Твс двигателя


Топливно воздушная смесь

Мощность двигателя, а, следовательно, скорость, разгон и рывок автомобиля напрямую зависят от характеристик энергоносителя – бензина. Но любителей и профессионалов не обманешь, они прекрасно знают, что в цилиндрах двигателя внутреннего сгорания, спрятанного под капотом любимого автомобиля, сгорает не жидкий бензин или дизель, а топливно-воздушная смесь. Именно ее состав, отношение массы атмосферного воздуха к массе жидкого топлива позволяет разогнаться до максимальной скорости, совершить рывок во время выполнения маневра обгона, или преодолеть крутой подъем.

Топливно-воздушная смесь – основные понятия

Мелкодисперсная смесь атмосферного воздуха и жидкого топлива с небольшим включением парообразной фазы называется топливно-воздушной смесью или ТВС. Именно она, сгорая в цилиндрах двигателя, придает поступательное движение поршням и обеспечивает движение автомобиля.

В зависимости от своей структуры, ТВС может быть гомогенной (однородной по своему составу), или обладать слоистой структурой. В зависимости от вида нагрузки, заложенных параметров экономии топлива, и требуемого состава выхлопных газов (содержания вредных веществ и окислов азота), система впрыска топлива самостоятельно выбирает наиболее оптимальную структуру топливно-воздушной смеси.

Бедная и богатая ТВС, узлы и системы дозирования

Эмпирическая формула дает определение «нормальной» ТВС, как смеси 14,7 килограмм атмосферного воздуха и 1 килограмма жидкого топлива. Топливная смесь, количество воздуха в которой больше указанного в соотношении, называется бедной, и, соответственно, богатой, при меньшем количестве воздуха.

  • бедная — воздуха > 14,7
  • богатая — воздуха < 14,7

В двигателях внутреннего сгорания за приготовление и состав топливно-воздушной смеси отвечает карбюраторный узел, который в настоящее время практически вытеснен инжекторной системой впрыска. И одна, и другая система обеспечивает многообразие режимов работы ДВС за счет приготовления смеси с различным содержанием атмосферного воздуха.

Историческая справка. Барботажный карбюратор – единственный в своем роде узел, позволявший приготовить идеальную топливно-воздушную смесь. Такая ТВС представляла собой смесь паров и атмосферного воздуха и позволяла достигнуть максимального КПД двигателя при минимальном расходе жидкого горючего. К сожалению, конструкция барботажного карбюратора была громоздкой и небезопасной в использовании, а отношение количества воздуха и паров топлива сильно зависело от температуры окружающей среды.

Историческая справка. После принятия свода норм и законов, известного как EURO 3 и регламентирующего содержание вредных для экологии веществ в выхлопных газах автомобилей, производители ДВС перешли на многоточечную инжекторную систему впрыска топлива. Каждая форсунка обслуживает «свой» цилиндр, а электронная дозирующая система подбирает необходимый состав смеси, который хоть незначительно, но отличается от цилиндра к цилиндру. На практике такое усложнение приводит к снижению надежности и усложнению ремонта в случае поломки.

Гомогенная и слоистая ТВС – отличия в режимах работы двигателя

Однородная топливная смесь наиболее универсальна для обеспечения работы двигателя внутреннего сгорания во всех возможных режимах. Стабильная теплоотдача позволяет развить максимальную мощность, не превышая среднедопустимого давления и температуры горения в цилиндрах, что положительно сказывается на стабильности работы двигателя и его долговечности. Однако все достоинства имеют и оборотную сторону. В данном случае, это неоптимальный расход топлива, «загрязнение» выхлопных газов не сгоревшими микрочастицами.

Эти недостатки устранимы при использовании топливно-воздушной смеси слоистой структуры. В цилиндры подается обедненная смесь, расчетные параметры теплоотдачи которой обеспечивают основные режимы работы ДВС, а так же оптимальный расход топлива. Но большое содержание атмосферного воздуха приводит к нестабильному воспламенению и разной скорости горения топливной смеси при каждом такте сжатия — расширения, что является причиной падения мощности и нестабильности работы двигателя в целом.

Достигнуть единообразия позволяет впрыск в зону воспламенения небольшого количества обогащенной смеси в качестве катализатора реакции окисления. В карбюраторных двигателях для решения данной задачи используют дополнительный впускной клапан, а инжекторные системы оснащаются двухрежимной форсункой.

Использование обедненной и обогащенной ТВС

  1. Попытка уменьшить расход топлива путем регулировки топливной системы, зачастую приводит к неприятным последствиям. Увеличение количества воздуха в топливной смеси повышает температуру горения и приводит к преждевременным поломкам двигателя. Прогорание поршневых колец и эрозия стенок цилиндров – обычное дело при езде на обедненной ТВС. При все большем обеднении смеси наблюдается снижение мощности двигателя, при увеличении нагрузки появляются «провалы». Движение автомобиля становится дерганным, малейший подъем может стать непреодолимым препятствием. При достижении соотношения 30 к 1 мотор начинает глохнуть.
  2. Чрезмерное обогащение смеси не превратит стандартную модель в гоночный болид. При уменьшении содержания воздуха в ТВС двигатель начинает работать с перебоями, падает мощность, катастрофически возрастает расход топлива. По достижении определенной пропорции двигатель невозможно будет запустить.

znanieavto.ru

Принцип работы двигателей внутреннего сгорания

В современной технике широко используются двигатели внутреннего сгорания (ДВС) трех основных типов. Горючая топливовоздушная смесь (ТВС) может подаваться в камеру сгорания периодически (циклически) в ДВС карбюраторных и дизельных или непрерывно в ДВС турбокомпрессорных воздушно-реактивных. В карбюраторных и дизельных ДВС в цилиндровопоршневой группе четырехтактного (или реже двухтактного) принципа реализуется рабочий цикл в четыре (или два) хода поршня (такта).

В карбюраторном ДВС (N.Otto, 1880 г.) карбюратор дозирует и мелко распыляет через жиклер порцию топлива в поток воздуха во всасывающем патрубке двигателя для образования ТВС. В первом такте (всасывание) ТВС засасывается поршнем в цилиндр через открытый впускной клапан (выпускной клапан цилиндра закрыт, поршень движется вниз). Во втором такте (впускной и выпускной клапаны закрыты, поршень движется вверх) ТВС сжимается поршнем только лишь до 0,7-1,0 МПа (превышение этого давления вызывает взрывное самовоспламенение топлива), температура в цилиндре повышается до 200-400 °С, заканчивается испарение мельчайших капель топлива и перемешивание ТВС. В конце сжатия с некоторым опережением нагретая ТВС воспламеняется от электрической искры между электродами свечи. ТВС начинает гореть, при этом давление в цилиндре (впускной и выпускной клапаны закрыты) быстро растет до 3-6 МПа за счет образования большого количества газов (продуктов) сгорания - поршень вынужденно движется вниз, совершает рабочий ход (третий такт) и вращает через шатунно-поршневой механизм коленчатый вал двигателя, который совершает полезную работу. После этого поршень движется вверх и через открытый выпускной клапан (впускной клапан закрыт) выталкивает горячие отработанные продукты сгорания из цилиндра - это четвертый такт (выхлоп) рабочего цикла двигателя. С помощью коленчатого вала и шатунно-поршневой группы в каждом из цилиндров (их может быть 4, 6, 8 и больше) двигателя последовательно друг за другом осуществляются все четыре такта рабочего цикла.

Время сгорания ТВС в цилиндре карбюраторного двигателя очень мало -тысячные доли секунды, поэтому к топливу предъявляется основное требование - сгорать постепенно (но не в форме взрыва) по мере продвижения фронта пламени по камере сгорания в верхней части цилиндра. Фронтом пламени называют тонкий слой газа (пара), в котором протекает реакция горения топлива. При нормальном горении фронт пламени распространяется со скоростью 20-30 м/с. Давление газов во время сгорания плавно поднимается до 3-6 МПа, а их температура повышается до 1600-1800 °С (в ракетном двигателе температура сгорания топлива может быть 3400 °С).

ДВС любой конструкции имеет надежную систему охлаждения (воздушного или жидкостного) для исключения перегрева деталей и узлов, которые соприкасаются с горячими продуктами сгорания. Топливом карбюраторных ДВС являются бензины. Расширяется использование в этих ДВС сжиженных углеводородных газов и сжатого природного газа. В настоящее время ожидается массовый переход ведущих автомобилестроительных фирм мира на бензиновые двигатели с прямым впрыском топлива или с карбюратором и системой впрыска (совместно), при этом переход на систему впрыска бензина с повышением его октанового числа позволит сократить расход топлива в целом минимум на 10 %.

В дизельных ДВС (R. Diesel, 1897 г.), в отличие от карбюраторных, вначале цилиндр заполняется только окислителем - воздухом (первый такт - всасывание воздуха). Затем во втором такте воздух сжимается до 6-8 МПа (здесь нет ограничений по сжатию и нагреву воздуха без топлива) и в результате этого нагревается до 550-650 °С. В третьем такте в сжатый и сильно нагретый воздух дозировочным насосом высокого давления впрыскивается через форсунку мелко распыленная порция топлива. Мельчайшие капли топлива испаряются и равномерно распределяются в воздухе с образованием ТВС. Через определенный весьма незначительный момент времени ТВС самовоспламеняется и полностью сгорает. Время между началом впрыска топлива и самовоспламенением ТВС называется периодом задержки самовоспламенения. В быстроходных (высокооборотных) дизельных двигателях этот период длится не более 0,002 с. В результате сгорания ТВС давление образовавшихся продуктов сгорания достигает 6-10 МПа, они двигают поршень - происходит третий такт (рабочий ход поршня). Потом поршень выталкивает отработанные продукты сгорания из цилиндра - четвертый такт рабочего цикла двигателя. Опять же к топливу предъявляется основное требование - способность быстро самовоспламеняться и плавно (без взрыва) сгорать, обеспечивая этим постепенное нарастание давления и «мягкую» без стука работу двигателя.

Если степень сжатия (отношение объема цилиндра над поршнем в крайнем нижнем его положении к объему цилиндра над поршнем в крайнем верхнем его положении) карбюраторных ДВС обычно 8-12, то для дизельных ДВС она достигает 40-60, причем чем выше степень сжатия, тем экономичнее ДВС. Поэтому дизельные ДВС расходуют обычно на 20-30 % меньше топлива, чем карбюраторные ДВС. Однако новые бензиновые двигатели легковых автомобилей со степенью сжатия 10,5-11,6, использующие лучшие автобензины с исследовательским октановым числом 98-100 (супер и суперплюс) расходуют на единицу мощности на 15-20 % меньше топлива, чем дизельные двигатели равной мощности. При этом размеры бензиновых ДВС в 1,5 раза меньше, а расход металла на их изготовление в 2-3 раза ниже, чем дизельных. Топливом дизельных ДВС является дизельное топливо. Для стационарных дизельных ДВС, например судовых, применяют и более тяжелые нефтяные топлива (флотские мазуты). Для дизельных газомоторных компрессоров используют природный и нефтяной газы. Эксплуатируются стационарные дизельные ДВС мощностью до 30 МВт.

Третий тип ДВС с непрерывной подачей топлива в камеру сгорания используется в авиации (турбокомпрессорный воздушно-реактивный двигатель - ТКВРД) или на стационарных газотурбинных установках (ГТУ) для привода мощных газовых центробежных компрессоров (турбокомпрессоров), на газотурбинных электростанциях и на транспорте (газотурбовозы). У этих ДВС рабочий цикл работает не во времени, а по длине двигателя, т. е. отдельные стадии цикла передаются в двигателе по его длине, за счет чего обеспечивается непрерывность подачи топлива и достигается значительно большая мощность в единице объема двигателя. Осевой компрессор, вал которого вращается со скоростью 15 000-30 000 об/мин, засасывает окружающий воздух и сжимает его до 0,8-1,2 МПа, в результате чего сжатый воздух разогревается. Сжатый и нагретый воздух поступает в 6-8 камер сгорания из жаропрочной стали, расположенных вокруг вала двигателя. По оси камеры сгорания имеются форсунки, через которые насосами высокого давления подается топливо в виде мелких капель в поток сжатого и горячего воздуха. Капли топлива испаряются, смешиваются с воздухом с образованием ТВС, которая сгорает и образует продукты сгорания. Продукты сгорания, охлажденные от температуры горения 1600-1800 °С до температуры 730-830 °С, из камеры сгорания направляются на лопатки газовой турбины и вращают ее. Турбина имеет один вал с компрессором, поэтому мощность турбины должна быть достаточной для компримирования воздуха до необходимого давления. На выходе из турбины продукты сгорания имеют еще достаточное давление, поэтому они, расширяясь при падении их давления в сопле двигателя, создают реактивную тягу для движения самолета.

На стационарных ГТУ или вертолетных ТКВРД, где реактивная тяга не нужна, всю энергию движущихся продуктов сгорания «срабатывают» на газовой турбине (в этом случае она многоступенчатая), которая не только вращает вал своего воздушного компрессора, но приводит во вращение вал внешнего источника (электрогенератора, газового компрессора, винта вертолета и т.п.). Топливом стационарных ГТУ являются различные газотурбинные топлива. Для привода мощных газовых турбокомпрессоров как на магистральных газопроводах, так и на ряде технологических установок (например, сжижения природного газа) в качестве топлива ГТУ используют природный газ. Эксплуатируются газовые турбины турбокомпрессоров для магистральных газопроводов и ГПЗ мощностью до 25 МВт. Газотурбинные двигатели нового поколения для электростанций могут иметь к.п.д 50 % и мощность до 110 МВт.

Самыми уникальными являются современные двигатели пилотируемой космической техники. Жидкостный ракетный двигатель (ЖРД) работает в разреженных слоях атмосферы, где кислорода очень мало, и в космическом пространстве, где его практически нет. Поэтому ракета и космический корабль должны иметь на борту не только топливо, но и окислитель. Для мощных ракетных двигателей окислителем служат сжиженный кислород, тетраоксид азота (четырехокись азота), пероксид водорода и др. В качестве топлива используются сжиженный водород, жидкие ракетные топлива (например, на основе керосиновых фракций и др.), диметилгидразин (гидразин, «геп-тил») и т. д. Основные части ЖРД: баки - емкости для топлива и окислителя, парогенератор, турбонасосный агрегат, форсунки, камера сгорания, сопло, система управления и др.

Масса окислителя и топлива составляет до 90 % массы ракеты-носителя. Многоступенчатая управляемая баллистическая ракета диаметром до 4-5 м и общей высотой более 50 м для выведения в космос полезного груза до 140 т имеет стартовую массу около 3000 т (1985 г.). Ракетные двигатели работают на активном участке траектории около 15 мин. Температура продуктов сгорания, например керосина в смеси с кислородом, - до 3400 °С. Давление в камере сгорания ракетных двигателей первого поколения для космического корабля «Восток» было около 3,5 МПа, а для космических кораблей типа «Союз» - более 30 МПа. В 1970 г. американец Г. Габелиш установил рекорд скорости на суше - 1001 км/ч. Четырехколесная гоночная машина «Голубое пламя» длиной 12 м имела ракетный двигатель на топливе - сжиженном природном газе с окислителем (пероксидом водорода). В 1997 г. британец Э. Грин увеличил этот рекорд до 1228 км/ч на сверхзвуковом автомобиле «Thrust Super Sonic Саг» с двумя турбореактивными двигателями Rolls-Royce мощностью по 53 000 л.с.

enciklopediya-tehniki.ru

Богатая смесь, причины возникновения

Заголовок

Как известно, в современных автомобилях установлены двигатели внутреннего сгорания (ДВС). Это означает, что в цилиндрах двигателя сгорает не бензин и не дизель, а топливно-воздушная смесь. Происходит это следующим образом. Форсунки подачи топлива распыляют горючее, которое испаряется перед входящими клапанами в виде мелкодисперсной взвеси. А уже в цилиндрах происходит сгорание этих испарений, перемешанных с воздухом от электрической искры.

Таким образом, топливно-воздушная смесь (ТВС) – это производное из жидкого горючего и мелкодисперсного воздуха с включением парообразной фазы в небольшом количестве.

Причины богатоой топливной смести автомобиля

Богатая ТВС: понятия

Таким образом, состав топливной смеси определяется отношением воздуха к горючему. Это отношение зависит от объема подачи жидкого топлива к цилиндрам. Когда происходит ускорение – происходит интенсивное насыщение жидкого топлива воздушной массой. Когда это соотношение нарушено, топливно-воздушная смесь богатая или бедная.

Приготовление топливно-воздушной смеси – это процесс, за который отвечает инжектор автомобиля. Инжекторная система впрыска готовит смеси с различным содержанием кислорода, и именно это обеспечивает многообразие режимов работы двигателя внутреннего сгорания. Именно состав топливной смеси позволяет автомобилю резко повысить скорость во время обгона или же преодолеть подъем.

Богатая смесь – это смесь, в которой воздуха содержится меньше, чем требуется, а бензина — больше, чем требуется. Скорость горения богатой смеси снижена, а потому ее догорание происходит уже в глушителе. Иногда такую смесь символично называют высококалорийной.

Существует математическая формула, определяющая, при каком соотношении атмосферного воздуха к горючему, топливная смесь будет нормальной, богатой или бедной. Считается, что нормальное соотношение – это смесь из 14,7 кг воздуха и 1 кг горючего в жидком виде. Если же соотношение 14:1 повышено в пользу воздушной смеси, – топливная смесь будет бедная. И, напротив, когда соотношение 14:1 в пользу жидкого топлива, – смесь будет богатой.

Искусственное форсирование мощности двигателя обеспечивается такой регулировкой подачи топлива, когда увеличивается количество подаваемого кислорода. Желание автовладельца сэкономить на расходе топлива достигается за счет подачи большего количества атмосферного воздуха.

Бедная ТВС: понятия

Бедная топливная смесь

– это ТВС со сниженным содержанием бензина и с повышенным — воздуха.

Код ошибки, присваиваемый этой ошибке бортовым компьютером – Р0171. Дословно этот код расшифровывается, как очень бедная топливная подача. Иногда бедную ТВС называют низкокалорийной.

Бедная топливная смесь выдает себя такими признаками: очень плохая тяга, особенно заметная на крутых подъемах, перегрев двигателя, инжектор издает хлопающие звуки, из выхлопной трубы валит белый или серый дым.

Причины приготовления бедной ТВС: неисправность бензонасоса, использование бензина с водой или другими примесями, неисправность топливного датчика, неисправность вакуумных шлангов или впускного коллектора, форсунки подают слишком мало бензина, нарушение работы датчика давления.

Признаки образования богатой смеси

Образование богатой топливной смеси происходит с шикарным набором проявлений.

  1. Первый и самый главный признак: загорается индикатор неисправности, выдаваемый бортовым компьютером автомобиля. Код ошибки: Р0172.
  2. Глушитель автомобиля издает громкие хлопающие звуки. Происходит это из-за недостатка воздуха в цилиндрах двигателя и, как следствие, догорания воздуха уже в выхлопной трубе.
  3. Выхлопные газы черного или серого цвета. Происходит из-за того, что ТВС сгорает не в двигателе, а в выхлопной трубе, отработанный газ не проходит никакой очистки фильтрами, при горении в трубе резко увеличивается количество атмосферного воздуха.
  4. Автомобиль менее динамичен, менее мощный. Объясняется медленной скоростью сгорания топливной смеси. В результате медленного сгорания топлива, происходят провалы в мощности. При переобогащенной смеси возможно даже, что авто просто не сдвинется с места.
  5. Резко возрос расход горючего. Объясняется неэффективностью расходования топливной смеси: низкую скорость сгорания, пытается покрыть дополнительным впрыском жидкого горючего.

Проблемы приготовления топливной смести автомобиля

Причины образования богатой смеси

Образование богатой топливно-воздушной смеси происходит в следующих случаях:

  1. Причины, прямо связанные с некорректной эксплуатацией и неверной настройкой систем автомобиля:
  • как результат неправильной регулировки топливной системы с целью уменьшения расхода горючего;
  • как результат неправильной регулировки топливной системы с целью увеличения мощности.
  1. Связанные с неисправной работой систем двигателя:
  • форсунки подают слишком большое количество топлива;
  • загрязнение воздушного фильтра;
  • зияет воздушная заслонка;
  • неисправность регулятора давления топлива;
  • неисправность датчика расхода воздуха, неисправность системы улавливания паров бензина, некорректная работа экономайзера.

Первая помощь автомобилю с ошибкой Р0172

Первое, что следует устранить в том случае, если инжектор готовить богатую смесь, – это отказаться от всевозможных дополнительных настроек объема подаваемого воздуха или горючего. Возможно, на автомобиле производилась регулировка топливной системы. Если это так, необходимо эти регулировки отменить, так как длительная работа двигателя на богатой смеси может привести к поломке поршней и выходу из строя свечей.

Вторая распространенная причина образования богатой смеси – некорректная подача топлива форсунками. Заподозрить форсунки можно в том случае, если на внешней стороне инжектора есть следы от сгорания ТВС. Следы сгорания ТВС также можно обнаружить на одной из сторон медного уплотнительного кольца. Если такие признаки обнаружены, – надо проверить, корректно ли установлен инжектор, на месте ли уплотнительное кольцо.

Ошибка р0172

Третья незаслуженно игнорируемая причина – загрязнение воздушного фильтра. Если фильтр сильно забит, происходит повышение давления в цилиндрах, и как следствие, ошибочное приготовление ТВС.

Четвертая причина приготовления богатой ТВС – это неполное закрытие воздушной заслонки/клапана. В этом случае давление в цилиндрах снижено и это, опять же, ведет к ошибкам в приготовлении ТВС и нарушении функционирования систем ДВС: форсунки начинают лить больше горючего, повышая расход и снижая мощность.

Если регулятор давления горючего полноценно не функционирует сам по себе, то ошибки здесь те же, что и в предыдущих двух случаях: повышенное либо пониженное давление в цилиндрах.

Шестая группа причин не так распространена. Проблемы с датчиком расхода воздуха, системой улавливания паров горючего либо проблемы с экономайзером – это зачастую, следствие. Однако если все предыдущие причины устранены, а проблема осталась – следует проверить эту группу причин. Если проблема действительно в них, то она решится элементарной заменой этих деталей.

Приготовление богатой ТВС – проблема очень распространенная, а потому прекрасно знакомая механикам в автосервисах и слесарных мастерских. Проблема приготовления плохой ТВС обычно устраняется быстро, буквально на раз-два и за небольшие деньги (в зависимости от уровня сервисного центра и модели автомобиля).

Надо отметить, что 90% ошибок решается простой регулировкой впрыска жидкого горючего. Главное здесь – устранить проблему вовремя, пока не сломался инжектор и не возникли другие проблемы: к примеру, могут прийти в негодность поршни, перегореть свечи и т.д.

autodont.ru

способ работы двигателя внутреннего сгорания (варианты) - патент РФ 2176739

Изобретение относится к двигателестроению, а именно к способам работы двигателей внутреннего сгорания, и может быть использовано в автомобильной промышленности и машиностроении. Предложен способ работы двигателя внутреннего сгорания, включающий заполнение топливно-воздушной смесью цилиндра с поршнем, разделенного на основную и дополнительную камеры поперечной перегородкой, выполненной с возможностью перепуска топливно-воздушной смеси, и нагревание топливно-воздушной смеси до температуры Т800К путем ее сжатия в последовательных стадиях в неизоэнтропическом режиме - с увеличением энтропии, осуществляемого движением поршня к перегородке, перепуском нагретой топливно-воздушной смеси в дополнительную камеру и движением поршня к верхней мертвой точке, с последующим воспламенением и сгоранием топливно-воздушной смеси, при этом при 4-тактном режиме работы двигателя заполнение основной камеры цилиндра производят бедной топливно-воздушной смесью с >4 или воздухом, а заполнение дополнительной камеры производят богатой топливно-воздушной смесью с =0,2-0,6 и проводят вторую стадию сжатия движением поршня к верхней мертвой точке с одновременным перемешиванием топливно-воздушной смеси, воспламенением и парциальным окислением, затем продукты парциального окисления топливно-воздушной смеси перепускают в основную камеру для смешивания с исходной бедной топливно-воздушной смесью или воздухом до =1-4 и дожигают при движении поршня к нижней мертвой точке. Рассмотрен способ работы 6-тактного двигателя. Изобретение обеспечивает повышение КПД двигателя, эффективности работы, а также экологически чистого старта и выхлопа двигателя. 2 с. и 2 з.п. ф-лы, 1 ил., 1 табл. Изобретение относится к двигателестроению, а именно к способам работы двигателей внутреннего сгорания (ДВС), и может быть использовано в автомобильной промышленности и машиностроении. Одной из основных проблем работы ДВС является организация экологически чистого горения. В современных ДВС для этого используют топливно-воздушные смеси (ТВС) бедного состава (О.И. Жегалин и др. Снижение токсичности автомобильных двигателей. М: Машиностроение, 1985). Однако использование бедных ТВС создает проблемы с их воспламенением и устойчивым горением. Известно, что облегчение воспламенения бедных ТВС можно достичь путем увеличения температуры сжатия горючей смеси за счет повышения степени сжатия. Известные ДВС не позволяют достичь высоких степеней сжатия из-за недостаточной механической прочности обычных конструкций и из-за ограничения, связанного с возможностью возникновения детонационного режима горения. Известен способ работы карбюраторного ДВС с воспламенением от сжатия (RU 2008456 С1, кл. F 02 В 23/00 з. 1990, п. 1994), в котором сжатие ТВС осуществляется в две последовательные стадии, для чего в одноцилиндровом четырехтактном ДВС устанавливают дополнительный поршень, движение которого осуществляется при помощи блока пружин. Сжатие ТВС на первой стадии - до степени сжатия 6-7 - осуществляют движением основного поршня до верхней мертвой точки (ВМТ), что сопровождается одновременным сжатием блока пружин дополнительного поршня навстречу основному поршню, в результате чего степень сжатия возрастает до 19-20, и происходит воспламенение ТВС. Сжатие блока пружин и их сброс осуществляется посредством упорной штанги, кинематически связанной с кривошипно-шатунным механизмом и коленчатым валом двигателя. Недостатком описанного способа является организация воспламенения ТВС при высоких степенях сжатия, что резко увеличивает вероятность возникновения детонации и приводит к значительному увеличению механической нагрузки на шатунно-поршневую группу двигателя. Реализация способа потребует существенного усложнения и утяжеления конструкции ДВС. Кроме того, данный способ характеризуется недостаточно эффективным перемешиванием ТВС в цилиндре, что ведет к неполноте сгорания и увеличению токсичности отработавших газов. Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является способ ДВС (RU 2162530 С1, кл. F 02 В 75/00, F 02 В 23/00 з. 1999, п. 2001), позволяющий достичь высокие температуры сжатия в 4- и 6-тактном ДВС (700-2300К) при двухстадийном сжатии ТВС, которое осуществляют в неизоэнтропическом режиме - с увеличением энтропии, для чего используют цилиндр с поршнем, разделенный на основную и дополнительную камеры поперечной перегородкой, выполненной с возможностью перепуска ТВС, и на первой стадии сжатия при движении поршня к перегородке производят нагрев сжатием ТВС до температуры T1=(1.5-2)Т0, где Т0 - начальная температура ТВС, затем осуществляют перепуск нагретой ТВС в пространство цилиндра за перегородкой и проводят вторую стадию сжатия ТВС при движении поршня к ВМТ до достижения температуры Тс=(4.2-7.8)Т0 с последующим воспламенением и сгоранием ТВС. При использовании 6-тактного двигателя с двумя тактами сжатия, разделенными холостым ходом, последовательные стадии двухстадийного неизоэнтропического сжатия либо совмещают с тактами сжатия двигателя, либо осуществляют на каждом такте сжатия. Известный способ - прототип позволяет обеспечить достаточное повышение температуры бедной ТВС для ее надежного воспламенения без увеличения степени сжатия и, следовательно, не приводит к увеличению механической нагрузки на двигатель. Данный способ обеспечивает устойчивое турбулентное горение ТВС, что уменьшает содержание вредных компонентов в выхлопе и снижает возможность возникновения детонации, но при использовании бедных смесей (с коэффициентам избытка воздуха > 3) из-за избытка кислорода, низкой скорости сгорания и высоких температур образуются окислы азота. Кроме того, при использовании в способе-прототипе бедных ТВС скорость сгорания которых существенно ниже, чем стехиометрических смесей, при работе ДВС происходит затягивание процесса горения, и, следовательно, падает КПД двигателя. Задачей предлагаемого изобретения является создание такого способа работы ДВС, который наряду с надежным воспламенением бедных и очень бедных ТВС ( > 3) обеспечивал бы их быстрое и полное сгорание, что позволит решить проблему экологически чистого старта и выхлопа ДВС. Кроме того, задачей изобретения является повышение КПД двигателя за счет увеличения скорости горения ТВС и снижения рабочей температуры ДВС, и повышение эффективности его работы. Решение поставленной задачи достигается предлагаемым способом работы ДВС, включающим заполнение ТВС цилиндра с поршнем, разделенного на основную и дополнительную камеры поперечной подвижной или неподвижной перегородкой, выполненной с возможностью перепуска ТВС и нагревания ТВС до температуры Т800К путем ее сжатия в последовательных стадиях в неизоэнтропическом режиме - с увеличением энтропии, осуществляемого движением поршня к перегородке, перепуском нагретой ТВС в дополнительную камеру и движением поршня к ВМТ, с последующим воспламенением и сгоранием ТВС, в котором при 4-тактном режиме работы двигателя заполнение основной камеры цилиндра производят бедной ТВС с > 4 или воздухом, а заполнение дополнительной камеры производят богатой ТВС с = 0.2-0.6 и проводят вторую стадию сжатия движением поршня к ВМТ с одновременным перемешиванием ТВС, воспламенением и парциальным окислением, затем продукты парциального окисления ТВС перепускают в основную камеру для смешивания с исходной бедной ТВС или воздухом до =1-4 и дожигают при движении поршня к нижней мертвой точке (НМТ), а при 6-тактном режиме работы двигателя с двумя тактами сжатия, разделенными холостым ходом, производят заполнение всего цилиндра (и основной и дополнительной камеры) богатой ТВС с = 1-4 и проводят второе двухстадийное неизоэнтропическое сжатие с воспламенением и сгоранием ТВС. Для повышения эффективности работы ДВС в дополнительной камере цилиндра двигателя внутреннего сгорания можно устанавливать теплоаккумулирующий элемент с развитой поверхностью. Главными отличиями предлагаемого способа от известного - прототипа являются: 1) разделение ТВС на бедную и богатую (по пространству цилиндра в 4-тактном ДВС или по времени заполнения в 6-тактном ДВС и 2) создание условий для протекания парциального окисления богатой смеси. Известно, что при нагреве богатых ТВС ( =0.2-0.6) до температуры Т800К происходит их воспламенение и парциальное (неполное, частичное) окисление с образованием синтез-газа (смеси водорода и окиси углерода) (Арутюнов B.C., Веденеев В.И. Окислительное превращение метана. М.: Наука, 1998, RU 2096313, кл. C 01 B 3/36, 1996 г.). Например, для метана и изооктана имеем: Ch54+0.5O2 ---> CO+2h3 C8h28+4O2 ---> 8CO+9h3 Известно также, что водород и окись углерода обладает повышенной реакционной способностью по отношению к кислороду по сравнению с исходным углеводородным топливом, поэтому добавление их (продуктов парциального окисления) к бедной смеси или воздуху должно приводить к значительному повышению скорости горения ТВС и, следовательно, к более полному ее сгоранию. При этом процесс горения протекает при более низких температурах, в результате резко снижается концентрация окислов азота в выхлопных газах. Кроме того, водород оказывает ингибирующее воздействие на процессы образования канцерогенных веществ. Предлагаемый способ был разработан на основе детальных теоретических и экспериментальных исследований (на модельной установке) взаимосвязи таких параметров процесса, как состав ТВС, степень ее сжатия, давление и температура, что позволило создать условия как для протекания парциального окисления богатой смеси, так и для полного и быстрого сгорания бедной смеси. В таблице приведены результаты, полученные методом компьютерного моделирования, для температуры, достигаемой в конце второй стадии неизоэнтропического сжатия (Тc для 4-тактного двигателя и Тm для 6-тактного), необходимой для протекания парциального окисления богатой изооктановой смеси = 0.2-0.6 при фиксированных значениях размера отверстия в перегородке, степени сжатия, равной 9.8, и скорости вращения коленчатого вала 1000 об/мин, в зависимости от относительного объема дополнительной камеры цилиндра и давления сжатия Pk, при котором открывается давление в перегородке, одинаковое в первой и второй стадии процесса. Максимальное значение давления сжатия Pk (60 атм), не превышает допустимых пределов, обусловленных механической прочностью конструкции ДВС. Диаметр отверстия в перегородке 10-20 мм обеспечивает перетекание в дополнительную камеру 4-тактного двигателя 20-60% бедной смеси или воздуха, что приводит к образованию в дополнительной камере ТВС с =0.2-0.6 к моменту достижения поршнем ВМТ и повышению температуры ТВС в дополнительной камере до Тс (обеспечивающей протекание в ней парциального окисления). В 6-тактном двигателе в конце первой стадии неизоэнтропического сжатия вся смесь с m (обеспечивающей протекание парциального окисления). Как видно из таблицы, предлагаемый способ обеспечивает повышение температуры до 800-1000К, необходимой для воспламенения и парциального окисления богатой ТВС. В последнем столбце таблицы приведены для сравнения соответствующие данные для максимальной температуры, достигаемой в обычном двигателе с одностадийным сжатием при давлении 30 атм. При экспериментальной проверке было установлено, что благодаря осуществлению парциального окисления ТВС при работе двигателя в неизоэнторпическом режиме сжатия удается сжигать ТВС очень бедного состава ( > 3). На модельной установке с раздельной подачей богатой ТВС в дополнительную камеру цилиндра и воздуха в основную наблюдалось устойчивое горение ТВС c =3-4, что обусловлено, во-первых, добавлением продуктов парциального окисления ТВС (h3 и CO) и, во-вторых, тем, что добавление осуществляют перепуском, что приводит к эффективной турбулизации потока и надежному гомогенному перемешиванию продуктов парциального окисления с воздухом. Так как горение бедных и очень бедных ТВС ( > 3) протекает при более низких температурах, и, следовательно, уменьшаются тепловые потери, в результате увеличивается термодинамический КПД двигателя. Выполнены расчеты для ДВС с теплоаккумулирующим элементом с развитой поверхностью - тепловым активатором, установленным в дополнительной камере цилиндра. Тепловой активатор представляет собой набор металлических пластин с поверхностью теплообмена, в 5-10 раз превышающей площадь боковой поверхности цилиндра. Анализ показывает, что для ТВС с = 2-4 и температуре активатора порядка 1000К нагрев смеси в дополнительной камере в конце стадии сжатия достигает величины 1400-900К. При такой высокой температуре создаются благоприятные условия для предварительного парциального окисления ТВС. Выход активатора на тепловой режим, т.е. его нагрев до квазистационарной температуры, одинаковой в начале и конце замкнутого термодинамического цикла, осуществляется в течение 10-20 циклов сжатия. На чертеже представлена схема ДВС для реализации предлагаемого способа. ДВС включает поршень 1, движущийся в цилиндре 2, разделенном на основную 3 и дополнительную 4 камеры перегородкой 5 с отверстием 6 с клапаном 7. В дополнительной камере 4 может размещаться тепловой активатор (не показан). Парциальное окисление ТВС при неизоэнтропическом режиме сжатия с увеличением энтропии и сгорание бедной ТВС при работе 4-тактного ДВС осуществляется следующим образом. Богатая ТВС ( > 4) или воздух - в основную камеру 3. Поршень 1 при своем поступательном движении к ВМТ сжимает бедную ТВС или воздух в основной камере цилиндра 2 до перегородки 5 при закрытом отверстии 6, предварительно нагревая ее сжатием до температуры, в 2-2.5 раза превышающую начальную. В конце первой стадии сжатия с помощью клапана 7 открывается отверстие 6 и часть предварительно нагретой ТВС или воздуха перетекает в дополнительную камеру цилиндра за перегородкой. При этом смесь тормозится, восстанавливая свою температуру в дополнительной камере цилиндра при меньшем давлении, смешивается с богатой ТВС, нагревая ее. Во второй стадии сжатия при дальнейшем движении поршня к ВМТ смесь досжимается до температуры Tc 8000K, при этом коэффициент избытка воздуха достигает = 0.2-0.6. Происходит воспламенение ТВС от искры или сжатия и эффективная реакция парциального окисления данной смеси. Затем при движении поршня к НМТ горячие продукты парциального окисления перепускаются из дополнительной камеры в основную, перемешиваются с бедной ТВС или воздухом, и происходит полное сгорание всей смеси в цилиндре двигателя. Парциальное окисление и сгорание углеводородного топлива при работе 6-тактного ДВС осуществляется следующим образом. Богатая ТВС (m800К, при этом практически вся смесь перетекает в дополнительную камеру 4. Происходит воспламенение ТВС от искры или сжатия и эффективная реакция парциального окисления данной смеси. Затем при движении поршня к НМТ осуществляют дополнительное заполнение цилиндра воздухом и разбавление смеси до = 1-4, затем проводят второе двухстадийное неизоэнтропическое сжатие с воспламенением и сгоранием ТВС. Дополнительный нагрев ТВС при наличии теплового активатора происходит следующим образом. В стадии рабочего хода активатор поглощает часть тепла от продуктов сгорания ТВС. В стадии впуска и, главным образом, сжатия это тепло передается исходной ТВС, увеличивая ее температуру и при этом температура активатора понижается. После воспламенения и горения ТВС происходит обратный процесс передачи тепла от продуктов сгорания к тепловому активатору, и его температура увеличивается. В термодинамическом цикле конечная температура активатора равна начальной температуре. В данном процессе не расходуется энергия на нагрев активатора за цикл. Использование заявляемого изобретения обеспечит помимо надежного воспламенения бедных и очень бедных смесей ( > 3) их быстрое и полное сгорание, что позволит решить проблему экологически чистого старта и выхлопа. Предлагаемый способ позволит расширить класс используемых топлив, увеличить термодинамический КПД двигателя и повысить эффективность его работы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ работы двигателя внутреннего сгорания, включающий заполнение топливно-воздушной смесью цилиндра с поршнем, разделенного на основную и дополнительную камеры поперечной подвижной или неподвижной перегородкой, выполненной с возможностью перепуска топливно-воздушной смеси, и нагревание топливно-воздушной смеси до температуры 800К путем ее сжатия в последовательных стадиях в неизоэнтропическом режиме - с увеличением энтропии, осуществляемого движением поршня к перегородке, перепуском нагретой топливно-воздушной смеси в дополнительную камеру и движением поршня к верхней мертвой точке, с последующим воспламенением и сгоранием топливно-воздушной смеси, отличающийся тем, что при 4-тактном режиме работы двигателя заполнение основной камеры цилиндра производят бедной топливно-воздушной смесью с >4 или воздухом, а заполнение дополнительной камеры производят богатой топливно-воздушной смесью с =0,2-0,6 и проводят вторую стадию сжатия движением поршня к верхней мертвой точке с одновременным перемешиванием топливно-воздушной смеси, воспламенением и парциальным окислением, затем продукты парциального окисления топливно-воздушной смеси перепускают в основную камеру для смешивания с исходной бедной топливно-воздушной смесью или воздухом до =1-4 и дожигают при движении поршня к нижней мертвой точке. 2. Способ по п.1, отличающийся тем, что в дополнительную камеру цилиндра двигателя внутреннего сгорания устанавливают теплоаккумулирующий элемент с развитой поверхностью. 3. Способ работы двигателя внутреннего сгорания, включающий заполнение топливно-воздушной смесью цилиндра с поршнем, разделенного на основную и дополнительную камеры поперечной подвижной или неподвижной перегородкой, выполненной с возможностью перепуска топливно-воздушной смеси, и нагревание топливно-воздушной смеси до температуры 800К путем ее сжатия в последовательных стадиях в неизоэнтропическом режиме - с увеличением энтропии, осуществляемого движением поршня к перегородке, перепуском нагретой топливно-воздушной смеси в дополнительную камеру и движением поршня к верхней мертвой точке, с последующим воспламенением и сгоранием топливно-воздушной смеси, отличающийся тем, что при 6-тактном режиме работы двигателя с двумя тактами сжатия, разделенными холостым ходом, производят заполнение всего цилиндра (и основной и дополнительной камеры) богатой топливно-воздушной смесью с =1-4 и проводят второе двухстадийное неизоэнтропическое сжатие с воспламенением и сгоранием топливно-воздушной смеси. 4. Способ по п.3, отличающийся тем, что в дополнительную камеру цилиндра двигателя внутреннего сгорания устанавливают теплоаккумулирующий элемент с развитой поверхностью.

www.freepatent.ru

Перспективы проекта ТВС-2МС // АвиаПорт.Новости

Автор: Русавиапром

Компания "Русавиапром", осуществляющая конвертацию самолётов Ан-2 в глубоко модернизированный ТВС-2МС, постепенно наращивает объём бизнеса. Уже существующие производственные возможности позволяют выпускать до 15 бортов в год, в планах - переезд на новую площадку, что даст возможность почти утроить темп работ. Однако спрос на модернизированные машины сдерживается достаточно высокой ценой двигателя Honeywell TPE331-12. Локализация производства авиадвигателя в России могла бы решать сразу несколько проблем: от снижения цены до снижения рисков срыва поставок.

Проект глубокой модернизации самолёта Ан-2 с доведением до варианта ТВС-2МС был разработан ФГУП "Сибирский научно-исследовательский институт авиации имени С.А Чаплыгина". После проведения всесторонних испытаний и получения аттестата годности самолёта к эксплуатации, проект перешёл в стадию серийного производства. К началу 2017 года ООО "Русавиапром", осуществляющее работы по модернизации, уже ремоторизировало 23 самолёта. При этом, по словам генерального директора предприятия Петра Кожевникова, темпы выпуска не снижаются. Если в 2016 году заказчикам было передано восемь самолётов, то на 2017 год подписаны контракты на шесть машин (по три для заказчиков в Москве и Новосибирске), ещё два-три самолёта будут поставлены в этом же году в Хабаровск. "Общий выпуск ТВС-2МС в 2017 году, скорее всего, превысит уровень прошлого года", - отметил собеседник агентства.

Потенциал рынка модернизации П.Кожевников оценивает достаточно высоко: численность парка Ан-2 в России немногим менее 1500 экземпляров, правда, лишь треть из них имеет лётную годность. В то же время, несколько сотен самолётов Ан-2, пригодных для модернизации в ТВС-2МС, эксплуатируется за рубежом, прежде всего в Китае. Переговоры о поставках ТВС-2МС на экспорт ведутся с несколькими странами: Монголией, Казахстаном, Кубой, Вьетнамом. Впрочем, по мнению собеседника, эти страны не сделают крупные заказы. В то же время Китай, обладающий крупным парком Ан-2, планируется аналогичные работы по модернизации парка проводить самостоятельно.

Рассчитывая на рост заказов, "Русавиапром" прорабатывает вопросы, связанные с освоением новой производственной площадки на базе бывшего авиационно-ремонтного завода №26 в Толмачёво под Новосибирском. Там компания планирует приобрести большой производственный корпус, что позволит одновременно работать на четырёх самолётах. При сроке модернизации прошедшего ремонт самолёта около одного месяца темп выпуска можно довести примерно до 50 самолётов в год, при том, что сегодня предприятие готово ремоторизировать порядка 15 воздушных судов в год.

Будет ли востребовано столь масштабное производство в ближайшее время? Вероятно, нет, ведь стоимость работ остаётся достаточно высокой с учётом того обстоятельства, что двигатели Honeywell TPE331-12 приходится приобретать за валюту. В то же время, по мнению П.Кожевникова, локализация производства американского двигателя в России приведёт к существенному снижению цены самолёта ТВС-2МС. По его словам, такая возможность сейчас прорабатывается.

Локализация выпуска двигателя позволила бы решить как минимум две задачи. Во-первых, появилась бы возможность существенно снизить стоимость ремоторизации. Если сегодня работы на одном самолёте оцениваются примерно в $1 млн, или $850 тыс. при крупном заказе, порядка 100 бортов, то с двигателем отечественной сборки ценовую планку можно было бы понизить до $600 тыс., полагает директор предприятия. Во-вторых, будет обеспечена надёжность поставок. "ТВС-2МС - чисто гражданская машина и не подпадает ни под какие санкции. Проведение же в России даже 40-процентной локализации позволит России "в случае чего" не остаться без двигателей, располагая достаточными производственным и кадровым потенциалом", - полагает топ-менеджер компании. Наконец, вместе со сборочным производством в России будет налажен и ремонт двигателей, что снизит затраты эксплуатантов и ускорит проведение работ.

 

Материал «Перспективы проекта ТВС-2МС» подготовлен сотрудниками агентства «АвиаПорт». Мы просим при цитировании указывать источник информации и ставить активную ссылку на главную страницу сайта или на цитируемый материал.

www.aviaport.ru

Увеличение мощности двигателя

Поговорим о том, как увеличить мощность двигателя автомобиля. Наверное, каждый современный автовладелец хоть раз задумывался о том, чтобы добавить коней в свою двух-трех-четырехколесную повозку. Так уж человек устроен - он всегда недоволен тем, что у него есть и стремится к лучшему, большему. Еще быстрее, еще вкуснее, еще комфортней, еще чище, еще больше функций - современный маркетинг в эпоху развитого капитализма все дальше и дальше пробирается в наше мировоззрение, заставляя тратить свое время и силы в бумажном и электронном эквиваленте на приобретение вовсе не нужных, но более совершенных предметов обихода. Сел современный человек за руль авто с мотором 1.4л - ему не едет. Посади этого же человека в авто с 6.2л - ему опять будет не то! Ведь с таким объемом авто должен намного лучше ехать!

Хотя довольно часто автовладелец просто хочет иметь какой-то запас по мощности для критических ситуаций. Например при обгоне, уходе от столкновения, поиграть в "пятнашки" на трассе или стартануть с буксами с перекрестка. Но не будем далеко отходить от темы. Принимая решение о том, что мощности двигателя своего автомобиля ему никак не хватает, владелец вступает на довольно долгий и мучительный путь.  Прежде всего он лезет в Интернет, опрашивает знакомых автовладельцев и... голова у него просто распухает и мозговые клетки начинают вытекать через уши, поскольку информации по этой теме просто океан и маленький прудик с карасям, и все довольно разрозненно, навалено и зачастую противоречит друг другу. Данная статья призвана простым и понятным языком, без предвзятостей и рекламного лицемерия, немного разложить все по полочкам и облегчить автовладельцу муки выбора.

 

Немного теории.

О том, как работает двигатель внутреннего сгорания (ДВС) знает наверное любая, даже совсем далекая от техники белокурая домохозяйка - дж-дж-дж-дрынь-рррррррр... Но мы с вами немного технически подкованные люди и знаем, что куда и откуда толкает и крутит, и почему домохозяйка издает такие звуки, изображая работающий двигатель. Поэтому резюмируем - в двигатель поступает воздух, воздух в определенных пропорциях смешивается с топливом, в определенный момент вся эта канитель поджигается искрой со свечи зажигания и при сгорании канитель (топливовоздушная смесь (ТВС)) расширяется и толкает поршень. Соответственно существует прямая зависимость - чем больше объем ТВС, тем сильнее толкнется поршень. Вот почему двигатели с большим объемом мощнее двигателей с меньшим!

 

Переделка механической части.

Путем нехитрых умозаключений мы пришли к тому, что самый прямолинейный и эффективный ответ на вопрос, как увеличить мощность двигателя - это натолкать в него побольше ТВС. Как же это можно сделать?

1. Первый и самый напрашивающийся способ - увеличить мощность двигателя засчет увеличения его объема. Довольно сложная операция, требующая инженерных знаний и альтернативных запчастей к вашему двигателю.

2. Повысить давление во впускном коллекторе. Повышая давление мы заталкиваем в тот же объем цилиндра большее количество ТВС, то есть, грубо говоря, повышаем его рабочий объем без изменения геометрии. Избыточное количество ТВС пропорционально давлению. Для этого используются турбонагнетатели и компрессоры. Для разных двигателей даже продают готовые кит-наборы. Сложность заключается в том, что двигатель все равно придется переделывать. Уменьшать степень сжатия, дорабатывать охлаждение, систему смазки. Потом менять ЭБУ на инженерный и откатывать программу управления двигателем.

3. Самый любимый стритрейсерами в виду своей кажущейся дешевизны и еще потому, что процесс доработки можно делать постепенно - установка резонансного наддува. Это система впуск-распредвал-выпуск, дающая большее наполнение цилиндра за счет резонанса потоков выхлопных газов и пульсаций во впускном коллекторе, в момент перекрытия (одновременного открытия) впускных-выпускных клапанов, которое нам дают более широкие фазы распредвала. Минус этой системы очевиден - поскольку она резонансная, наиболее эффективно она работает только в определенном диапазоне оборотов. Выигрываем в одном, проигрываем в другом. Неустойчивый ХХ из-за попадания обратно в цилиндр выхлопных газов и падение мощности на низких оборотах неизбежно. И главное то, что необходимо правильно подобрать компоненты системы, чтобы все работали в определенном диапазоне оборотов, иначе легко можно получить обратный эффект.

4. Доработка ДВС. Менее эффективна, чем вышеназванные способы, но, если серьезно заняться тюнингом ДВС, то сделать ее стоит. Просто устранение заводских недочетов, допущенных при проектировании и изготовлении ДВС, и замена части комплектующих ДВС на комплектующие с лучшими характеристиками. Сюда, например, входят расширение каналов впуска-выпуска ГБЦ, замена поршней на облегченные, замена клапанов на Т-образные и т.д.

5 . Отдельно хочется отметить установку фильтров нулевого сопротивления, прямотоков, дроссельных патрубков увеличенного диаметра, выбивание катализаторов, установка облегченных маховиков и пр. Данные доработки имеют смысл только при комплексной доработке ДВС для эксплуатации на очень высоких оборотах.

 

Доработка системы управления двигателем.

Если вы, уважаемый читатель, не настолько больны количеством копытных, не обременены лишними ценными бумажками и не хотите тратить массу времени, копаясь во внутренностях пламенного сердца вашего авто, то читаем дальше.

Наверняка вас посещала шальная мысль о том, что если просто, как по старинке с карбюратором, плеснуть побольше бензина, да крутнуть трамблер пораньше она (машина) попрет как танк! Хочу немного огорчить. Существуют эффективные составы смеси и эффективный момент зажигания, при которых в данной режимной точке достигается максимальный крутящий момент. Меньше топлива – плохо, больше - тоже плохо. А вот теперь воодушевляющий факт - в большинстве современных автомобилей в силу норм токсичности вышеназванные параметры далеки от эффективных в большинстве режимных точек. Причем как в большую, так и в меньшую стороны.

И поэтому у доработки системы управления двигателем есть-таки неплохой потенциал. Особенно у двигателей, оснащенных турбонагнетателем, где давление наддува регулируется с блока управления двигателем.

Не будем рассматривать всевозможные коробочки-эмуляторы-обманкипедалей-регуляторыдавлениятоплива-завихрители-тюнингбоксы и прочий хлам, коим завалены просторы Интернета. Поговорить о принципах их работы, достоинствах и недостатках, способах привлечения и довольно часто бессовестного обмана, конечно, можно и даже очень интересно, но это бесконечно долго и посему статья никак не впишется в бешеный ритм современной жизни.

Поэтому позволю себе просто остановиться на самом эффективном и правильном технически и логически способе - чип-тюнинге. Поскольку данная тема предполагает множество зачастую неправильных и далеких друг от друга суждений и предположений, то представлю вашему вниманию только основную суть без частностей.

 

Немного истории. 

Началось все тогда, когда на смену карбюратору и трамблеру пришли Электронные Системы Управления Двигателем (ЭСУД). ЭСУД достаточно разнообразны, поэтому разбирать и классифицировать мы их не будем. Объединяет их одно - управление топливоподачей, искрообразованием, холостым ходом и пр. осуществляет Электронный Блок Управления (ЭБУ). ЭБУ принимает сигналы от разных датчиков, обрабатывает их по заложенной в него микропрограмме, и, в зависимости от установленных параметров (калибровок микропрограммы), осуществляет управление временем открытия форсунок, разрядом на катушке зажигания, положением регулятора холостого хода и т.д. Соответственно лафа, когда можно было улучшить разгон любимого авто просто подкрутив трамблер и поменяв жиклеры, закончилась. 

Сначала продвинутые инжекторщики пытались обмануть ЭСУД либо установкой форсунок большей производительности, регуляторов топлива с большим давлением, либо изменяя показания датчиков, устанавливая дополнительные сопротивления и различные эмуляторы в их сигнальную цепь. Но со временем и эти процедуры оказались нецелесообразны, т.к. производительность системы топливоподачи и избыток топлива по сигналу с датчика расхода воздуха, корректировались лямбда-регулированием, а измененные показания датчика температуры приводили к несвоевременному включению вентилятора, и закипанию охлаждающей жидкости. Встала необходимость в корректировке калибровок микропрограммы ЭБУ. Началась программная война. Имя ей чип-тюнинг и продолжается она по сей день.

 

Что же такое чип-тюнинг?

Чип-тюнинг - настройка содержимого микросхемы с памятью. То есть настройка калибровок микропрограммы, по которым работает электронный блок управления двигателем (ЭБУ).

 

Зачем это надо, и надо ли вообще?

Современный производитель, руководствуясь соображениями качества топлива в разных регионах, выставляет угол опережения зажигания (УОЗ) намного более поздним, что приводит к менее эффективному сгоранию ТВС. Чтобы снизить ударные нагрузки на трансмиссию производитель вводит различные поправки топливоподачи и УОЗ, но делает это чрезмерно, что приводит к излишней «задумчивости» и «провалам» при ускорении. Руководствуясь нормами токсичности производитель уменьшает топливоподачу там, «где нужно больше», и увеличивает там, «где можно меньше». Это, а также совокупность всех вышеизложенных факторов, приводит к повышенному расходу топлива. Отдельный разговор про недоработки заводского ПО, касающиеся холостого хода, холодного пуска, слишком позднего включения вентилятора охлаждения радиатора, неправильной диагностики различных датчиков и исполнительных механизмов и далее-далее-далее.

Оперируя калибровками микропрограммы, можно устранить вышеизложенные проблемы, сделать автомобиль более приятным в эксплуатации, увеличить крутящий момент там, где его не хватает, выставить требуемую комплектацию ЭСУД, снизить расход топлива. То есть чип-тюнинг – это наиболее простой и относительно дешевый способ улучшить поведение и эксплуатационные характеристики автомобиля. Он не требует вмешательства в проводку, в конструкцию двигателя, что важно для автомобилей, находящихся на гарантийном обслуживании. Также чип-тюнинг – единственный способ заставить ДВС с ЭСУД эффективно работать на альтернативном топливе (пропан, метан).

 

Какие минусы чип-тюнинга? 

Да никаких :) Единственное правило – его должен делать человек, имеющий представление о процессах, происходящих в ДВС и знающий, что и зачем он меняет в калибровках. Иначе можно получить самые разнообразные последствия. Разновидностей ЭСУД, ЭБУ и их микропрограмм существует великое множество. У каждой свое поведение, есть свои детские болезни. Поэтому к каждой из них необходим индивидуальный, профессиональный подход. И отсюда следствие - качественный чип-тюнинг не может быть очень дешевым.

Время идет, совершенствуются инструменты для настройки калибровок, позволяя более тонко настраивать огромное множество режимов, приобретаются знания и опыт. И постепенно чип-тюнинг превращается из гадкого утенка с неуклюже правлеными двумя-тремя основными параметрами, в прекрасного лебедя, сочетающего в себе отменную динамику, приятное поведение авто и адекватный расход топлива.

 

Заключение 

Ну вот в принципе и все. Надеюсь время, проведенное за чтением данной статьи было потрачено для вас не зря. Удачи на дорогах!

 

 

 

inj-43.ru

Турбина внутреннего сгорания "кузьмин" (твс)

Турбина внутреннего сгорания содержит центробежный воздушный компрессор, кольцевую камеру сгорания и реактивную турбину с соплами. Центробежный воздушный компрессор и реактивная турбина объединены в моноблок, вращающийся на одном валу за счет реактивной силы истекающих из сопел газов и через ведущую шестерню передающий вращение приводимым агрегатам. Изобретение направлено на повышение КПД и мощности турбины внутреннего сгорания, снижение выброса вредных веществ. 3 ил.

 

Турбина внутреннего сгорания «Кузьмин» (ТВС «Кузьмин») является новым типом теплового двигателя, преобразующего тепловую энергию реактивной струи газов в механическую энергию вращения.

ТВС предназначена для привода в движение различных транспортных средств и других механических установок.

Прямыми аналогами ТВС являются центробежный воздушный компрессор, широко применяемый в технике (Ю.Мацкерле «Современный экономичный автомобиль»), и реактивная турбина, известная нам из школьного курса физики, как турбина Герона Александрийского, - древнейший механический паровой двигатель, изобретенный еще в III веке до нашей эры (В.Лей «Ракеты и полеты в космос»). Реактивная турбина Герона, гениальная по своей простоте, ввиду низкого КПД и наличия тяжелого и громоздкого котла не получила широкого применения.

Задача данного изобретения состояла в том, чтобы, сохранив простоту реактивной турбины Герона, избавиться от парового котла. Для этого было решено использовать тепловую энергию топлива, сгорающего внутри самой турбины, а для нагнетания внутрь турбины воздуха для горения применить центробежный воздушный компрессор, объединенный с кольцевой камерой сгорания и реактивной турбиной в единый моноблок, вращающийся на валу за счет реактивной силы газов, истекающих из сопел турбины. В результате такой комбинации известных механизмов мы получим предельно простой, легкий и компактный, мощный высокооборотистый двигатель, обладающий такими важнейшими качествами, как:

1. Высокая удельная мощность на единицу массы (5 кВт/кг).

2. Высокий КПД из-за повышенной t газов и отсутствия потерь в зазорах.

3. Применение любых видов топлива.

4. Сниженный выброс вредных веществ благодаря конструктивным особенностям.

5. Отсутствие вспомогательных систем и их приводов, отсутствие вибраций, простое и эффективное шумоглушение, быстрый холодный пуск, возможность создания моделей любой мощности и размеров.

все эти качества позволят создать чрезвычайно эффективный, дешевый и надежный двигатель с большим моторесурсом и высокими показателями экологической чистоты, способный по экономичности превзойти дизель, работающий на предельно бедных смесях и имеющий большой потенциал для совершенства.

На чертежах показан разрез ТВС по оси вращения (фиг.1) и разрез турбины с торца (фиг.2). На фиг.3 показан вариант турбины с плоскими соплами. Турбина внутреннего сгорания имеет очень простую конструкцию. ТВС вращается на валу 8 в подшипниках 7, 9. Топливо самотеком поступает через плавающий штуцер 11, поджимаемый пружиной 12. Для уплотнения служит скользящая меднографитовая прокладка 13. Далее по каналам 14, 15 топливо подается к распылителям 20. Центробежный компрессор 1 имеет воздухозаборник 16 и лопатки 17. Реактивная турбина 3 состоит из кольцевой камеры сгорания 18, снабженной электродами 2 и свечами 5, между которыми проскакивает искра зажигания от неподвижного бесконтактного электрода 6. Продукты сгорания истекают из сопел 4, вращая турбину, и через ведущую шестерню 10, расположенную на валу 8, передают вращение приводимым агрегатам. На вал 8 напрессован ротор электростартера (не показан).

ТВС работает следующим образом. Электростартером турбина разгоняется до необходимых пусковых оборотов. При достижении необходимого давления воздуха в центробежном компрессоре открывается подача топлива, и оно самотеком поступает в канал 14. В каналах 15 за счет центробежной силы создается давление топлива и через распылители 20, смешавшись с воздухом, топливная смесь поступает в камеру сгорания, где сгорает, подожженная электрической искрой. Продукты сгорания под давлением истекают из сопел, создавая реактивную силу, вращающую ТВС.

Турбина внутреннего сгорания, содержащая центробежный воздушный компрессор, кольцевую камеру сгорания и реактивную турбину с соплами, отличающаяся тем, что центробежный воздушный компрессор и реактивная турбина объединены в моноблок, вращающийся на одном валу за счет реактивной силы истекающих из сопел газов и через ведущую шестерню передающий вращение приводимым агрегатам.

www.findpatent.ru


Смотрите также