубах, определяемый расчетом турбины (значением ее тормозного момента), не зависит от глубины скважины, числа оборотов долота, осевой нагрузки на долото и механических свойств проходимых горных пород. Практика применения турбобуров показывает, что стойкость труб примерно в 10 раз превышает стойкость труб в роторном бурении.

В турбинном бурении коэффициент передачи мощности от источника энергии к долоту значительно выше, чем в роторном. Идея использования гидравлического двигателя для бурения скважин возникла в 80-е годы XIX в: первый патент на турбину для бурения нефтяных скважин был взят в 1873 г. Гроссом. В 1890 г. Г.Г. Симченко (Баку) разработал проект первого забойного круговращательного гидравлического двигателя.

В начале 1900-х годов был разработан и использован на практике для быстроударного бурения в твердых породах забойный гидравлический таран, создававший 500 — 600 ударов в минуту по забою. В 1923 г. М.А. Капе-люшников разработал (совместно с СМ. Волохом и Н.А. Корневым) турбинный аппарат для бурения скважин, названный турбобуром Капелюш-никова. Он развивал мощность до 12 л.с. и представлял собой гидравлический двигатель, выполненный на базе одноступенчатой осевой турбины, вал которой через промежуточный многоярусный планетарный редуктор приводил во вращение долото. Проблема реализации турбинного бурения была решена П.П. Шумиловым, Р.А. Иоаннесяном, Э.И. Тагиевым и

М.Т. Гусманом. Позднее, благодаря работам ВНИИБТ, турбинное бурение приобрело общее признание.

Успехи современного турбинного бурения главным образом зависят от возможности реализации оптимальных режимов отработки новых конструкций высокопроизводительных долот, созданных в последнее время1.

Турбобур — машина быстроходная. Поэтому большое значение имеют работы, направленные на создание низкооборотных турбобуров, способных эффективно отрабатывать шарошечные долота с герметизированными мас-лонаполненными опорами типов ГНУ и ГАУ.

В области турбоалмазного бурения особую актуальность приобретает создание высокомоментных турбобуров для работы с новыми долотами с поликристаллическими алмазными режущими элементами типа Stra-topax.

Современный турбобур должен обеспечивать:

1. Достаточный крутящий момент при удельных расходах жидкости

не более 0,07 л/с на 1 см2 площади забоя.

2. Устойчивую работу при частотах вращения меньше 7 с1 для шаро­

шечных и 7 — 10 с1 для алмазных долот.

3. Максимально возможный КПД.

4. Срабатывание перепада давления на долоте не менее 7 МПа.

5. Наработку на отказ не менее 300 ч.

6. Долговечность не менее 2000 ч.

7. Постоянство энергетической характеристики по меньшей мере до

наработки на отказ.

8. Независимость энергетической характеристики от давления и тем­

пературы окружающей среды.

9. Возможность изменения реологических свойств бурового раствора в

процессе долбления.

10. Возможность введения в буровой раствор различных наполнителей

и добавок.

11. Возможность осуществления промывки ствола скважины без вра­

щения долота.

12. Возможность проведения замеров траектории ствола скважины в

любой точке вплоть до долота без подъема бурильной колонны.

13. Стопорение выходного вала с корпусом в случае необходимости и

освобождение от стопорения.

14. Гашение вибраций бурильного инструмента.

15. Экономию приведенных затрат на 1 м проходки скважины по

сравнению с альтернативными способами и средствами бурения.

Понятно, что в одной конструкции все или большую часть этих требований воплотить очень сложно. В то же время для одного и того же диаметра целесообразно иметь возможно меньшее количество типов турбобуров.

В начале 50-х гг. в связи с увеличением глубин скважин стали стремиться к увеличению числа ступеней турбины для снижения частот вращения долот. Появились секционные турбобуры, состоящие из двух — трех секций, собираемых в одну машину непосредственно на буровой. Секции свинчивали с помощью конической резьбы, а их валы соединяли сначала

конусными, а затем конусно-шлицевыми муфтами. Осевая опора секционного турбобура устанавливалась в нижней секции.

В дальнейшем, с целью упрощения эксплуатации турбобуров, осевую опору вынесли в отдельную секцию — шпиндель. Это усовершенствование позволило производить смену на буровой наиболее быстроизнашиваемого узла турбобура — его опоры.

Секционные шпиндельные турбобуры типа ЗТСШ в настоящее время серийно выпускаются машиностроительными заводами Минхиммаша с диаметрами корпуса 172, 195 и 240 мм.

В конце 50-х гг. во ВНИИБТ были начаты интенсивные исследования по разработке опоры качения турбобура. Дело в том, что резинометалличе-ская пята, хорошо работающая при использовании в качестве бурового раствора воды или буровых (глинистых) растворов с относительно низким содержанием твердой фазы, а также при невысоких значениях перепада давления на долоте, в случае применения утяжеленных или сильно загрязненных буровых растворов существенно искажала выходную характеристику турбобура, что в свою очередь снижало эффективность турбинного способа бурения.

В начале 60-х гг. Р.А. Иоаннесяном, Д.Г. Малышевым и Ю.Р. Иоанеся-ном была создана упорно-радиальная шаровая опора турбобура типа 128 000, представляющая собой многоступенчатый шарикоподшипник двухстороннего действия.

Турбобуры с шаровой опорой серии А в настоящее время серийно выпускаются машиностроительными заводами Минхиммаша с диаметрами корпуса 164, 195 240 .

Дальнейшее совершенствование конструкций турбобура связано с появлением новых высокопроизводительных шарошечных долот с герметизированными маслонаполненными опорами. Для эффективной отработки этих долот требуются частоты вращения около 2,5… 5 с1 [2]. Это привело к созданию целого ряда новых направлений в конструировании турбобуров:

с системой гидродинамического торможения;

многосекционных;

с высокоциркулятивной турбиной и клапаном-регулятором расхода бурового раствора;

с системой демпфирования вибраций;

с разделенным потоком жидкости и полным валом;

с плавающей системой статора;

с тормозной приставкой гидромеханического типа;

с редукторной вставкой.

Появились также гидравлические забойные двигатели объемного типа — винтовые.

Среди конструкторов турбобуров еще нет единого мнения о наиболее эффективном и перспективном направлении развития техники турбинного способа бурения. С целью объективной оценки новых конструкций и выбора лучшей из них для широкого внедрения в серийное производство проводятся сравнительные испытания макетных образцов новых забойных двигателей.

Скачать архив с текстом документа

site-to-you.ru

3.4. Забойные двигатели

При бурении нефтяных и газовых скважин применяют гидравлические и электрические забойные двигатели, преобразующие соответственно гидравлическую энергию бурового раствора и электрическую энергию в механическую на выходном валу двигателя. Гидравлические забойные двигатели выпускают гидродинамического и гидростатического типов. Первые из них называют турбобурами, а вторые – винтовыми забойными двигателями. Электрические забойные двигатели получили наименование электробуров.

3.4.1. Турбобуры

Турбобур представляет собой многоступенчатую гидравлическую турбину, к валу которой непосредственно или через редуктор присоединяется долото.

Каждая ступень турбины состоит из диска статора и диска ротора (рис. 3.16).

В статоре, жестко соединенном с корпусом турбобура, поток бурового раствора меняет свое направление и поступает в ротор, где отдает часть своей гидравлической мощности на вращение лопаток ротора относительно оси турбины. При этом на лопатках статора создается реактивный вращающий момент, равный по величине и противоположный по направлению вращающему моменту ротора. Перетекая из ступени в ступень буровой раствор отдает часть своей гидравлической мощности каждой ступени. В результате вращающие моменты всех ступеней суммируются на валу турбобура и передаются долоту. Создаваемый при этом в статорах реактивный момент воспринимается корпусом турбобура и БК.

Работа турбины характеризуется частотой вращения вала n , вращающим моментом на валу М, мощностью , перепадом давления Р и коэфициентом полезного действия .

Как показали стендовые испытания турбины, зависимость момента от частоты вращения ротора почти прямолинейная. Следовательно, чем больше n, тем меньше М, и наоборот.

В этой связи различают два режима работы турбины:

  1. тормозной, когда n = 0, а М достигает максимального значения,

  1. холостой, когда n достигает максимального, а М = 0.

В первом случае необходимо к валу турбины приложить такую нагрузку, чтобы его вращение прекратилось, а во втором – совершенно снять нагрузку.

Максимальное значение мощности достигается при частоте вращения турбины n = n0.

Режим, при котором мощность турбины достигает максимального значения называется экстремальным. Все технические характеристики турбобуров даются для значений экстремального режима. В этом режиме работа турбобура наиболее устойчива, так как небольшое изменение нагрузки на вал турбины не приводит к сильному изменению n и, следовательно, к возникновению вибраций, нарушающих работу турбобура.

Режим, при котором коэффициент полезного действия  турбины достигает максимального значения называется оптимальным. При работе на оптимальном режиме, т.е. при одной определенной частоте вращения ротора турбины для данного расхода бурового раствора Q, потери напора на преодоление гидравлических сопротивлений в турбине Р минимальны.

При выборе профиля лопаток турбины стремятся найти такое конструктивное решение, чтобы при работе турбины кривые максимальных значений  и  располагались близко друг к другу. Линия давления Р таких турбин располагается почти симметрично относительно вертикали, на которой лежит максимум мощности.

Таким образом, при постоянном расходе бурового раствора Q параметры характеристики турбины определяются частотой вращения ее ротора n, зависящей от нагрузки на вал турбины (на долото).

При изменении расхода бурового раствора Q параметры характеристики турбины изменяются совершенно по другому.

Пусть при расходе бурового раствора Q1и соответствующей этому значению частоте вращения ротора турбины n1 при оптимальном режиме турбина создает мощность 1 и вращающий момент М1 , а перепад давления в турбине составляет Р1. Если расход бурового раствора увеличить до Q2 , параметры характеристики турбины изменятся следующим образом:

n1 / n2 = Q1 / Q2 ;

1 / 2 = (Q1 / Q2)3

М1 / М2 = (Q1 / Q2)2

Р1 / Р2 = (Q1 / Q2)2

Видно, что эффективность турбины значительно зависит от расхода бурового раствора Q. Однако увеличение расхода Q ограничивается допустимым давлением в скважине.

Параметры характеристики турбины изменяются также пропорционально изменению плотности бурового раствора .

1 / 2 = М1 / М2 = Р1 / Р2 = 1 / 2

Частота вращения ротора турбины n от изменения плотности  не зависит.

Параметры характеристики турбины изменяются также пропорционально изменению числа ступеней.

ГОСТ 26673 предусматривает изготовление бесшпиндельных (ТБ) и шпиндельных (ТШ) турбобуров.

Турбобуры ТБ применяются при бурении вертикальных и наклонных скважин малой и средней глубины без гидромониторных долот. Применение гидромониторных долот невозможно по тем причинам, что через нижнюю радиальную опору (ниппель) даже при незначительном перепаде давления протекает 10 – 25% бурового раствора.

Значительное снижение потерь бурового раствора достигается в турбобурах, нижняя секция которых, названная шпинделем, укомплектована многорядной осевой опорой и радиальными опорами, а турбин не имеет.

Присоединяется секция шпиндель к одной (при бурении неглубоких скважин), двум или трём последовательно соединённым турбинным секциям.

Поток бурового раствора, пройдя турбинные секции, поступает в секцию – шпиндель, где основная его часть направляется во внутрь вала шпинделя и далее к долоту, а незначительная часть – к опорам шпинделя, смазывая трущиеся поверхности дисков пяты и подпятников, втулок средних опор и средних опор. Благодаря непроточной конструкции опор и наличию уплотнений вала, значительно уменьшены потери бурового раствора через зазор между валом шпинделя и ниппелем.

Для бурения наклонно – направленных скважин разработаны шпиндельные турбобуры – отклонители типа ТО.

Турбобур – отклонитель состоит из турбинной секции и укороченного шпинделя. Корпуса турбинной секции и шпинделя соединены кривым переводником.

Для бурения с отбором керна предназначены колонковые турбобуры типа КТД, имеющие полый вал, к которому через переводник присоединяется бурильная головка. Внутри полого вала размещается съёмный керноприёмник. Верхняя часть керноприёмника снабжена головкой с буртом для захвата его ловителем, а нижняя – кернорвателем, вмонтированным в переводник. Для выхода бурового раствора, вытесняемого из керноприёмника по мере заполнения его керном, вблизи верхней части керноприёмника имеются радиально расположенные отверстия в его стенке, а несколько ниже их – клапанный узел. Последний предотвращает попадание выбуренной породы внутрь керноприёмника, когда он не заполняется керном, и в это время клапан закрыт.

Керноприёмник подвешан на опоре, установленной между переводником к БК и распорной втулкой. Под действием гидравлического усилия, возникающего от перепада давления в турбобуре и долоте, и сил собственного веса, керноприёмник прижимается к опоре и во время работы турбобура не вращается.

studfiles.net

Турбобуры | Гидравлические забойные двигатели

Турбобур - многоступенчатая гидравлическая турбина. К валу турбины присоединяется долото, каждая ступень состоит из диска и ротора.

Конструкция турбобура-Корпус-Турбинный вал-осевая опора-статоры-радиальные опоры-канал

Осевой и турбинный валы турбобура соединены с помощью резьбы.

Статор жестко соединен с корпусом турбобура. Поток бурового раствора в статоре меняет свое направление и поступает в ротор, отдавая часть мощности на вращение лопастей ротора.

Принцип действия турбобура

Турбобур устанавливается непосредственно над бурильным элементом (породоразрушающим), из-за этого источником энергии для него является давление потока жидкости. Поток жидкости подается в первую ступень турбобура через бурильную колонну, после чего в статоре формируется направление потока жидкости. Таким образом статор - направляющий аппарат турбины.

Жидкость под действием давления проходит через все ступени турбобура(его турбины), создавая реактивный момент.

Проблема проводки верхних интервалов вертикальных скважин увеличенного и большого диаметра успешно решается с помощью разработанных во ВНИИБТ роторно-турбинных (диаметрами 394...640 мм) и реактивно-турбинных (диаметрами 760... 5000 мм) буров (РТБ).

Эффективность применения РТБ повышается особенно в условиях, способствующих искривлению ствола; в разрезах с крутым падением пластов, переменными углами их залегания, частой перемежаемостью различных по твердости пород, включая крепкие и очень крепкие, закарстованностью, технологическими нарушениями и т. п., а также в условиях, осложненных сальникообразованием и прихватами бурильной колонны.

Наиболее важные показатели качества скважин большого диаметра - необходимая вертикальность и форма ствола - достигаются за один проход породоразрушающего бурового инструмента без использования сложных и громоздких КНБК и дополнительных проработок ствола, характерных для бурения другими известными техническими средствами. Это позволяет осуществлять после окончания бурения беспрепятственный и безаварийный спуск в скважину обсадной колонны или крепи с минимальными затрубными зазорами.

Конструктивное устройство РТБ предусматривает возможность применения винтовых забойных двигателей и электробуров.

Бурение скважин большого диаметра с применением РТБ производится с помощью стандартных буровых установок соответствующего класса, в которых несколько изменяется подроторное основание и доукомплектовывается насосная группа дополнительными буровыми насосами требуемой производительности.

Роторно-турбинные буры 1РТБ-394; 1РТБ-445; 1РТБ-490; 1РТБ-590; 1РТБ-64 идентичны по конструкции и отличаются геометрическими размерами узлов и деталей и типоразмерами используемых турбобуров и долот. Эти буры позволяют также забуривать новые стволы из скважин с искривлением более 3...40, расширять и прорабатывать скважины с меньшей кривизной.

Роторно-турбинные буры требуют вращения ротором, в то время как в реактивно-турбинных бурах диаметром более 760 мм реактивные силы оказываются достаточными для их вращения. Совмещая вращение долот вокруг их собственных осей с вращением последних вокруг оси РТБ, организуется специфика планетарного режима работы долота на забое и таким образом формируется скважина увеличенного диаметра.

Роторно-турбинные буры комплектуются турбобурами Т12МЗЕ-172; Т12МЗБ-195 и Т12РТ-240 (или типа ТВШ и ТНК). Кроме того, в РТБ возможно применение верхних секций турбобуров типа ТС5Б или ЗТСШ со шпинделями и нижних секций турбобуров ТС5Б. Они рассчитаны на использование долот диаметрами 190,5; 215,9; 244,5; 269,9 и 295,3 мм.

Роторно-турбинный бур (рисунок) состоит из двух турбобуров, соединенных с помощью грузов-утяжелителей, стяжек и траверсы в единую монолитную напряженную конструкцию. По длине бур может иметь армированные ребра, которые калибруют ствол скважины, образуют его форму, а небольшой при этом зазор между поперечными габаритами бура и стенками скважины практически исключает образование резких перегибов и существенно ограничивает возможность искривления ствола.

На валы турбобуров наворачивают долота требуемого типоразмера в соответствии с характером проходимых пород.

Подводимый к буру буровой раствор распределяется в траверсе по турбобурам и приводит во вращение валы с долотами. После запуска турбобуров, ротором приводят во вращение бурильную колонну, а вместе с ней и бур, и, опустив последний на забой, создают осевую нагрузку на долото и разрушают породу за счет планетарного движения бура.

В зависимости от характера разбуриваемых пород частота вращения бура составляет от 8...10 до 90...120 мин-1, а осевая нагрузка 80...165 кН. Эффективность выноса выбуренной породы при бурении роторно-турбинными бурами обеспечивается при расходах бурового раствора 50...70 л/с.

В процессе бурения РТБ с породой контактируют периферийные рабочие элементы долот, определяя минимальную суммарную площадь контакта с породой, благодаря чему обеспечивается создание больших контактных напряжений при ограниченной осевой нагрузке, т. е. силового разрушения породы. Сравнительно невысокие осевые нагрузки, приходящиеся на каждое долото, увеличивают продолжительность работы опор шарошек, а также обеспечивают вертикальность ствола скважины.

Основные конструктивные параметры роторно-турбинных буров типа 1РТБ и их энергетические характеристики при соответствующих расходах бурового раствора плотностью 1000 кг/м3 (на воде) приведены в табл. 107.

Изготовитель: Кунгурский машиностроительный завод

617400 г. Кунгур-1 Пермской обл., ул. Просвещения, 11

тел. 3-25-85, 9-34-55, 3-74-05, 3-74-06

neftegaz.ru

Учебное пособие - Турбобур - забойный гидравлический двигатель

Турбобур — забойный гидравлический двигатель

Турбобур — забойный гидравлический двигатель для бурения глубоких скважин преимущественно на нефть и газ. На первом этапе турбинного бурения (1924—34) применялся турбобур, изобретённый в СССР в 1922 М. А. Капелюшниковым совместно с Н. А. Корневым и С. М. Волохом. В этом турбобуре высокооборотная одноступенчатая турбина передавала вращение долоту через планетарный, заполненный маслом редуктор.

В 1935—50 применялся безредукторный турбобурс многоступенчатой турбиной, вал которой непосредственно вращает долото (авторы П. П. Шумилов, Р. А. Иоаннесян, Э. И. Тагиев, М. Т. Гусман). В многоступенчатом турбобуре общий перепад давлений дифференцируется по ступеням турбины, а момент на валу определяется суммой моментов, развиваемых каждой ступенью. Многоступенчатый турбобур — машина открытого типа, вал его вращается в радиальных и осевых резинометаллических подшипниках, смазкой и охлаждающей жидкостью для которых является циркулирующая промывочная жидкость — глинистый раствор. Для получения максимальных значений кпд лопатки турбины профилируют так, чтобы безударный режим их обтекания совпадал с максимумом мощности турбины. Выполняют турбины цельнолитыми, общее число ступеней турбины достигает 120, рабочие диаметры турбобура для бурения глубоких и сверхглубоких скважин — 164, 172, 195, 215, 240, 280 мм, частота вращения вала турбины от 150 до 800—1000 об/мин. Рабочий момент на валу турбобура зависит от его диаметра и составляет от 1 до 5—6 кнм (1 нм = 0,1 кгсм). С 1950 для увеличения вращающего момента на валу применяют многосекционные турбобуры, в которых последовательно соединяются 2—3 секции турбин турбобура с общим числом ступеней 300—450. Это позволило наряду с увеличением вращающего момента снизить частоту вращения вала турбины до 300—400 об/мин (для более эффективной работы шарошечных долот). В этих турбобурах шаровая осевая опора вынесена в специальный шпиндель, присоединяемый к нижней секции турбобура. В шпинделе имеются также радиальные опоры и сальник, позволяющий использовать гидромониторные долота. С 1970 для дальнейшего снижения частоты вращения вала турбины в турбобурах применяют ступени гидродинамического торможения, позволившие бурить при 150— 250 об/мин. С начала 70-х гг. внедряются турбобуры с независимой подвеской секции и с демпфирующими устройствами, которые обладают увеличенным сроком межремонтной работы и улучшают условия работы шарошечных долот за счёт снижения вибрации бурильной колонны. Для работы с гидромониторными долотами, без дополнительного нагружения буровых насосов, начато применение турбобуров с разделённым потоком на нижней секции, который отличается тем, что перепад давлений, срабатываемый в его нижней секции, равен перепаду давлений в штуцерах гидромониторного долота. При этом нижняя секция турбобура работает на части потока, подаваемого в скважину.

В разведочном бурении для отбора керна в полом валу турбобура размещается съёмная грунтоноска. Для бурения в условиях борьбы с кривизной ствола скважины используют турбобур с вращающимся корпусом.

В турбинном бурении наибольшая величина крутящего момента обусловлена только сопротивлением породы вращению долота (труб и механизмов между долотом и турбобуром в случае их установки). В роторном бурении максимальный крутящий момент труб определяется сопротивлением породы вращению долота, сопротивлением трению труб о стенки скважины и вращающейся жидкости и инерционным эффектом упругих крутильных колебаний. Максимальный крутящий момент в трубах, определяемый расчетом турбины (значением ее тормозного момента), не зависит от глубины скважины, числа оборотов долота, осевой нагрузки на долото и механических свойств проходимых горных пород. Практика применения турбобуров показывает, что стойкость труб примерно в 10 раз превышает стойкость труб в роторном бурении.

В турбинном бурении коэффициент передачи мощности от источника энергии к долоту значительно выше, чем в роторном. Идея использования гидравлического двигателя для бурения скважин возникла в 80-е годы XIX в: первый патент на турбину для бурения нефтяных скважин был взят в 1873 г. Гроссом. В 1890 г. Г.Г. Симченко (Баку) разработал проект первого забойного круговращательного гидравлического двигателя.

В начале 1900-х годов был разработан и использован на практике для быстроударного бурения в твердых породах забойный гидравлический таран, создававший 500 — 600 ударов в минуту по забою. В 1923 г. М.А. Капе-люшников разработал (совместно с СМ. Волохом и Н.А. Корневым) турбинный аппарат для бурения скважин, названный турбобуром Капелюш-никова. Он развивал мощность до 12 л.с. и представлял собой гидравлический двигатель, выполненный на базе одноступенчатой осевой турбины, вал которой через промежуточный многоярусный планетарный редуктор приводил во вращение долото. Проблема реализации турбинного бурения была решена П.П. Шумиловым, Р.А. Иоаннесяном, Э.И. Тагиевым и

М.Т. Гусманом. Позднее, благодаря работам ВНИИБТ, турбинное бурение приобрело общее признание.

Успехи современного турбинного бурения главным образом зависят от возможности реализации оптимальных режимов отработки новых конструкций высокопроизводительных долот, созданных в последнее время1.

Турбобур — машина быстроходная. Поэтому большое значение имеют работы, направленные на создание низкооборотных турбобуров, способных эффективно отрабатывать шарошечные долота с герметизированными мас-лонаполненными опорами типов ГНУ и ГАУ.

В области турбоалмазного бурения особую актуальность приобретает создание высокомоментных турбобуров для работы с новыми долотами с поликристаллическими алмазными режущими элементами типа Stra-topax.

Современный турбобур должен обеспечивать:

1. Достаточный крутящий момент при удельных расходах жидкости

не более 0,07 л/с на 1 см2 площади забоя.

2. Устойчивую работу при частотах вращения меньше 7 с«1 для шаро­

шечных и 7 — 10 с»1 для алмазных долот.

3. Максимально возможный КПД.

4. Срабатывание перепада давления на долоте не менее 7 МПа.

5. Наработку на отказ не менее 300 ч.

6. Долговечность не менее 2000 ч.

7. Постоянство энергетической характеристики по меньшей мере до

наработки на отказ.

8. Независимость энергетической характеристики от давления и тем­

пературы окружающей среды.

9. Возможность изменения реологических свойств бурового раствора в

процессе долбления.

10. Возможность введения в буровой раствор различных наполнителей

и добавок.

11. Возможность осуществления промывки ствола скважины без вра­

щения долота.

12. Возможность проведения замеров траектории ствола скважины в

любой точке вплоть до долота без подъема бурильной колонны.

13. Стопорение выходного вала с корпусом в случае необходимости и

освобождение от стопорения.

14. Гашение вибраций бурильного инструмента.

15. Экономию приведенных затрат на 1 м проходки скважины по

сравнению с альтернативными способами и средствами бурения.

Понятно, что в одной конструкции все или большую часть этих требований воплотить очень сложно. В то же время для одного и того же диаметра целесообразно иметь возможно меньшее количество типов турбобуров.

В начале 50-х гг. в связи с увеличением глубин скважин стали стремиться к увеличению числа ступеней турбины для снижения частот вращения долот. Появились секционные турбобуры, состоящие из двух — трех секций, собираемых в одну машину непосредственно на буровой. Секции свинчивали с помощью конической резьбы, а их валы соединяли сначала

конусными, а затем конусно-шлицевыми муфтами. Осевая опора секционного турбобура устанавливалась в нижней секции.

В дальнейшем, с целью упрощения эксплуатации турбобуров, осевую опору вынесли в отдельную секцию — шпиндель. Это усовершенствование позволило производить смену на буровой наиболее быстроизнашиваемого узла турбобура — его опоры.

Секционные шпиндельные турбобуры типа ЗТСШ в настоящее время серийно выпускаются машиностроительными заводами Минхиммаша с диаметрами корпуса 172, 195 и 240 мм.

В конце 50-х гг. во ВНИИБТ были начаты интенсивные исследования по разработке опоры качения турбобура. Дело в том, что резинометалличе-ская пята, хорошо работающая при использовании в качестве бурового раствора воды или буровых (глинистых) растворов с относительно низким содержанием твердой фазы, а также при невысоких значениях перепада давления на долоте, в случае применения утяжеленных или сильно загрязненных буровых растворов существенно искажала выходную характеристику турбобура, что в свою очередь снижало эффективность турбинного способа бурения.

В начале 60-х гг. Р.А. Иоаннесяном, Д.Г. Малышевым и Ю.Р. Иоанеся-ном была создана упорно-радиальная шаровая опора турбобура типа 128 000, представляющая собой многоступенчатый шарикоподшипник двухстороннего действия.

Турбобуры с шаровой опорой серии А в настоящее время серийно выпускаются машиностроительными заводами Минхиммаша с диаметрами корпуса 164, 195 è 240 ìì.

Дальнейшее совершенствование конструкций турбобура связано с появлением новых высокопроизводительных шарошечных долот с герметизированными маслонаполненными опорами. Для эффективной отработки этих долот требуются частоты вращения около 2,5… 5 с«1 [2]. Это привело к созданию целого ряда новых направлений в конструировании турбобуров:

с системой гидродинамического торможения;

многосекционных;

с высокоциркулятивной турбиной и клапаном-регулятором расхода бурового раствора;

с системой демпфирования вибраций;

с разделенным потоком жидкости и полным валом;

с плавающей системой статора;

с тормозной приставкой гидромеханического типа;

с редукторной вставкой.

Появились также гидравлические забойные двигатели объемного типа — винтовые.

Среди конструкторов турбобуров еще нет единого мнения о наиболее эффективном и перспективном направлении развития техники турбинного способа бурения. С целью объективной оценки новых конструкций и выбора лучшей из них для широкого внедрения в серийное производство проводятся сравнительные испытания макетных образцов новых забойных двигателей.

www.ronl.ru