Твердотельные двигатели


Тепловой двигатель — Википедия

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давления по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно нужно наличие топлива. Это возможно при нагревании рабочего тела (газа), которое совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

Первой известной тепловой конструкции была паровая турбина внешнего сгорания, изобретённая во ΙΙ веке н. э. в Римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени. На прогресс это изобретение никакого влияния не оказало и было забыто. Следующей тепловой машиной, изобретённой человеком, была пороховая ракета и пороховое орудие. Дата его изобретения неизвестна, первое известное упоминание относится к 13 веку. Это произошло в Китае. Это было простое устройство, которое с точки зрения инженера и механика не является тепловым двигателем, так как не имеет вала отбора мощности, но с точки зрения физики является тепловой машиной. Поэтому этот прибор имеет ограниченное применение: для связи, в военном деле, как транспорт (в последнем случае есть проблемы, но в принципе это возможно). В 17 веке изобретательская мысль попыталась на базе порохового орудия создать тепловой двигатель.

Работа, совершаемая двигателем, равна:

, где:
  •  — количество теплоты, полученное от нагревателя,
  •  — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

Типы тепловых двигателей[править]

Двигатель Стирлинга[править]

Дви́гатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от создания разницы температур его цилиндров.

Поршневой двигатель внутреннего сгорания[править]

Двигатель Внутреннего Сгорания или ДВС, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит либо за четыре хода поршня, за четыре такта, либо за два и двигатели делятся на четырёхтактные и двухтактные. Цикл четырёхтактного двигателя состоит из следующих тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск. В цикле двухтактного двигателя такты рабочего хода и сжатия аналогичны четырёхтактному двигателю, а впуск и выпуск осуществляется одновременно в момент нахождения поршня вблизи от нижней мёртвой точки.

Роторный (турбинный) двигатель внешнего сгорания[править]

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания[править]

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели[править]

Идея реактивного и ракетного двигателя состоит в том, чтобы тяга создавалась не винтом, а отдачей выхлопных газов двигателя.

Турбовинтовой двигатель[править]

Турбовинтовой двигатель часть тяги создаёт за счёт винта, другую часть за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен воздушный винт.

Турбореактивный двигатель[править]

Турбореактивный двигатель создаёт тягу за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен компрессор, повышающий давление для эффективного сжигания топлива.

Ракетный двигатель[править]

Ракетный двигатель может создавать тягу в безвоздушном пространстве.

Твёрдотопливный ракетный двигатель[править]

Твердотопливный ракетный двигатель (РДТТ). В РДТТ всё топливо в виде заряда помещается в камеру сгорания; двигатель обычно работает непрерывно до полного выгорания топлива.

РДТТ были первыми ракетными двигателями, нашедшими практическое применение. Ракеты с РДТТ (пороховые ракеты) известны уже около 1000 лет; они использовались как сигнальные, фейерверочные, боевые. Описания "огненных стрел" — прототипов пороховых ракет — содержатся в китайских иЗЮЗийских[неизвестный термин] рукописях 10 в. Это оружие представляло собой обычные стрелы, к которым прикреплялись бамбуковые трубки, заполненные порохом. В 1-й половине 17 в. в "Уставе" Онисима Михайлова описываются первые русские ракеты — артиллерийские ядра с каналом, в котором помещался пороховой заряд. В 1798

индийцы применяли боевые ракеты против английских колонизаторов, а в 1807 англичане использовали подобные ракеты в войне с Данией (при осаде Копенгагена). Первоначально топливом для РДТТ служил дымный порох. В конце 19 в. был разработан бездымный порох, превосходивший дымный по устойчивости горения и работоспособности. В дальнейшем были получены новые высокоэффективные виды твёрдых топлив, что позволило конструировать боевые ракеты с РДТТ самой различной дальности, вплоть до межконтинентальных баллистических ракет.

Гибридный ракетный двигатель[править]
ЖРД (жидкостный ракетный двигатель)[править]

Твердотельные двигатели[править]

В двигателях этого типа в качестве рабочего тела используется твёрдое тело, а при работе двигателя изменяется не объём рабочего тела, а его форма. Такой двигатель позволяет использовать рекордно малый перепад температур при более высоком КПД.

Дистилляционный двигатель[править]

Существует разработка двигателя с внешним нагревом, в котором ротор в виде пустотелого кольца частично заполнен легкоиспаряемым твёрдым телом. Незаполненная часть ротора и часть рабочего тела нагреваются, образующийся пар перетекает из нагретой части ротора в ненагретую, нарушая тем самым равновесие ротора в поле силы тяжести. В результате ротор приводится во вращение. Особенностью двигателя является согласованность скорости вращения его ротора со скоростью испарения рабочего тела. Двигатель разработан для осуществления зонной дистилляции с многократным повторением в устройстве с вращающимся контейнером (Патент Украины №78272).

wp.wiki-wiki.ru

Твердотельный тепловой двигатель - Журнал Витуса.

Твердотельный тепловой двигатель - Журнал Витуса.

[Recent Entries][Archive][Friends][Profile]

[Друзья] [Свежие записи] [Dreamwidth] [Фото] [Тексты] [Друзья Ирины] [Матерные писатели] [Сообщества] [3 круг]
09:14 am

[Link]

Твердотельный тепловой двигательhttp://www.popularmechanics.com/science/earth/4243793.htmlhttp://www.johnsonems.com/jhtec.html

Утверждается, что это термоэлектрический преобразователь, не имеющий движущихся частей, кроме потока газа, двищущегося через мембраны. При разности температур в 800 градусов (которая при современных материалах для мембран вроде бы реально достижима) КПД может достигать 60%. При этом практически нет ограничений на минимальный размер установок. Хоть винджевские локализаторы запитывай.

Правда, похоже что в течение ближайшего года эта технология на рынок не выйдет. Но тем не менее.

Tags: технический прогресс

 

Необоснованный оптимизм, IMHO. Мембраны с рабочей температурой около 1100К, есть ли такие? Да и с описанием что-то не то. Может, водород все же ионизируется, образуя протоны и электроны, а не окисляется, как там написано?

Поправки:1) для мембраны ПЛАНИРУЕТСЯ не 800, а 600 оС - тогда к.п.д. 60%2) первый прототип (через год) - до 200 оС, т.е. его к.п.д. будет намного меньше достигнутых в других решениях 30%, когда будет достигнуто 600 оС - об этом умалчивается.3) ни о каком окислении там не написано.

Судя по описанию - приложенное к паре мембран электрическое поле гонит водород через них, создавая давление в одной камере и рязряжение - в другой. Верно и обратное - если гнать водород, приложив давление - то возникнет э.д.с.Установка состит из "холодного" компрессора и "горячего" генератора э.д.с.

Изобретатель: прежняя его "штучка" - сверх-брызгалка, "водяной бластер" (игрушка).

Поправка: про окисление там таки написано. "On the high-pressure side of the MEA, hydrogen gas is oxidized resulting in the creation of protons and electrons". Т.е., черным по белому: ВОДОРОДНЫЙ ГАЗ ОКИСЛЯЕТСЯ...

По второй сцылке я не ходил :)

Но. "oxidized" тут означает, что атом отдал электроны. Став положительно заряженным. Но отдал их не другому атому (окислителю), а электроду. Вообще употребленная терминология совершенно корректна (для английского языка).

From:Date:
magpie73
January 10th, 2008 12:18 pm (UTC)

офтоп

(Link)

О! almamater! Что кончали? Я тоже в 90 биофак кончила. Салют!

У меня самое высшее образование из всех возможных в МГУ - географический. Наша кафедра располагается на 20-м этаже ГЗ, а учебные лаборатории аж на 22.

From:Date:
magpie73
January 10th, 2008 12:57 pm (UTC)

Re: офтоп

(Link)

Вах! А Натку - Наташу Шевченко не знаете? Она в тех же годах была, геоморфолог А сейчас вы кто и где? (Кто в смысле What)

Наташу Шевченко что-то не припоминаю. Видимо, в деятельности ГОП - Группы Охраны Природы она не участвовала.

From:Date:
magpie73
January 10th, 2008 01:42 pm (UTC)

Re: офтоп

(Link)

Не участвовала. Но на ББС была. А вы?

Не, мне все больше более интересные места попадались - Тигровая Балка, Байкал, Камчатка. В Азау - был, это у нас в учебную программу входило, на Хибинской станции был дважды со школьниками в зимние каникулы.

From:Date:
magpie73
January 10th, 2008 07:08 pm (UTC)

Re: офтоп

(Link)

:-) в лИСТВЯНКЕ, НАВЕРНОЕ, БЫЛИ,ДА? Впрочем, я уже по именам никого не помню... только видимо

vitus-wagner.livejournal.com

Тепловой двигатель - Википедия

Материал из Википедии — свободной энциклопедии

Теплово́й дви́гатель — тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

История[ | ]

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Теория[ | ]

Работа, совершаемая двигателем, равна:

A=|QH|−|QX|{\displaystyle A=\left|Q_{H}\right|-\left|Q_{X}\right|}, где:
  • QH{\displaystyle Q_{H}} — количество теплоты, полученное от нагревателя,
  • QX{\displaystyle Q_{X}} — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: η=|QH|−|QX||QH|=1−|QX||QH|{\displaystyle \eta ={\frac {\left|Q_{H}\right|-\left|Q_{X}\right|}{\left|Q_{H}\right|}}=1-{\frac {\left|Q_{X}\right|}{\left|Q_{H}\right|}}}

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя(TH{\displaystyle T_{H}}) и холодильника(TX{\displaystyle T_{X}}):

ηK=TH−TXTH=1−TXTH{\displaystyle \eta _{K}={T_{H}-T_{X} \over T_{H}}=1-{T_{X} \over T_{H}}}

Типы тепловых двигателей[ | ]

Двигатель Стирлинга[ | ]

Поршневой двигатель внешнего сгорания[ | ]

Поршневой двигатель внутреннего сгорания[ | ]

Роторный (турбинный) двигатель внешнего сгорания[ | ]

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия.

Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще.

Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания[ | ]

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели[ | ]

Твёрдотельные двигатели[ | ]

(источник журнал «Техника молодёжи») Здесь в качестве рабочего тела используется твёрдое тело. Здесь изменяется не объём рабочего тела, а его форма. Позволяет использовать рекордно малый перепад температур.

encyclopaedia.bid

Сны о большом глупом носителе / Geektimes

Помните байку о разработке космической ручки? Да, она не основана на реальных событиях, но очень наглядно иллюстрирует идею, что простое решение может оказаться лучше сложного. Ракета, построенная по принципу «большого глупого носителя» («Big Dumb Booster») находится не в диапазоне «умный-глупый», а, скорее, «простой-сложный». Привычные нам ракеты-носители выросли из военных баллистических ракет, и при их проектировании эффективность была важнее стоимости. Но, если мы собираемся осваивать Космос, то нам нужно много ракет, и сложные бывшие военные ракеты становятся слишком дорогими. А что, если попробовать сделать ракету сравнительно простой, но экономически выгодной?

Кратко о других способах
В предыдущих публикациях серии рассказывалось о других идеях облегчения доступа в космос:Многоразовость. Ракета дорогая, топливо дешевое, давайте использовать ракету многократно. Если бы всё было так просто, то Спейс Шаттлы летали бы сейчас десятками и сотнями в год. Многоразовые системы очень зависят от затрат времени и денег на подготовку к повторному полёту, и здесь шаттлы проиграли экономическую конкуренцию одноразовым носителям. Сейчас многоразовостью занимается Элон Маск, но ему ещё долго двигаться в этом направлении — пока не было ни одного полёта повторно использованного Dragon или Falcon, не говоря уже о регулярном повторном использовании для того, чтобы можно было оценить экономическую эффективность.Воздушный старт. Идея запускать ракету-носитель с летящего самолёта предлагалась во многих проектах. Однако, на сегодняшний день только РН легкого класса Pegasus использует эту схему. Из заметных разрабатываемых проектов — идёт строительство самолёта-носителя проекта Stratolaunch под более тяжелую ракету.Single Stage To Orbit. Идея многоразового космоплана, стартующего с аэродрома, выходящего в космос и возвращающегося обратно. Известен проект Skylon, но по нему в последнее время не было заметных новостей.Безракетный космический запуск. Космический лифт, петля Лофстрома, космические фонтаны и прочее, и прочее. Пишут об этом часто, вот, например, свежий обзор, поэтому я не стал делать свой (или, думаете, стоит?), но воз и ныне там. Подобные технологии имеют три огромных недостатка:
  1. Почти для всех проектов требуются материалы и технологии, которые человечество ещё не умеет делать.
  2. Стоимость такого сооружения поистине космическая, и строиться оно будет долго.
  3. Проблемы с расчетом сроков окупаемости и невозможность эксплуатации частично готового сооружения для подтверждения концепции.
Первый монстр

В 1962 году инженер Aerojet Роберт Труакс предложил проект Sea Dragon. Двухступенчатая ракета-носитель должна была иметь высоту 150 м, диаметр 23 м и полную массу 18 000 тонн. Ракета собиралась в порту, затем её заправляли керосином — топливом первой ступени и азотом — газом наддува баков. Затем ракету должны были буксировать на плаву к месту старта. Корабль обеспечения (предлагалось использовать атомный авианосец) методом электролиза разлагал воду на водород и кислород. Жидким водородом заполнялись баки топлива второй ступени, а кислородом — баки окислителя обеих ступеней. После заправки балластные танки первой ступени заполнялись водой, и ракета становилась в воде вертикально. Старт производился из частично погруженного положения, ожидалось, что Sea Dragon сможет выводить примерно 500 тонн на низкую околоземную орбиту. Простота конструкции должна была обеспечить стоимость выведения в диапазоне $60-600 за килограмм, в разы меньше существовавших тогда ракет.

Единственный двигатель первой ступени создавал тягу 36 000 тонн, но не представлял особой технической сложности — давление в камере сгорания не превышало 20 атмосфер, и топливо подавалось без сложных турбонасосов, давлением газа наддува (т.н. вытеснительная подача). Двигатель второй ступени имел тягу «всего» 6 350 тонн, а давление в камере сгорания всего 7 атмосфер. Для сравнения, давление в камерах сгорания современных ракетных двигателей достигает 255 атм (РД-191). Корпус ракеты изготовлялся из легированной стали толщиной 7 мм и был не сложнее корпуса подводной лодки в производстве. Собственно говоря, ракета и должна была производиться на верфи. Проект был рассмотрен судостроительной компанией Todd Shipyards, которая посчитала его выполнимым. Экономические и инженерные расчеты были подтверждены компанией TRW, уже зашла речь о покупке участка побережья под космодром, но бюджет NASA начали сокращать. Из-за нехватки средств был закрыт весь отдел перспективных разработок, занимавшийся Sea Dragon и проектами пилотируемых полётов на Марс. А Aerojet не могла выделять средства на разработку такого циклопического проекта самостоятельно.

Почти взлетевший OTRAG
Лутц Кайзер мог быть известен уже более тридцати лет как первый частный ракетостроитель. Ученик Зенгера, Лутц основал компанию OTRAG («Орбитальный транспорт и ракеты») и убедил Вернера фон Брауна и Курта Дебуса войти в команду после их выхода в отставку из NASA. Идея новой ракеты-носителя состояла в использовании простых блоков, которые должны были производиться массово и, поэтому, быть очень дешевыми.

Один CRPU (Common Rocket Propulsion Unit — «стандартный ракетный блок») представлял собой трубу длиной 16 м и диаметром 23 см. В блоке размещались баки топлива (керосин), окислителя (тетраоксид азота и азотная кислота в равных пропорциях), наддува (сжатый воздух). Баки разделялись плоскими переборками. Внизу был установлен простой двигатель с абляционной теплозащитой сопла и тягой 2,5 тонны, клапаны, батареи и электроника.

Особенностью конструкции ракеты была пакетная установка ступеней. Сначала работали блоки с наружной части пакета, затем внутренние. По расчетам, для вывода одной тонны на орбиту нужны были три ступени, из 4, 12 и 48 блоков. Пакетная компоновка приводила к тому, что ракета получалась относительно короткой и широкой, и, в теории, могла запускать большие и широкие спутники. Для запуска более тяжелых грузов надо было просто взять больше блоков. С точки зрения привычного нам критерия соотношения полезной нагрузки и стартовой массы ракета получалась неэффективной — для того, чтобы вывести на орбиту 8 тонн (чуть больше современного «Союза») требовалась ракета начальной массой 800 тонн (в два с лишним раза тяжелее «Союза»). Для того, чтобы вывести 128 тонн, требовался монстр начальной массой 12 800 тонн (в четыре раза тяжелее «Сатурна V», выводившего примерно столько же). OTRAG должна была выиграть за счет экономической эффективности. Массовое производство конструктивно простых блоков, десятками тысяч в год, должно было сделать их очень дешевыми.

Шесть двигателей на испытательном стенде

Автоматизированная линия производства CRPU

Рисунок старта сверхтяжелой версии OTRAG

В 1975 году компания OTRAG подписала контракт с Заиром о строительстве космодрома в провинции Катанга (сейчас территория Конго). С точки зрения физики всё было логично — космодром находился возле экватора, в удобном для космонавтики месте. Первые полёты испытательных четырехблоковых ракет начались в 1977 году.

Ракета на стартовой площадке.

Испытательный пуск. Не включился один двигатель.

Уникальное видео визита какого-то высокого заирского начальства и того самого неудачного пуска:

Проблемы начались, когда в дело вмешалась политика. Во-первых, развитые страны опасались, что ракеты OTRAG будут использоваться для военных целей. Да, они были бы крайне неэффективны в такой роли, но слаборазвитым странам Африки любая ракета лучше, чем ничего. Во-вторых, развитые страны не хотели экономического конкурента своим ракетам-носителям. СССР, США и Франция совместно начали кампанию по дискредитации OTRAG в СМИ и стали оказывать политическое давление на Заир. В 1979 году OTRAG была вынуждена покинуть страну. Испытания в Западной Германии были крайне затруднены по политическим причинам, и в 1981 году компания построила испытательный полигон в ещё худшем месте — Ливии. В 1982 году Западная Германия присоединилась к договору о нераспространении ракетных технологий, и перевозка произведенных в ФРГ блоков в Ливию стала невозможной. Несмотря на обещания, Муаммар Каддафи тут же конфисковал испытательный полигон, и ливийские инженеры попытались продолжить проект. К счастью (потому что это уже явно была программа разработки баллистических ракет, посмотрите на пусковую), ничего у них не вышло, и проект был остановлен окончательно. За время испытаний было проведено порядка шести тысяч испытаний на стенде и примерно полтора десятка суборбитальных полётов в одноступенчатой четырехблочной конфигурации. За 1975-1987 годы проект OTRAG обошёлся примерно в $200 миллионов.

Большой глупый носитель сегодня
Лутц Кайзер жив и достаточно активно общается с частниками «новой волны» — Armadillo Aerospace Джона Кармака и другими. Компания Interorbital Systems разрабатывает ракету Neptune такой же компоновки:

А Armadillo Aerospace хотела сделать весьма похожую ракету Stig и использовать её как геофизическую:

Драматическая авария:

Из заметных проектов также стоит отметить HEAT-1X, в котором ещё упростили конструкцию, заменив ЖРД на гибридный двигатель на топливной паре жидкий кислород/полиуретан. К сожалению, HEAT-1X разбился в одном из испытаний, новая версия TM-65 Tordenskjold сгорела во время стендовых испытаний. Сейчас Copenhagen Suborbitals делают новую ракету. В 2006 году проект Aquarius компании Space Systems/Loral участвовал в конкурсе COTS (доставка груза на МКС частной компанией), но проиграл. Особенностью проекта было использование топливной пары кислород/водород, что достаточно сложно для «простой» ракеты, и всего одна ступень для вывода на орбиту 1 тонны груза.

В России идею «большого глупого носителя» реализует проект РН «Таймыр» от компании «Лин Индастриал». Низконапряженные двигатели, некриогенные компоненты топлива, модульная пакетная компоновка — всё это должно максимально снизить стоимость пуска. Более тяжелые «Адлер» и «Алдан» используют двигатель первой ступени «Союза» РД-108 и рулевые камеры от него, подозреваю, по тем же причинам — двигатель уже есть и давно производится серийно. Любопытно, но иногда к концепции BDB относят российские ракеты-носители в целом. Например, РН «Союз» использует двигатели, которые не находятся на пределе возможностей современной технологии. Но она очень надежна, производится серийно, сравнительно дешева и поэтому крайне успешна. Но, поскольку наши ракеты не разрабатывались специально как простые и максимально дешевые, вопрос применимости к ним концепции BDB остается дискуссионным.

Будущее
Что же касается будущего, мне кажется, что этот путь потенциально очень перспективный, и у меня есть два аргумента:
Аргумент от технологии
Современный ракетный двигатель — очень сложная штука. Множество деталей сложной формы, произведенных из специальных высокопрочных материалов при помощи сложных производственных процессов с очень маленькими допусками по точности — всё это не может стоит дешево. Теперь представим себе ракетный двигатель, который напечатан на 3D-принтере и специально спроектирован для того, чтобы быть простым. Да, он не будет эффективным с точки зрения физики, у него не будет рекордных показателей по давлению в камере сгорания, тяге или удельному импульсу, но мелкосерийное производство таких двигателей может оказаться очень экономически выгодным. Они также не должны быть многоразовыми — на определенном уровне технологии их будет проще переплавить и распечатать снова, чем пытаться перебирать и дефектоскопировать.
Аргумент от истории техники
Когда человечество по-настоящему освоило компьютеры и микропроцессоры? Когда они стали появляться на городских свалках. В 60-х и 70-х годах мощные ЭВМ были относительно распространены и уже влияли на нашу жизнь. Но для следующего качественного перехода потребовались пусть и менее мощные, но дешевые и доступные персональные компьютеры. Для производства микросхем требуются высокие технологии, но отдельный чип сейчас может стоить копейки. Ту же ситуацию можно найти и в других областях. Пулемёт Максима изменил поля сражений, но следующим качественным шагом стал автомат Калашникова — с менее мощным патроном и меньшей дальностью прицельной стрельбы, но технологичный для условий массового производства. В авиации реактивные двигатели дали возможность достигнуть сначала околозвуковых, затем сверхзвуковых скоростей. Но сейчас высокие технологии используются для снижения стоимости полёта, а сверхзвуковые пассажирские лайнеры вымерли. Мне кажется, эти аналогии могут быть применены и при попытке предсказать будущее ракетной техники. Диалектика развития ракет-носителей может оказаться в том, что высокие технологии и изобретательность людей будут использоваться для создания «глупых» ракет.
Список использованных источников
Основной источник кроме Википедии — Encyclopedia Astronautica.

geektimes.ru

Тепловой двигатель

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), которое совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

Содержание

  • 1 История
  • 2 Теория
  • 3 Типы тепловых двигателей
    • 3.1 Двигатель Стирлинга
    • 3.2 Поршневой двигатель внутреннего сгорания
    • 3.3 Роторный (турбинный) двигатель внешнего сгорания
    • 3.4 Роторный (турбинный) двигатель внутреннего сгорания
    • 3.5 Реактивные и ракетные двигатели
      • 3.5.1 Турбовинтовой двигатель
      • 3.5.2 Турбореактивный двигатель
      • 3.5.3 Ракетный двигатель
        • 3.5.3.1 Твёрдотопливный ракетный двигатель
        • 3.5.3.2 Гибридный ракетный двигатель
        • 3.5.3.3 ЖРД (жидкостный ракетный двигатель)
    • 3.6 Твердотельные двигатели
    • 3.7 Дистилляционный двигатель
  • 4 Литература

История

Первой известной тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ веке н. э. в Римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени. На прогресс это изобретение никакого влияния не оказало и было забыто. Следующей тепловой машиной, изобретённой человеком, была пороховая ракета и пороховое орудие. Дата его изобретения неизвестна, первое известное упоминание относится к 13 веку. Это произошло в Китае. Это было простое устройство, которое с точки зрения инженера и механика не является тепловым двигателем, так как не имеет вала отбора мощности, но с точки зрения физики является тепловой машиной. Поэтому этот прибор имеет ограниченное применение: для связи, в военном деле, как транспорт (в последнем случае есть проблемы, но в принципе это возможно). В 17 веке изобретательская мысль попыталась на базе порохового орудия создать тепловой двигатель.

Теория

Работа, совершаемая двигателем, равна:

, где:
  •  — количество теплоты, полученное от нагревателя,
  •  — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

Типы тепловых двигателей

Двигатель Стирлинга

Дви́гатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от создания разницы температур его цилиндров.

Поршневой двигатель внутреннего сгорания

Двигатель Внутреннего Сгорания или ДВС, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2-х и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит либо за четыре хода поршня, за четыре такта, либо за два и двигатели делятся на четырёхтактные и двухтактные. Цикл четырёхтактного двигателя состоит из следующих тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск. В цикле двухтактного двигателя такты рабочего хода и сжатия аналогичны четырёхтактному двигателю, а впуск и выпуск осуществляется одновременно в момент нахождения поршня вблизи от нижней мёртвой точки

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Идея реактивного и ракетного двигателя состоит в том, чтобы тяга создавалась не винтом, а отдачей выхлопных газов двигателя.

Турбовинтовой двигатель

Турбовинтовой двигатель часть тяги создаёт за счёт винта, другую часть за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен воздушный винт.

Турбореактивный двигатель

Турбореактивный двигатель создаёт тягу за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен компрессор, повышающий давление для эффективного сжигания топлива.

Ракетный двигатель

Ракетный двигатель может создавать тягу в безвоздушном пространстве.

Твёрдотопливный ракетный двигатель

Твердотопливный ракетный двигатель (РДТТ). В РДТТ всё топливо в виде заряда помещается в камеру сгорания; двигатель обычно работает непрерывно до полного выгорания топлива.

РДТТ были первыми ракетными двигателями, нашедшими практическое применение. Ракеты с РДТТ (пороховые ракеты) известны уже около 1000 лет; они использовались как сигнальные, фейерверочные, боевые. Описания "огненных стрел" — прототипов пороховых ракет — содержатся в китайских иЗЮЗийских рукописях 10 в. Это оружие представляло собой обычные стрелы, к которым прикреплялись бамбуковые трубки, заполненные порохом. В 1-й половине 17 в. в "Уставе" Онисима Михайлова описываются первые русские ракеты — артиллерийские ядра с каналом, в котором помещался пороховой заряд. В 1798

индийцы применяли боевые ракеты против английских колонизаторов, а в 1807 англичане использовали подобные ракеты в войне с Данией (при осаде Копенгагена). Первоначально топливом для РДТТ служил дымный порох. В конце 19 в. был разработан бездымный порох, превосходивший дымный по устойчивости горения и работоспособности. В дальнейшем были получены новые высокоэффективные виды твёрдых топлив, что позволило конструировать боевые ракеты с РДТТ самой различной дальности, вплоть до межконтинентальных баллистических ракет.

Гибридный ракетный двигатель ЖРД (жидкостный ракетный двигатель)

Твердотельные двигатели

В двигателях этого типа в качестве рабочего тела используется твёрдое тело, а при работе двигателя изменяется не объём рабочего тела, а его форма. Такой двигатель позволяет использовать рекордно малый перепад температур при более высоком КПД.

Дистилляционный двигатель

Существует разработка двигателя с внешним нагревом, в котором ротор в виде пустотелого кольца частично заполнен легкоиспаряемым твёрдым телом. Незаполненная часть ротора и часть рабочего тела нагреваются, образующийся пар перетекает из нагретой части ротора в ненагретую, нарушая тем самым равновесие ротора в поле силы тяжести. В результате ротор приводится во вращение. Особенностью двигателя является согласованность скорости вращения его ротора со скоростью испарения рабочего тела. Двигатель разработан для осуществления зонной дистилляции с многократным повторением в устройстве с вращающимся контейнером (Патент Украины №78272).

Литература

  • Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics (2nd ed.). W. H. Freeman Company. ISBN 0-7167-1088-9.
  • Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). John Wiley & Sons, Inc. ISBN 0-471-86256-8.
  • Mechanical Efficiency of Heat Engines, 2007, ISBN 9780521868808
  • IV. Heat engines and efficiency; V. Heat engines can never operate at 100% efficiency / NSC111: Physics/Earth/Space Resource page: Thermodynamics, 2001, Daniel J. Berger.

Тепловой двигатель Информация о

Тепловой двигательТепловой двигатель

Тепловой двигатель Информация Видео

Тепловой двигатель Просмотр темы.

Тепловой двигатель что, Тепловой двигатель кто, Тепловой двигатель объяснение

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Тепловой двигатель - Gpedia, Your Encyclopedia

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 декабря 2017; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 декабря 2017; проверки требует 1 правка.

Теплово́й дви́гатель — тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях). Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур, производится нагревание рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем (например, при сжигании топлива) и охладителем, в роли которой используется окружающая среда.

История

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Теория

Работа, совершаемая двигателем, равна:

A=|QH|−|QX|{\displaystyle A=\left|Q_{H}\right|-\left|Q_{X}\right|}, где:
  • QH{\displaystyle Q_{H}} — количество теплоты, полученное от нагревателя,
  • QX{\displaystyle Q_{X}} — количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: η=|QH|−|QX||QH|=1−|QX||QH|{\displaystyle \eta ={\frac {\left|Q_{H}\right|-\left|Q_{X}\right|}{\left|Q_{H}\right|}}=1-{\frac {\left|Q_{X}\right|}{\left|Q_{H}\right|}}}

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя(TH{\displaystyle T_{H}}) и холодильника(TX{\displaystyle T_{X}}):

ηK=TH−TXTH=1−TXTH{\displaystyle \eta _{K}={T_{H}-T_{X} \over T_{H}}=1-{T_{X} \over T_{H}}}

Типы тепловых двигателей

Двигатель Стирлинга

Поршневой двигатель внешнего сгорания

Поршневой двигатель внутреннего сгорания

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия.

Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще.

Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Реактивный двигатель представляет собой совмещенный тепловой двигатель и движетель, в нём внутренняя энергия топлива преобразуется в кинетическую энергию реактивной струи разогретого рабочего тела. Реактивные двигатели отбрасывают нагретое рабочее тело с большой скоростью, за счет его проистечения, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. В тепловых реактивных двигателях обычно используется химическое топливо в газообразном, жидком или твёрдом состоянии, порождающее разогретый газ при сгорании. Воздушно-реактивные двигатели используют газообразный окислитель из окружающей среды, тогда как ракетные двигатели снабжаются запасами всех компонентов рабочего тела с носителя и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Используются для приведения в движение самолётов, ракет и космических аппаратов.

Твёрдотельные двигатели

Такие двигатели используют твёрдый материал (вещество в твёрдой фазе) в качестве рабочего тела. Работа совершается при изменении формы рабочего тела. Позволяют использовать малые перепады температур.[1]

Примеры:

Примечания

Ссылки

www.gpedia.com

Радиальные двигатели | Двигатель прогресса

March 23, 2010

Раз уж наш блог начал рассказывать про различные типы двигателей, мы не могли не пройти мимо необычных типов ДВС и невероятных машинах, которые на них ездят.Обычный, поршневой двигатель внутреннего сгорания известен всем – коленчатый вал, его двигают от 1 до 16 (редко до 32) поршней, которые перемещаются в цилиндрах вверх-вниз. В цилиндры подается смесь воздуха и топлива (бензина, керосина, ДТ, водорода и проч.). Происходит быстрое сгорание, с большим коэффициэнтом расширения – поршень двигается вниз и толкает коленчатый вал.Двигатели такого типа бывают рядными (L-образными) или не рядными, когда цилиндры стоят под углом друг к другу (V и W- образные). Последний тип – двухэтажный и применяется редко.

Какие же еще есть ДВС? Об одном из них мы хотели бы рассказать в этой статье.

Радиальные двигатели.

Краткая история радиальных двигателей.

Первый радиальный двигатель был создан в 1901 году Чарльзом Мэнли. Он был 5-ти цилиндровым и с водным охлаждением. От был сделан из одной из ротационных машина Стивена Бэлзера, для самолета Аэродрома Лэнгли.Мощность перового радиального двигателя составила 52 л.с. (39 кВт) при 950 об/мин.

В 1903-1904 гг Иаковах Эллехэммере  посторил первый в мире 3-х цилиндровый радиальный двигатель с воздушным охлаждением. Позже, в 1907 году он он постотоил более мощный 5-ти цилиндровый двигатель, а в 1908 – 1909 годах он разарабатывал уже 6-ти цилиндровый двухрядный радиальный двигатель.В последствии радиальные или звездообразные двигатели получили широкое применение в авиации из-за своей надежности, малых габаритов и возмощности эффективного применения воздушного охлаждения.

Принцип действия.

В отличие от рядных двигателей, цилиндры радиального двигателя расположены в виде звезды, радиально расходясь во все стороны от центра. Таким образом каждый цилиндр отделен от остальных и доступен для ремонта и обслуживания. Также такая конструкция хорошо пригодна для воздушного охлаждения, поэтому подавляющее большинство таких двигателей выпускается именно с воздушным охлаждением. Минимальное количество цилиндров для образования радиального двигателя – три, если взять два, то это уже либо V-образный, либо оппозитник, двигатель, в котором цилиндры расположены напротив друг друга, на одной линии.Внутри радиального двигателя, по центру находится коленчатый вал с одним коленом и противовесом. К нему крепится ведущий шатун, к которому уже непосредтсвенно крепяться все остальные, ведомые шатуны. Это принципиальное отличие кривошипно-шатунного механизма обусловлено самой конструкцией дигателя – длинный коленвал было бы просто некуда девать.

Звездообразные двигатели бывают двух и четырехтактными, последние обычно имеют нечетное количество цилиндров, позволяющее пускать искру через один цилиндр. В доказательство наших слов приводим видео демонстрационной модели 7-ми цилиндрового двигателя. Обратите внимание на искры зажигания.Двухтактные радиальные двигатели ставились на многие легкие самолеты и их заводили резким поворотом винта.Кждый цилиндр обычно имеет два клапана, которые приводятся в движение через спицы, которые в свою очередь толкает распределительный диск, связаный с коленчатым валом.Анимация в autodesk inventor – здесь все очень хорошо видно

Единственным недостатком радиального двигателя является возможность протекания маста в цилиндры, что приводит к гидроудару и разрыву нижних цилиндров при попытке завода двигателя. Но в современных двигателях эти шансы минимизированы.Выхлопная система таких двигателей также радиальна, но, как правило, трубы разводятся на две стороны. Варианты, когда цилиндров четное количество, тогда нередко каждый из цилиндров имеет свою выхлопную трубу.

Изготовление звездообразных двигателей

До сих пор радиальные двигатели ставят на самолеты и даже на вертолеты. Все таки возможность обходится без жидкостного охлаждения подкупает, да и технология отработанная годами не позволяет отказаться от этого типа ДВС в авиастроении. Также такие двигатели ставят на легкие лодки и на небольшие катера, перемещающиеся с помошью воздушного винта. В таком случае моторный отсек ограничивают сеткой.

Одним из производителей радиальных двигателей сегодня является Австралийская компания Rotec Engeneering.  Вот видео изготовления 150-сильного мотора R3600

Альтернативное применение

Но наш блог любит рассказывать о невероятных применениях всего, что можно. Вот и сейчас мы е обойдет стороной эту возможность и покажем несколько интересных фотографий и видео, найденных нами на просторах интернета.Например некотрые умельцв ставят радиальные двигатели на мотоциклы.

7 цилиндров 110 л/с Rotec Engeneering R2800

Общий вид

Такой же Rotec Engeneering R2800 только установленный впрофиль

И видео с этим мотоциклом:

R2800 собственной персоной. Кликабельно

И хорошо еще если на обычное место. Существуют например и вот такие варианты. “Двигатель в колесе”

Правда непонятно как к этому двигателя подается бензин.Те, кто не увлекается мотоциклами берут зарубежные аналоги запорожцев и делают с ними следующее:

В общем применений радиальных двигателей великое множество. Это отличные, плавные, мощные, простые в устройстве, ремонте и эксплуатации двигатели, которые прослужат еще очень долго.

lab-37.com


Смотрите также