Устройство регулируемых клапанов для двигателя внутреннего сгорания. Устройство клапан двигателя


Тарельчатый клапан — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Клапан. Рис.1 Тарельчатый клапан с пружиной, верхней тарелкой и сухарями

Тарельчатый клапан — деталь большинства поршневых двигателей внутреннего сгорания (ДВС), является частью газораспределительного механизма, непосредственно управляющей потоками рабочего тела, поступающего и выходящего из цилиндра. Используются также в крупных компрессорах, паровых машинах.

Тарельчатый клапан состоит из собственно круглой тарелки и стержня меньшего диаметра. Из соображений прочности и аэродинамики переход между тарелкой и стержнем выполняется большим радиусом (рис.1). Некоторое время были популярны тарелки зонтичной (тюльпанообразной) формы, уменьшавшие вес впускного клапана до веса выпускного (диаметр впускных клапанов выбирают больше, так как сопротивление впускного тракта сильнее снижает мощность двигателя, чем сопротивление выпуска).

Клапан совершает перемещения по оси стержня, при этом тарелка открывает путь газам, а при посадке на седло — плотно запирает его. Некоторый зазор между стержнем и втулкой клапана необходим, чтобы избежать заедания при нагреве клапана, и чтобы тарелка могла самоустановиться на седло. Для поддержания самоустановки, а следовательно, плотности запирания, тарелка имеет фаску под углом 45 или 30 градусов к её плоскости.

Рис.2 Тарельчатый клапан в нижнеклапанном двигателе

Силовое замыкание кинематической схемы привода клапанов (то есть, и возврат клапана в закрытое положение) осуществляется витыми клапанными пружинами, на быстроходных спортивных двигателях — с помощью десмодромного механизма. Стержень клапана имеет обычно термоупрочнённый торец, куда передаётся усилие от рокера, коромысла или стакана, и одну или несколько канавок для установки сухарей (канавка видна на рис.1). Меньше распространена передача усилия через внутреннюю резьбу в стержне клапана от толкателя (такую конструкцию имеет клапан на В-2 и всех последующих модификациях, изготовляемых сейчас "Барнаултрансмашем")

ru.wikipedia.org

Устройство привода клапана двигателя

Изобретение может быть использовано в клапанах газораспределительного механизма двигателя внутреннего сгорания. Устройство привода клапана двигателя содержит кулачковый вал (2) с кулачком (3) и вал (6) с эксцентриком (7). На эксцентрике (7) установлено коромысло (8). Одно из плеч коромысла (8) расположено напротив кулачка (3) кулачкового вала (2). Другое плечо коромысла (8) расположено напротив одного плеча двуплечего рычага (10). Другое плечо двуплечего рычага (10) расположено напротив толкателя (4) клапана (1). Технический результат заключается в возможности перевода двигателя с четырехтактного режима работы на двухтактный режим работы. 1 з.п. ф-лы, 5 ил.

 

Техническое решение относится к двигателям внутреннего сгорания. Оно касается привода подъемного клапана газораспределительного механизма поршневого двигателя.

Известны различные приводы впускных и выпускных клапанов двигателей внутреннего сгорания, представленные, например, в патентах №№2136901, 2173393, 2328605, 2330164, выданных в Российской Федерации. Однако при этих приводах невозможно изменять частоту открытия и закрытия клапанов.

Задача - создание особого привода клапана двигателя внутреннего сгорания, при котором можно принудительно изменять частоту открытия и закрытия клапана при необходимости перевода двигателя с четырехтактного цикла работы на двухтактный цикл в некоторых его цилиндрах.

Решение задачи создания привода клапана двигателя внутреннего сгорания, при котором можно принудительно изменять частоту открытия и закрытия клапана, обеспечено тем, что устройство привода клапана двигателя, содержащее кулачковый вал, снабжено валом с эксцентриком, на котором установлено коромысло, одно из плеч коромысла расположено напротив кулачка упомянутого кулачкового вала, а другое плечо расположено напротив плеча двуплечего рычага, другое плечо которого расположено напротив толкателя клапана. При наличии в приводе клапана упомянутого кулачкового вала и вала с эксцентриком, несущего коромысло, контактирующее одним плечом с кулачком, а другим плечом контактирующее с плечом двуплечего рычага, другое плечо которого расположено напротив толкателя клапана, получаются две действующие поочередно кинематические цепи воздействия на клапан. Одна из этих кинематических цепей, в которой расположен кулачок упомянутого кулачкового вала, является основной, обеспечивающей постоянный привод клапана. Другая кинематическая цепь, в которой расположены коромысло, установленное на эксцентрике, и двуплечий рычаг, плечи которого расположены напротив коромысла и толкателя клапана, является дополнительной, позволяющей переводить двигатель с четырехтактного режима его работы на двухтактный режим в некоторых его цилиндрах для использования обычного двигателя в качестве комбинированного с продолженным расширением горячих газов при малых и средних его нагрузках для более полного использования их энергии.

Плечо упомянутого двуплечего рычага, расположенное напротив толкателя клапана, имеет две лапки, между которыми размещен упомянутый кулачок.

На фигуре 1 изображено устройство привода подъемного клапана газораспределительного механизма двигателя внутреннего сгорания, вид сбоку.

На фигуре 2 показано положение этого устройства при закрытом клапане при работе двигателя по четырехтактному циклу.

На фигуре 3 показано положение этого устройства при открытом клапане при работе двигателя по четырехтактному циклу.

На фигуре 4 показано положение этого устройства при открытом клапане при работе двигателя по двухтактному циклу с приводом клапана от рычага.

На фигуре 5 показано положение этого устройства при открытом клапане при работе двигателя по двухтактному циклу с приводом клапана от кулачка.

Устройство привода подъемного клапана 1 двигателя внутреннего сгорания, представленное в укрупненном виде на фигуре 1, содержит кулачковый вал 2, имеющий постоянный привод от вала двигателя через понижающую зубчатую передачу, обеспечивающую вращение вала 2 в два раза медленнее вала двигателя. Кулачок 3 вала 2 расположен у торца толкателя 4 штока 5 клапана 1. Помимо непосредственного привода от кулачка 3 клапан 1 имеет дополнительный привод от этого кулачка. Дополнительный привод клапана 1 содержит поворотный вал 6 с эксцентриком 7, на котором установлено коромысло 8. Одно из плеч коромысла 8 расположено напротив кулачка 3 вала 2. Другое плечо коромысла 8, на котором установлен ролик 9, расположено у плеча фигурного двуплечего рычага 10 напротив выполненного на конце рычага гребня 11 с профилированной поверхностью. Рычаг 10 выполнен с лапками 12, образующими другое его плечо. Лапки 12 рычага 10 расположены напротив толкателя 4 клапана 1 по разные стороны кулачка 3. Рычаг 10 установлен на цилиндрической опоре 13, образуя с ней шарнирную связь.

Это комбинированное устройство привода клапана двигателя внутреннего сгорания работает следующим образом.

При работе двигателя по четырехтактному циклу в его цилиндре клапан 1 имеет привод только непосредственно от кулачка 3 (фигура 2). Во время вращения кулачкового вала 2 кулачок 3 периодически нажимает на толкатель 4 клапана 1 (фигура 3), открывая клапан для впуска в цилиндр двигателя воздуха при использовании этого клапана в качестве впускного клапана либо для выпуска из цилиндра горячего газа при использовании этого клапана в качестве выпускного клапана.

Для работы двигателя по двухтактному циклу в его цилиндре поворачивают вал 6 с эксцентриком 7, на котором расположено коромысло 8. При повороте вала 6 происходит перемещение оси коромысла 8 в сторону кулачка 3, при котором находящийся на коромысле 8 ролик 9 вступает в контакт с гребнем 11 рычага 10. При взаимодействии ролика 9 коромысла 8 с гребнем 11 рычага 10 привод с его помощью клапана 1 происходит следующим образом. Когда кулачок 3 при вращении вала 2 перемещает контактирующее с ним плечо коромысла 8, другое плечо коромысла, нажимая роликом 9 на гребень 11 рычага 10, поворачивает этот рычаг, который своими лапками 12 действует на толкатель 4 клапана 1, открывая этот клапан (фигура 4). При отходе выступа кулачка 3 от плеча коромысла 8 рычаг 10 возвращается в исходное положение, и клапан 1 закрывается. Следующее открытие клапана 1 происходит при повороте кулачкового вала 3 на 180°, когда кулачок 3 нажимает на толкатель 4 клапана (фигура 5). Таким образом, при рабочем положении коромысла 8, при котором происходит взаимодействие его ролика 9 с гребнем 11 на рычаге 10, клапан 1 открывается дважды за один оборот кулачкового вала 2, то есть в два раза чаще чем при его приводе непосредственно от кулачка 3.

Перевод двигателя с четырехтактного режима его работы на двухтактный режим в некоторых его цилиндрах позволяет использовать обычный двигатель в качестве комбинированного с продолженным расширением горячих газов при малых и средних его нагрузках для более полного использования их энергии.

1. Устройство привода клапана двигателя, содержащее кулачковый вал, отличающееся тем, что оно снабжено валом с эксцентриком, на котором установлено коромысло, одно из плеч коромысла расположено напротив кулачка упомянутого кулачкового вала, а другое плечо расположено напротив плеча двуплечего рычага, другое плечо которого расположено напротив толкателя клапана.

2. Устройство привода клапана по п.1, отличающееся тем, что плечо упомянутого двуплечего рычага, расположенное напротив толкателя клапана, имеет две лапки, между которыми расположен упомянутый кулачок.

www.findpatent.ru

Клапаны двигателя

Любой современный автомобиль — конструкция, состоящая из большого количества деталей, проводов и электроприборов, которые контролируют и обеспечивают работоспособность всех узлов, агрегатов, систем. Сердцем каждой машины является двигатель внутреннего сгорания. Он представляет собой сложный механизм, который предназначен для переработки тепловой энергии в механическую, чтобы обеспечивать движение транспортного средства.

ДВС имеет множество элементов, от полноценной работы которых зависит очень многое, поэтому даже такие, вроде бы мелкие, детали, как клапаны двигателя играют большую роль в его функционировании. Без них двигатель очень быстро потеряет всю свою ресурсоспособность.

На всеукраинской торговой площадке zakupka.com вы найдете огромное множество предложений и широкий ассортимент самых разных товаров и услуг для автомобилистов. Нужна вам крышка двигателя, инжектор или новое масло — в нашем каталоге найдется все. Вас ждут выгодные покупки, умеренная цена, функциональный поиск и отличный сервис.

Конструкция клапанов в авто

Клапаны не попадают в категорию расходников, однако, обязательно потребуют замены, если была проведена неправильная регулировка или при полном ее отсутствии. Перед тем как купить недостающую запчасть, особенно для двигателя, необходимо детальнее ознакомиться с инструкцией к своему автомобилю. Такая рекомендация обуславливается тем, что, например, на Рено и ВАЗ однозначно стоят разные двигатели, которые в целом имеют аналогичную сборку, но наделены некоторыми различными характеристиками.

Впускные и выпускные клапаны двигателей внутреннего сгорания автомобилей, как правило, имеют тарельчатую форму. Эксцентриковый кулачок управляет специальным клапанным механизмом, посредством которого открывается сам клапан. Устройство и его работа непосредственно связаны с положением поршня и периодом вращения коленвала.

В свою очередь, направляющая втулка, которая располагается рядом с седлом клапана, обеспечивает герметичный газонепроницаемый контакт между седлом и рабочей фаской. Эти два элемента скошены под углом в тридцать или сорок пять градусов. Данные значения являются номинальными, поэтому фактические зачастую отличаются на один-два градуса. К седлу клапан прижимается под действием пружины, которая удерживается на штоке своей опорной тарелкой, законтренной замком на стержне.

Между различными геометрическими параметрами клапанов двигателей существует оптимальное соотношение. Для двигателей, в которых цилиндры имеют внутренний диаметр от трех до восьми дюймов (80-200 мм) оптимальным диаметром головки впускного клапана будет тот, который составляет примерно 45%, а оптимальным диаметром выпускного клапана — приблизительно 38% внутреннего диаметра самого цилиндра.

Впускной клапан обязательно должен иметь больший размер, чем выпускной, поскольку он не только пропускает ту же массу газа, а также управляет низкоскоростным потоком разреженного газа. Одновременно с этим, выпускной клапан управляет потоком сжатого газа, с которым справится клапан меньшего размера. Таким образом, диаметр головки выпускного составляет около 85% диаметра впускного. Кроме того, для полноценного функционирования диаметр головки клапана должен составлять от 100% до 115% диаметра клапанного окна, ведь сам клапан должен быть достаточно большим, чтобы перекрыть окно. А высота подъема клапана над седлом будет составлять практически 25% диаметра головки.

Если после остановки двигателя сразу происходит попадание холодного воздуха на горячие выпускные клапаны, это может привести к их серьезному повреждению. В тех ДВС, которые оснащены выпускными коллекторными головками, а также прямоточными глушителями, холодному воздуху всегда открыт прямой доступ до выпускных клапанов. Резкое охлаждение, как правило, вызывает коробление либо в клапане начинают образовываться трещины. Для устранения рисков возникновения подобных проблем существуют противоточные глушители с длинными выхлопными трубками и нейтрализаторами отработавших газов.

grantaliftback.ru

Устройство управления приводом клапана двигателя внутреннего сгорания

Настоящее изобретение относится к машиностроению, а именно к двигателестроению, и может быть использовано в механизмах газораспределения двигателей внутреннего сгорания (ДВС), в частности, в устройствах для регулирования фаз газораспределения и хода клапана. Устройство управления приводом клапана ДВС содержит распределительный вал (2) с кулачками (3), рычаг-толкатель (4) с подвижной скобой (5), шток-сердечник (6), электромагнит (7) хода клапана, направляющую (8) привода клапана, управляющий гидроцилиндр (9) и управляющий электромагнит (10) регулировки фаз газораспределения. Рычаг-толкатель (4) содержит ролик (11). Ролик (11) кинематически связан с кулачком (3). Подвижная скоба (5) соединена с сердечником (12) управляющего электромагнита (10) регулировки фаз газораспределения. Рычаг-толкатель (4) находится в контакте с клапаном (13) и через ось (14) соединен с направляющей (8) привода клапана. Ось (14) размещена в сквозном пазу штока-сердечника (6). Направляющая (8) привода клапана размещена в управляющем гидроцилиндре (9). Шток-сердечник (6) опирается на поршень (15) управляющего гидроцилиндра (9). Между направляющей (8) привода клапана и штоком-сердечником (6) установлена пружина (16). Технический результат заключается в получении оптимальной скорости воздушной или топливовоздушной смеси в различные моменты такта впуска и в осуществлении оптимального количества впрысков топлива. 5 ил.

 

Изобретение относится к машиностроению, а именно к двигателестроению, и может быть использовано в механизмах газораспределения двигателей внутреннего сгорания (далее ДВС), в частности, в устройствах для регулирования фаз газораспределения и хода клапана.

Из описания к патенту на изобретение RU 2153586, МПК7 F01L 1/14, F02D 13/06, опубл. 27.07.2000 г. известен механизм управления клапаном газораспределения двигателя внутреннего сгорания, содержащий полый цилиндр, подводящий, дренажный и сливной каналы, подпружиненный питающий клапан и подпружиненный плунжер, частично размещенный в рабочей полости цилиндра с возможностью перемещения, наконечник, выполненный в виде стакана с днищем и скрепленный с цилиндром, подпружиненный поршень, размещенный внутри наконечника и образующий надпоршневую и подпоршневую полости. Техническим результатом изобретения является исключение нарушения фаз газораспределения и величины хода газораспределительного клапана, особенно на режимах повышенных нагрузок.

Из описания к патенту на изобретение RU 2133348, МПК7 F01L 1/34, 1/24, опубл. 20.07.1999 г. известно устройство для регулировки фаз газораспределения, состоящее из корпуса, втулки, подпружиненного штока с запорным клапаном и дополнительным плунжером внутри, позволяющим открывать запорный клапан во время работы двигателя. Изобретение направлено на повышение точности регулировки фаз газораспределения в различных условиях эксплуатации двигателя.

Кроме того, из описания к патенту на изобретение RU 2126892, МПК6 F01L 1/34, F02D 13/02, опубл. 27.02.1999 г. известен способ активного регулирования газораспределения в ДВС и распределительный вал для его реализации, направленное на повышение надежности привода клапанов ДВС и изменения фаз газораспределения.

В качестве прототипа, как наиболее близкое по технической сущности, рассматривается устройство управления клапанами механизма газораспределения, которое описано в патенте на изобретение RU 2286468, МПК7 F01L 9/02, опубликованное 10.08.2004 г., содержащее функционально связанные с каждым клапаном механизма газораспределения гидравлические исполнительные механизмы, каждый из которых имеет по одному воздействующему на клапан механизма газораспределения управляющему поршню и по две ограниченные этим управляющим поршнем рабочие полости, среди которых первая рабочая полость, создаваемое в которой давление обеспечивает перемещение клапана механизма газораспределения в направлении закрытия, постоянно заполнена находящейся под давлением рабочей жидкостью, а вторая рабочая полость, создаваемое в которой давление обеспечивает перемещение клапана механизма газораспределения в направлении открытия, выполнена с возможностью попеременного создания в ней давления рабочей жидкости и сброса из нее давления рабочей жидкости с помощью первого и второго управляющих клапанов, снабженных электроприводом. Предусмотрена возможность подачи общего электрического управляющего сигнала на объединенные предпочтительно в единый клапанный блок вторые управляющие клапаны для пары исполнительных механизмов, управляющих срабатыванием двух клапанов механизма газораспределения, используемых в качестве впускных или выпускных клапанов одного из цилиндров ДВС. Данное изобретение направлено на снижение затрат при изготовлении устройства.

К недостаткам указанных устройств необходимо отнести ограниченный диапазон регулировок хода клапана и невозможность отключения клапана в процессе работы двигателя, в течении времени, необходимого для совершения распределительным валом одного полного оборота. Указанные ограничения негативно влияют на коэффициент наполнения камеры сгорания, на эффективность КПД двигателя, на показатели удельного расхода топлива и токсичности выхлопных газов. Техническая задача, на решение которой направлено данное изобретение, заключается в устранении указанных недостатков.

Требуемый технический результат достигается тем, что в известном устройстве управления приводом клапана ДВС, содержащем распределительный вал с кулачками, механизм привода клапана, устройство состоит из рычага-толкателя с подвижной скобой, штока-сердечника электромагнита хода клапана, направляющей привода клапана, управляющего гидроцилиндра, и из управляющего электромагнита регулировки фаз газораспределения, рычаг-толкатель содержит ролик, кинематически связанный с кулачком распределительного вала, подвижная скоба соединена с сердечником управляющего электромагнита регулировки фаз газораспределения, рычаг-толкатель выполнен с возможностью контакта с клапаном, с другой стороны рычаг-толкатель через ось, размещенную в сквозном пазу штока-сердечника, соединен с направляющей привода клапана, которая размещена в управляющем гидроцилиндре, причем на поршень управляющего гидроцилиндра опирается шток-сердечник, а между направляющей привода клапана и штоком-сердечником установлена пружина.

Сущность изобретения поясняется на чертежах, где

на фиг.1 показан общий вид устройства управления,

на фиг.2 показан разрез А-А, устройства управления,

на фиг.3 показан разрез В-В, место контакта подвижной скобы с опорой-компенсатором и положение регулировочного штока,

на фиг 4 показаны графики, характеризующие зависимость величины хода клапана от величины угла поворота коленчатого вала при различных режимах работы ДВС,

на фиг.5 показаны графики, характеризующие зависимость величины хода клапана от величины угла поворота коленчатого вала при полной нагрузке на различных режимах работы ДВС.

Устройство управления приводом клапана ДВС, установленное в головке блока цилиндров 1, содержит распределительный вал 2 с кулачками 3, механизм привода клапана. При этом устройство управления состоит из рычага-толкателя 4 с подвижной скобой 5, штока-сердечника 6 электромагнита 7 хода клапана, направляющей 8 привода клапана, управляющего гидроцилиндра 9 и из управляющего электромагнита 10 регулировки фаз газораспределения, рычаг-толкатель 4 содержит ролик 11, кинематически связанный с кулачком 3 распределительного вала 2, подвижная скоба 5 соединена с сердечником 12 управляющего электромагнита 10 регулировки фаз газораспределения, рычаг-толкатель 4 выполнен с возможностью контакта с клапаном 13, с другой стороны рычаг-толкатель 4 через ось 14, размещенную в сквозном пазу штока-сердечника 6, соединен с направляющей 8 привода клапана, которая размещена в управляющем гидроцилиндре 9, причем на поршень 15 управляющего гидроцилиндра 9 опирается шток-сердечник 6, а между направляющей 8 привода клапана и штоком-сердечником 6 установлена пружина 16.

Для уменьшения изгибающих усилий, действующих на подвижную скобу 5 при подъеме кулачка 3, в головке блока цилиндров 1 установлены опора-компенсатор 17 и регулировочный шток 18, предназначенный для регулировки зазора «а» при перемещении подвижной скобы 5.

Для подачи масла в нижней части управляющего гидроцилиндра 9 выполнена распределительная магистраль 19, сообщающаяся с отводящим 20 и подводящим 21 каналами электромагнитного клапана 22, регулирующего давление в управляющем гидроцилиндре 9.

Далее рассматривается принцип работы устройства управления одним впускным клапаном газораспределения, при этом все сказанное ниже соответственно справедливо и в отношении управления остальными клапанами.

Первоначально рассматривается работа устройства управления приводом клапана двигателя внутреннего сгорания регулирующая ход клапана газораспределения.

В показанном на фиг.1 начальном или исходном положении электромагнитный клапан 22, регулирующий давление в управляющем гидроцилиндре 9, находится в открытом положении, соответственно все остальные управляющие приводы обесточены. При прокручивании стартером маховика коленчатого вала (не показаны) в гидравлической системе возрастает давление, которое начинает преобладать в распределительной магистрали 19 и подпоршневой полости управляющего гидроцилиндра 9. Одновременно с этим, электронным блоком управления двигателя после оценки показаний датчиков (не показаны), контролирующих состояние систем двигателя и окружающей среды, и в зависимости от их значений, формируются управляющие сигналы, выдаваемые на электрические входы устройств (не показаны), задействованных в пуске двигателя для приведения этих устройств в рабочее состояние. При этом в случае, когда значение давления в управляющем цилиндре 9 недостаточно для открытия клапана 13, на электрический вход электромагнита 7 хода клапана так же подается управляющий сигнал. Дальнейшее изменение управляющих сигналов, корректирующих величину перемещения хода клапана 13, осуществляется с момента завершения первого цикла газораспределения.

Под действием создаваемого в управляющем гидроцилиндре 9 давления и в соответствии со значением управляющего сигнала, выдаваемого электронным блоком управления двигателя на электрический вход электромагнита 7 хода клапана, шток-сердечник 6 и поршень 15 управляющего гидроцилиндра 9, преодолевая усилие пружины 16, направляющая 8 привода клапана перемещается на заданную величину. Кулачок 3 распределительного вала 2 начинает набегать на ролик 11 и передавая усилие на рычаг-толкателя 4, приводит в движение направляющую 8 привода клапана, преодолевая усилие пружины 16 направляющей 8 привода клапана до момента равенства усилий возвратной пружины 23 клапана 13 и пружины 16 направляющей 8 привода клапана. После этого начинается открытие клапана 13 на величину, соответствующую пусковому режиму двигателя. В период открытия клапана 13 усилие возвратной пружины 23 клапана 13 возрастает, приводя в движение направляющую 8 привода клапана, преодолевая усилие пружины 16 направляющей 8 привода клапана. Величина этих взаимных перемещений зависит от модулей упругости вышеупомянутых пружин, значения давления в управляющем гидроцилиндре 9, соотношения плеч «b» и «с» (см. фиг.1) рычага-толкателя 4, а также, значения управляющего сигнала и момента времени, в который этот сигнал выдается на электрический вход электромагнита 7 хода клапана. Изменение усилия, создаваемого пружиной 16 направляющей 8 привода клапана, посредством перемещения штока-сердечника 6, вызванного работой электромагнита 7 хода клапана, в момент, когда ролик 11 находится на тыльной поверхности кулачка 3 распределительного вала 2 приводит к заданным перемещениям клапана 13.

Далее рассматривается работа устройства управления приводом клапана ДВС при различных режимах работы двигателя и, соответственно, при различных характеристиках заданных перемещений. Характеристики заданных перемещений клапана 13 представлены на фиг.4 в виде графиков, где показана зависимость величины хода клапана Hmm от величины угла поворота коленчатого вала φ°.

Например, в режиме пуска двигателя в качестве оптимальных рассматриваются зависимости, показанные на графиках В, С и F.

На холостом ходу работа устройства управления приводом клапана ДВС происходит аналогично описанной в режиме пуска двигателя. Работа устройства управления приводом клапана ДВС на минимальном холостом ходу двигателя характеризуется зависимостями А и K. Они идентичны характеристике хода клапана В, но отличаются тем, что максимальный подъем клапана 13 не совпадает с максимальной скоростью поршня (не показан) при такте впуска. Если характеристики В, С и F могут быть получены без участия электромагнита 7 хода клапана, то А и F получаются только при помощи электромагнита 7 хода клапана и программного обеспечения электронного блока управления двигателя.

Далее рассматривается зависимость величины хода клапана Hmm от величины угла поворота коленчатого вала φ° при работе устройства управления приводом клапана ДВС на минимальном холостом ходу двигателя. Положение поршня 15 управляющего гидроцилиндра 9 соответствует большему усилию пружины 16 направляющей 8 привода клапана, чем усилию возвратной пружины 23 клапана 13, находящемуся в закрытом положении на величину, соответствующую ходу клапана 13 на минимальном холостом ходу. При этих условиях клапан 13 сразу начнет открываться, когда кулачок 3 распределительного вала 2 начинает набегать на ролик 11. Когда ход клапана 13 достигнет необходимой величины, электронный блок управления двигателя одновременно подает управляющий сигнал на электромагнитный клапан 22, регулирующий давление в управляющем гидроцилиндре 9 и на электромагнит 7 хода клапана, сердечник 24 электромагнитного клапана 22, регулирующего давление в управляющем гидроцилиндре 9, закрывает распределительную магистраль 19 и давление в управляющем гидроцилиндре падает. В это время шток-сердечник 6 электромагнита 7 хода клапана толкает поршень 15 управляющего гидроцилиндра 9, уменьшая усилие пружины 16 направляющей 8 привода клапана, и тогда под действием пружины 25, электромагнитный клапан 22 начнет закрываться. После закрытия электромагнитного клапана 22 датчик хода клапана 26 подает сигнал электронному блоку управления двигателя, который в свою очередь подает управляющий сигнал электромагнитному клапану 22 регулирования давления в управляющем гидроцилиндре 9 электромагнитный клапан 22 открывается, перекрывая отводящий канал 20, и давление в управляющем гидроцилиндре 9 достигает требуемой величины, возвращая поршень 15 управляющего гидроцилиндра 9 и если требуется, шток-сердечник 6 электромагнита 7 хода клапана в исходное состояние для осуществления очередного такта впуска.

Характеристика хода клапана, показанная на графике К фиг.4, осуществляется следующим образом. Открытие клапана 13 в фазе сбега профиля кулачка 3 осуществляется с помощью электромагнита 7 хода клапана. Шток-сердечник 6 по управляющему сигналу электронного блока управления двигателя начинает сжимать пружину 16 направляющей 8 привода клапана, замедляя движение направляющей 8 привода клапана вниз, до остановки. После этого начинается открытие клапана 13 до требуемой величины, происходит поворот рычага-толкателя 4 относительно точки контакта профиля кулачка 3 и ролика 11. Когда ход клапана 13 достигнет необходимой величины, электронный блок управления двигателем одновременно подает управляющий сигнал на электромагнитный клапан 22 управления давлением в управляющем гидроцилиндре 9 и электромагнит 7 хода клапана. Электромагнитный клапан 22 перекрывает распределительную магистраль 19, и давление в управляющем гидроцилиндре 9 падает. В это время шток-сердечник 6 электромагнита 7 хода клапана толкает поршень 15 управляющего гидроцилиндра 9, уменьшая усилие пружины 16 направляющей 8 привода клапана, и тогда под действием возвратной пружины 23 клапана, клапан 13 начинает закрываться. После закрытия клапана 13 датчик хода клапана 26 подает управляющий сигнал электронному блоку управления двигателем, который в свою очередь подает управляющий сигнал электромагнитному клапану 22, который открывается, перекрывая отводящий канал 20, и давление в управляющем гидроцилиндре 9 достигает требуемой величины, возвращая поршень 15 управляющего гидроцилиндра 9 и, если требуется, штока-сердечника 6 электромагнита 7 хода клапана в исходное состояние для осуществления очередного такта впуска.

При частичной нагрузке двигателя характеристики хода клапана показаны на графиках, представленных на фиг.4.: это D, E, F и G, то есть те характеристики, которые располагаются в пределах характеристики С. Такие характеристики могут быть получены как без участия электромагнита 7 хода клапана - например F, так и с ним - например D, E, G. Получение таких характеристик возможно в режиме полной нагрузки двигателя, например как представленной на фиг.4 - характеристики С, которая получена при максимальном давлении масла в управляющем гидроцилиндре 9. Поршень 15 управляющего гидроцилиндра сжимает пружину 16 направляющей 8 привода клапана до максимального усилия, которое превосходит усилие возвратной пружины 23 клапана 13 при максимальном ходе. Для сокращения времени перехода от частичных нагрузок при малых оборотах к максимальным нагрузкам (максимальный ход клапана) целесообразно применять электромагнит 7 хода клапана.

Режим отключения, в частности, впускного клапана 13 реализован следующим образом. Электромагнитный клапан 22 по управляющему сигналу электрического блока управления двигателем, посредством сердечника 24, перекрывает распределительную магистраль 19 и в управляющем гидроцилиндре 9 сбрасывается давление. Поршень 15 управляющего гидроцилиндра под действием пружины 16 направляющей 8 привода клапана перемещается в крайнее нижнее положение. При воздействии кулачка 3 на ролик 11 направляющая 8 привода клапана начнет перемещаться вниз, сжимая пружину 16 до полного хода поршня 15 управляющего гидроцилиндра. Ось 14 направляющей 8 привода клапана будет при этом перемещаться в сквозном продольном пазу 27 штока-сердечника 6. Максимальный ход направляющей 8 привода клапана зависит от подъема кулачка 3 и соотношения плеч рычага-толкателя 4, обозначенных на фиг.1 буквами «b» и «с», а так же от усилия пружины 16 направляющей 8 привода клапана, которое должно быть меньше усилия возвратной пружины 23 клапана 13, при закрытом положении клапана 13. Аналогичным образом можно отключить группу клапанов в цилиндрах двигателя для увеличения скорости воздуха или топливной смеси поступающей в цилиндр. Так же можно отключить все клапаны в одном или нескольких цилиндрах, с чередованием рабочих цилиндров или группы цилиндров в зависимости от необходимой мощности двигателя в данный момент работы, при этом электронный блок управления двигателя должен поддерживать необходимое количество работающих цилиндров в определенном диапазоне оборотов с минимальным удельным расходом топлива. Это позволит снизить токсичность и расход топлива, одновременно повысив мощность и крутящий момент двигателя.

Далее рассматривается работа устройства управления приводом клапана ДВС при регулировании фаз газораспределения. В условиях, при которых электронным блоком управления двигателя не выдается управляющих сигналов на электрический вход управляющего электромагнита 10 регулировки фаз газораспределения, газообмен в двигателе осуществляется по базовой характеристике, показанной на графиках фиг.5 в виде зависимостей N, O, P, Q. Так как наружная 28 и внутренняя 29 пружины управляющего электромагнита 10 регулировки фаз газораспределения удерживают подвижную скобу 5 с роликом 11 в среднем положении, усилия пружин превосходят боковые усилия, действующие на ролик 11 при работе кулачка 3.

При подаче управляющего сигнала на электрический вход управляющего электромагнита 10 сердечник 12, преодолевая усилие наружной 28 пружины, втягивается управляющим электромагнитом 10 и рычаг-толкатель 4 с роликом 11 перемещается в продольном направлении; при этом происходит опережение открытия клапана на угол (e-d)/2, что соответствует характеристикам O, P, Q, R, показанным на фиг.5. При подаче управляющего сигнала с обратным значением рычаг-толкатель 4 и ролик 11, преодолевая усилие внутренней пружины 29 управляющего электромагнита 10, перемещается в противоположном продольном направлении; при этом происходит задержка открытия клапана на угол (e-d)/2, что соответствует характеристикам М, N, O, Р, показанным на фиг.5.

При подаче управляющего сигнала на электрический вход управляющего электромагнита 10, сердечник 12, преодолевая усилие наружной 28 пружины, втягивается электромагнитом 10 и рычаг-толкатель 4 с роликом 11 перемещается в продольном направлении; при этом происходит опережение открытия клапана на угол (e-d)/2. При отключении напряжения на электрическом входе управляющего электромагнита 10 в момент подхода кулачка 3 к максимальному подъему, наружная пружина 28 управляющего электромагнита 10 вернет подвижную скобу 5 в среднее положение, что будет соответствовать характеристикам O, P, Q, показанным на фиг.5.

При подаче управляющего сигнала на электрический вход управляющего электромагнита 10, сердечник 12, преодолевая усилие наружной 28 пружины, втягивается электромагнитом 10 и рычаг-толкатель 4 с роликом 11 перемещается в продольном направлении; при этом происходит опережение открытия клапана на угол (e-d)/2. Если в момент подхода кулачка 3 к максимальному подъему подать напряжение на электрический вход управляющего электромагнита 10, то под действием наружной пружины 28 управляющего электромагнита 10 и электромагнитных сил в сердечнике 12 подвижная скоба 5, минуя среднее положение, повернет ролик 11 на угол (e-d), что будет соответствовать характеристикам O, Р, показанным на фиг.5, то есть максимальной фазе.

Подобным образом могут быть получены и другие характеристики, например, M, N, O, P, Q, R, показанные на фиг.5, соответствующие минимальной фазе.

Кроме рассмотренных дискретных характеристик фаз газораспределения, система допускает множество характеристик в диапазонах, ограниченных графиками L и S, показанными на фиг.5, которые могут быть получены за счет изменения полярности и регулирования силы тока, подаваемой на электрический вход управляющего электромагнита 10.

Таким образом, использование изобретения позволяет получить оптимальные скорости воздушной или топливовоздушной смеси в различные моменты такта впуска за счет раннего или позднего открытия и закрытия клапана, в зависимости от оборотов и нагрузки двигателя, а также, в соответствии с этим, осуществить оптимальное количество впрысков топлива в определенные моменты для улучшения процесса сгорания.

Устройство управления приводом клапана двигателя внутреннего сгорания, содержащее распределительный вал с кулачками, механизм привода клапана, отличающееся тем, что устройство состоит из рычага-толкателя с подвижной скобой, штока-сердечника электромагнита хода клапана, направляющей привода клапана, управляющего гидроцилиндра и из управляющего электромагнита регулировки фаз газораспределения, рычаг-толкатель содержит ролик, кинематически связанный с кулачком распределительного вала, подвижная скоба соединена с сердечником управляющего электромагнита регулировки фаз газораспределения, рычаг-толкатель выполнен с возможностью контакта с клапаном, с другой стороны рычаг-толкатель через ось, размещенную в сквозном пазу штока-сердечника, соединен с направляющей привода клапана, которая размещена в управляющем гидроцилиндре, причем на поршень управляющего гидроцилиндра опирается шток-сердечник, а между направляющей привода клапана и штоком-сердечником установлена пружина.

www.findpatent.ru

Клапан (ДВС) Википедия

У этого термина существуют и другие значения, см. Клапан. Рис.1 Тарельчатый клапан с пружиной, верхней тарелкой и сухарями

Тарельчатый клапан — деталь большинства поршневых двигателей внутреннего сгорания (ДВС), является частью газораспределительного механизма, непосредственно управляющей потоками рабочего тела, поступающего и выходящего из цилиндра. Используются также в крупных компрессорах, паровых машинах.

Устройство тарельчатого клапана[ | ]

Тарельчатый клапан состоит из собственно круглой тарелки и стержня меньшего диаметра. Из соображений прочности и аэродинамики переход между тарелкой и стержнем выполняется большим радиусом (рис.1). Некоторое время были популярны тарелки зонтичной (тюльпанообразной) формы, уменьшавшие вес впускного клапана до веса выпускного (диаметр впускных клапанов выбирают больше, так как сопротивление впускного тракта сильнее снижает мощность двигателя, чем сопротивление выпуска).

Клапан совершает перемещения по оси стержня, при этом тарелка открывает путь газам, а при посадке на седло — плотно запирает его. Некоторый зазор между стержнем и втулкой клапана необходим, чтобы избежать заедания при нагреве клапана, и чтобы тарелка могла самоустановиться на седло. Для поддержания самоустановки, а следовательно, плотности запирания, тарелка имеет фаску под углом 45 или 30 градусов к её плоскости.

Рис.2 Тарельчатый клапан в нижнеклапанном двигателе

Силовое замыкание кинематической схемы привода клапанов (то есть, и возврат клапана в закрытое положение) осуществляется витыми клапанными пружинами, на быстроходных спортивных двигателях — с помощью десмодромного механизма. Стержень клапана имеет обычно термоупрочнённый торец, куда передаётся усилие от рокера, коромысла или стакана, и одну или несколько канавок для установки сухарей (канавка видна на рис.1). Меньше распространена передача усилия через внутреннюю резьбу в стержне клапана от толкателя (такую конструкцию имеет клапан на В-2 и всех последующих модификациях, изготовляемых сейчас "Барнаултрансмашем")

Между пружиной и плоскостью головки, кроме стальной закалённой шайбы, может быть установлен механизм проворота клапана (иначе называемый механизм самопритирки). Это позволяет продлить интервалы между притиркой клапанов, сохраняя плотность их посадки в течение длительного времени[1].

Компоновка клапанов в двигателе[ | ]

Количество клапанов в двигателе зависит от принятой схемы газораспределительного механизма[2]. Типовое значение 2 или 4 клапана на цилиндр, но встречаются схемы с 5 клапанами (из них 3 впускные), или даже 1 большим выпускным клапаном (прямоточная продувка 2-тактного дизеля). Клапанные пружины, поддерживающие кинематику ГРМ, всегда спиральные с плоскими шлифованными торцами. На один клапан приходится обычно 1 (реже 2) пружины, и 2 сухаря. Размеры и форма сухарей индивидуальны, обычно каждый двигатель имеет оригинальные сухари клапанов.

Рис.3 Пример компоновки: 4 клапана на цилиндр

Клапаны могут размещаться по нижнеклапанной или верхнеклапанной схеме, располагаться под углом друг к другу или параллельно. Целью работы конструктора при их размещении является надёжный газообмен с небольшим аэродинамическим сопротивлением, необходимое размещение коллекторов в подкапотном пространстве, компактность камеры сгорания, соблюдение норм выхлопа и др.

Применяемые материалы и технологии[ | ]

Впускные клапана двигателей обычно изготовляют высадкой из сильхромовой стали типа 40Х9С2, 40Х10С2М. Эти стали обладают довольно высокой жаростойкостью, и поскольку температура отходящих газов у дизелей меньше (по причине высокой степени сжатия), чем у искровых моторов, используются и для изгот

ru-wiki.ru

Устройство регулируемых клапанов для двигателя внутреннего сгорания

Изобретение может быть использовано в устройствах регулируемых клапанов двигателей внутреннего сгорания. Устройство регулируемых клапанов для двигателя внутреннего сгорания обеспечивает регулирование фазы газораспределения для пары впускных клапанов или для пары выпускных клапанов каждого цилиндра. Устройство содержит элемент вала (17), который приводится в действие от коленчатого вала двигателя внутреннего сгорания, первый (20) и второй (22a) кулачки и механизм смены фазы кулачка. Первый кулачок (20) расположен на внешней поверхности элемента (17) вала и имеет рабочую поверхность кулачка, приводящую в действие один из пары впускных клапанов или один из пары выпускных клапанов. Второй кулачок (22a) расположен на внешней поверхности элемента (17) вала с возможностью смещения в направлении по окружности и имеет рабочую поверхность кулачка, которая приводит в действие другой впускной клапан или другой выпускной клапан. Механизм смены фазы кулачка изменяет фазу второго кулачка (22a) относительно первого кулачка (20). Рабочая поверхность второго кулачка (22a) имеет размер по ширине кулачка, который превышает ширину рабочей поверхности первого кулачка (20). Технический результат заключается в снижении трения и износа и в упрощении конструкции. 2 з.п. ф-лы, 7 ил.

 

Область техники

Изобретение относится к устройству регулируемых клапанов для двигателя внутреннего сгорания, которое изменяет фазу любого из пары кулачков, которая активирует пару впускных или выпускных клапанов относительно другого кулачка посредством механизма смены фаз кулачка.

Уровень техники

В поршневом двигателе (двигателе внутреннего сгорания), установленном в автомобиле, устройство регулируемых клапанов монтируется на головке блока цилиндров, чтобы противодействовать выделению выхлопных газов двигателя и уменьшать насосные потери.

Устройство регулируемых клапанов имеет такую конструкцию, которая варьирует фазы клапана в многоклапанной системе (пара впускных клапанов и пара выпускных клапанов), которая зачастую используется в двигателях, чтобы тем самым изменять период, в течение которого многоклапанная система открывается. Например, предложена система, которая варьирует фазу любого из пары кулачков, которая активирует пару впускных или выпускных клапанов относительно другого кулачка.

Вышеупомянутое устройство регулируемых клапанов трудно осуществлять с помощью общего распределительного вала, в котором кулачок составляет неразъемную часть элемента вала. По этой причине устройство регулируемых клапанов использует распределительный вал, имеющий конструкцию кулачка в сборе, в которой отдельный элемент (часть) кулачка прикрепляется с возможностью вращения к элементу вала, чтобы варьировать фазы клапана. Например, как раскрыто в Патентных Документах 1 и 2, первый кулачок на неподвижной стороне крепится к внешней части элемента вала, который приводится во вращение посредством выходного момента от коленчатого вала согласно схеме размещения пары впускных или выпускных клапанов, и второй кулачок, который является ответной частью первого и который имеет ширину кулачка, идентичную первому кулачку, и находится на подвижной стороне, вставляется так, что он является смещаемым в направлении вдоль окружности. Таким образом, фаза второго кулачка изменяется на основе фазы первого кулачка посредством использования механизма смены фаз кулачка, такого как подвижный лопастный механизм.

Аналогично другим двигателям, смещение первого и второго кулачков передается в каждый клапан через приводной элемент элемента толкателя (или элемент коромысла и т.п.), изменяя в значительной степени период, в течение которого пара впускных или выпускных клапанов является открытой.

Патентные документы

Патентный Документ 1. Не прошедший экспертизу патентный документ Японии № 2009-144521

Патентный Документ 2. Не прошедший экспертизу патентный документ Японии № 2009-144522

Проблема, на решение которой направлено изобретение

В общем распределительном вале, в котором кулачок составляет неразъемную часть элемента вала, если предусмотрена шейка кулачка между первым кулачком и вторым кулачком, и первый и второй кулачки имеют практически идентичный подъем и время открытия и закрытия клапана, нагрузка при подъеме клапана применяется равномерно по ширине шейки кулачка. Это исключает увеличение неточного расположения. Тем не менее, когда фазы первого и второго кулачков смещаются в устройстве регулируемых клапанов, возникает неточное расположение, поскольку нагрузка при подъеме клапана применяется с запаздываниями во времени к передней и задней части шейки кулачка в направлении ширины шейки кулачка. Как результат, рабочие поверхности кулачка первого и второго кулачков уменьшаются по площади контакта относительно части контактирования с кулачком толкателя и части контактирования с кулачком коромысла и применяются с высокой нагрузкой. Рабочие поверхности кулачка в таком случае становятся неспособными к сохранению соответствующей смазки, что вызывает увеличение трения или локальный износ в контактных частях.

В отличие от случая, в котором второй кулачок составляет неразъемную часть общего элемента, вала, или в отличие от первого кулачка, прикрепленного к элементу вала, второй кулачок, используемый в устройстве регулируемых клапанов, является поворотным в направлении вдоль окружности элемента вала. Для этого существует микроскопический зазор между вторым кулачком и элементом вала, который необходим для поворота второго кулачка. Зазор способствует неточному расположению второго кулачка и приводит к дополнительному увеличению трения с частями контактирования с кулачком толкателя и коромысла и локальному износу. Неточное расположение дестабилизирует зазор и увеличивает нагрузку при смещении, применяемую к поверхности скольжения второго кулачка и поверхности скольжения элемента вала. Вследствие увеличения трения, реакция ухудшается, и износ появляется в месте трения.

Устройство регулируемых клапанов имеет такую проблему, что его характеристики регулирования колеблются, когда происходят эти явления. Заслуживающий внимание способ разрешения этой проблемы состоит в том, чтобы выполнять обработку для коррекции неточного расположения, чтобы повышать точность сборки, использовать материалы с высоким сопротивлением истиранию, которые позволяют справиться с неточным расположением, или применять поверхностную обработку. Тем не менее, это - дорогостоящие альтернативы, и возникает потребность в некоторой другой технологии.

Следовательно, задачей изобретения является создание устройства регулируемых клапанов для двигателя внутреннего сгорания, которое имеет повышенную устойчивость к неточному расположению подвижного кулачка, который должен варьироваться по фазе, с простой конструкцией.

Средство решения проблемы

Для решения вышеуказанной задачи, предоставляется устройство регулируемых клапанов для двигателя внутреннего сгорания согласно п.1 формулы изобретения, которое варьирует фазы клапана для пары впускных клапанов или фазы клапана для пары выпускных клапанов, которые предоставляются для каждого цилиндра, причем устройство имеет элемент вала, который приводится в действие посредством выходного момента от коленчатого вала двигателя внутреннего сгорания; первый кулачок, который располагается на внешней поверхности элемента вала и имеет рабочую поверхность кулачка, которая приводит в действие один из пары впускных клапанов или один из пары выпускных клапанов; второй кулачок, который располагается на внешней поверхности элемента вала, так что он является смещаемым в направлении вдоль окружности, и имеет рабочую поверхность кулачка, которая приводит в действие другой впускной клапан или другой выпускной клапан; и механизм смены фаз кулачка, который изменяет фазу второго кулачка относительно первого кулачка, при этом рабочая поверхность кулачка второго кулачка формируется так, что она имеет размер по ширине кулачка, который превышает ширину кулачка рабочей поверхности первого кулачка.

Устройство регулируемых клапанов для двигателя внутреннего сгорания согласно п. 2 формулы изобретения, зависимому от п. 1, имеет конструкцию, в которой элемент вала конфигурируется посредством поворотной вставки внутреннего распределительного вала во внешний распределительный вал, состоящий из трубчатого элемента; первый кулачок располагается на внешней периферии внешнего распределительного вала, и второй кулачок располагается так, что он является поворотным вокруг оси внешнего распределительного вала; и фаза второго кулачка является регулируемой на основе первого кулачка в ответ на относительное смещение внешнего распределительного вала и внутреннего распределительного вала.

Устройство регулируемых клапанов для двигателя внутреннего сгорания согласно п. 3 формулы изобретения, зависимому от п. 1 или 2, имеет конструкцию, в которой первый кулачок формируется так, что он имеет размер по ширине кулачка, который превышает ширину кулачка распределительного вала, имеющего кулачок, который составляет неразъемную часть элемента вала, применяемого в двигателе внутреннего сгорания идентичной модели.

Преимущество изобретения

Согласно устройству регулируемых клапанов для двигателя внутреннего сгорания согласно п. 1 формулы изобретения, площадь контакта между рабочими поверхностями кулачка первого и второго кулачков и частями контактирования с кулачком толкателя и коромысла поддерживается даже в состоянии нарушения расположения. Это позволяет сохранять соответствующую смазку, не допускать увеличения трения и локального износа в контактных частях и уменьшать максимальное значение нагрузки при смещении, создаваемой посредством неточного расположения, которая применяется к поверхности скольжения второго кулачка и поверхности скольжения элемента вала.

Следовательно, с помощью простой конструкции можно повышать устойчивость к неточному расположению кулачка, который должен варьироваться по фазе.

Согласно устройству регулируемых клапанов для двигателя внутреннего сгорания согласно п. 2 формулы изобретения, внешний распределительный вал состоит из трубчатого элемента, имеющего низкую жесткость при изгибе. В таком случае можно распределять силу, применяемую от второго кулачка к внешнему распределительному валу, посредством использования второго кулачка, имеющего большой размер по ширине кулачка.

Согласно устройству регулируемых клапанов для двигателя внутреннего сгорания согласно п. 3 формулы изобретения, первый и второй кулачки имеют соответствующие оптимальные ширины кулачка и могут эффективно реагировать на неточное расположение, вызываемое посредством изменение зазора. Следовательно, можно эффективно не допускать ухудшения по реакции и локального износа, являющегося результатом увеличения трения.

Краткое описание чертежей

Фиг.1 - вид сверху, показывающий двигатель внутреннего сгорания, оснащенный регулируемым клапанным устройством согласно первому варианту осуществления изобретения;

Фиг.2 - вид в сечении устройства регулируемых клапанов по линии I-I с фиг. 1;

Фиг.3 - вид в сечении распределительного вала, в котором кулачок формирует неразъемную часть;

Фиг.4 - покомпонентный вид в перспективе, показывающий конфигурацию каждой части устройства регулируемых клапанов;

Фиг.5 - линейный график, показывающий свойство регулирования устройства регулируемых клапанов;

Фиг.6 - виды для пояснения отличия в состоянии контакта между кулачком и толкателем, которое вызывается посредством изменения в ширине кулачка; и

Фиг.7 - вид сверху, показывающий главную часть второго варианта осуществления изобретения.

Наилучший способ осуществления изобретения

Настоящее изобретение описано ниже в отношении первого варианта осуществления, показанного на фиг. 1-6.

Фиг.1 является видом сверху поршневого двигателя (в дальнейшем в этом документе, называемого двигателем), например, многоцилиндрового типа. Фиг.2 показывает поперечное сечение по линии I-I с фиг.1. На фиг.2 ссылочной позицией 1 обозначен блок цилиндров двигателя, а 2 - головка блока цилиндров, установленная сверху блока 1 цилиндров.

В блоке 1 цилиндров, множество цилиндров 3 (только один из них показан) формируется вдоль переднезаднего направления двигателя, как показано на фиг. 1 и 2. Цилиндры 3 содержат соответствующие поршни 4, которые отделены от коленчатого вала (не показан) через шатун (не показан), так что поршни 4 могут совершать возвратно-поступательные движения.

Камера 5 сгорания формируется под нижней поверхностью головки 2 блока цилиндров, соответственно, в каждом из цилиндров 3. В камере 5 сгорания, пара впускных портов 7 (два), которые впускают воздух, и пара выпускных портов (не показаны), которые выпускают воздух, являются открытыми. Каждый из впускных портов 7 содержит пару впускных клапанов 10 (два), концы штока которых присоединяются к опущенному цилиндрическому толкателю 9 (приводному элементу). Сферическая выпуклость (поверхность контактирования с кулачком), сформированная в верхней поверхности 9a толкателя 9, противостоит верхней части головки 2 блока цилиндров. Аналогично, каждый из выпускных портов (не показаны) содержит пару выпускных клапанов (не показаны), имеющих толкатели, и конец основания клапана располагается напротив верхней части головки 2 блока цилиндров. Впускные порты 7 и выпускные порты (не показаны) открываются/закрываются посредством впускных клапанов 10 и выпускных клапанов (не показаны), соответственно. Хотя это не показано, свеча зажигания также предоставляется в каждой из камер 5 сгорания.

Система 6a клапанов на стороне впуска, которая приводится в действие посредством выхода вала от коленчатого вала, и система 6b клапанов на стороне выпуска располагаются рядом на верхней части головки 2 блока цилиндров. Предварительно определенный цикл сгорания (включающий в себя четыре процесса, а именно, процесс впуска, процесс сжатия, процесс расширения и процесс выпуска) повторяется в цилиндрах 3. Система 6b клапанов на стороне выпуска из систем 6a и 6b клапанов имеет конфигурацию с использованием, например, общего распределительного вала 13, показанного на фиг. 3. Распределительный вал 13 является распределительным валом, в котором кулачок выпускного клапана составляет неразъемную часть, а более конкретно, в котором кулачок 12 выпускного клапана для множества цилиндров формируется неразъемно с валом 13a (элементом вала) посредством машинной обработки. Распределительный вал 13 устанавливается с возможностью вращения так, что он идет в направлении, в котором цилиндры 3 выровнены, и приводит рабочие поверхности кулачка кулачков 12 выпускного клапана в контакт с выпуклостями (не показаны) верхних поверхностей толкателей. Таким образом, смещение кулачка кулачков 12 выпускного клапана передается в выпускные клапаны (не показаны).

Система 6a клапанов на стороне впуска также использует распределительный вал, который конфигурируется посредством сборки отдельных частей, как показано на фиг. 4, в отличие от распределительного вала 13 на стороне выпуска или распределительного вала 14, имеющего так называемую конструкцию сборного кулачка. Распределительный вал 14 используется для того, чтобы конфигурировать составное устройство 15 регулируемых клапанов, как показано на фиг. 12.

Другими словами, элемент вала для распределительного вала 14 формируется из сдвоенного вала 17 (соответствующего элементу вала настоящего изобретения), в котором внутренний распределительный вал 17b, изготовленный из сплошного элемента вала, выступающего в качестве элемента управления, содержится с возможностью вращения во внешнем распределительном вале 17a, изготовленном из трубчатого элемента, например, как показано на фиг. 2 и 4. Сдвоенный вал 17 располагается вдоль направления, в котором цилиндры 3 совмещаются, аналогично распределительному валу 13 на стороне выпуска. Один из концов (одна сторона) сдвоенного вала 17, т.е. один из концов внешнего распределительного вала 17a, поворотно поддерживается посредством подшипника 18a, который устанавливается в одном из концов (одной стороне) головки 2 блока цилиндров, через кронштейн 37, который присоединяется к концу внешнего распределительного вала 17a. Средняя часть внешнего распределительного вала 17a поддерживается с возможностью вращения посредством среднего подшипника 18b, который устанавливается между толкателями 9. Таким образом, валы 17a и 17b являются концентрически вращающимися. Внешний распределительный вал 17a и внутренний распределительный вал 17b являются смещаемыми относительно друг друга вследствие зазора.

Внешний распределительный вал 17a содержит пару (два) кулачков 19 впускного клапана, соответствующих паре впускных клапанов 10 каждого цилиндра. Каждый из кулачков 19 впускного клапана конфигурируется посредством сборки фиксированного кулачка 20 (соответствующего первому кулачку настоящего изобретения), который определяет фазу основания, и рабочего выступа 22 кулачка (который является подвижным кулачком и соответствует второму кулачку настоящего изобретения), расположенного на подвижной стороне.

В частности, фиксированный кулачок 20 на стороне основания располагается на внешней периферии, соответствующей одному из толкателей внешнего распределительного вала 17a, например, толкателя 9 слева на чертеже. Фиксированный кулачок 20 формируется из плоского кулачка и крепится посредством вставки, в частности, запрессовки во внешнюю сторону внешнего распределительного вала 17a. Рабочая поверхность 20a кулачка, сформированная на внешней периферийной поверхности фиксированного кулачка 20, входит в контакт с верхней поверхностью 9a, содержащей выпуклость левого толкателя 9. Смещение кулачка фиксированного кулачка 20 тем самым передается в левый впускной клапан 10b.

Контур 22 кулачка имеет рабочий выступ 22a кулачка, состоящий из плоского кулачка. Рабочий выступ 22a кулачка сцепляется с частью для обеспечения стабильности, т.е. полой втулкой 22b. Весь контур кулачка тем самым конфигурируется. Рабочий выступ 22a кулачка и втулка 22b входят во внешнюю сторону внешнего распределительного вала 17a так, что они являются поворотными (смещаемыми) в направлении вдоль окружности. Рабочий выступ 22a кулачка располагается непосредственно над правым толкателем 9. Рабочая поверхность 22c кулачка, сформированная на внешней периферийной поверхности рабочего выступа 22a кулачка, входит в контакт с верхней поверхностью 9a, содержащей выпуклость правого толкателя 9. Смещение кулачка рабочего выступа 22a кулачка тем самым передается в правый впускной клапан 10a.

Втулка 22b и внутренний распределительный вал 17b сцепляются между собой посредством использования соединительного элемента, т.е., например, запрессованного штифта 24, запрессованного так, что он проходит через сдвоенный вал 17 в направлении вдоль диаметра при предоставлении возможности относительного смещения внутреннего и внешнего валов 17a и 17b. Это сцепление предоставляет возможность смещения рабочего выступа 22a кулачка (контура 22 кулачка) относительно фиксированного кулачка 20. Более конкретно, отверстие, которое дает возможность запрессованному штифту 24 выходить, например, пара длинных отверстий 26, идущих в направлении запаздывания, формируется в периферийной стенке внешнего распределительного вала 17a, через который запрессованный штифт 24 проходит, как показано на фиг. 4. Внутренний распределительный вал 17b тем самым является смещаемым относительно внешнего распределительного вала 17a. Это предоставляет возможность регулирования рабочего выступа 22a кулачка от фазы фиксированного кулачка 20, выступающей в качестве основы для фазы запаздывания в значительной степени. Ссылочные позиции 14a и 14b на фиг. 4 обозначают запрессованное отверстие, сформированное во внутреннем распределительном вале 17b, и запрессованное отверстие, сформированное в периферийной стенке втулки 22b, соответственно.

Механизм 25 смены фаз кулачка, который смещает внутренние и внешние валы 17a и 17b относительно друг друга, монтируется на одном из концов сдвоенного вала 17. Таким образом, конфигурируется устройство 15 регулируемых клапанов, в котором фаза кулачка контура 22 кулачка является изменяемой на основе фиксированного кулачка 20.

Например, как показано на фиг. 2 и 4, механизм 25 смены фаз кулачка имеет конструкцию поворотной лопасти, в которой часть 34 лопасти, часть 32 вала которой имеет множество лопастей 33, радиально выступающих из внешней периферии, поворотно содержится в цилиндрическом кожухе 31, включающем в себя множество камер 30 для фазы запаздывания, размещаемых в направлении вдоль окружности, и лопасти 33 разделяют на секции внутреннюю часть камер 30 для фазы запаздывания. Звездочка 39 механизма газораспределения располагается на внешней периферии кожуха 31. Звездочка 39 сцепляется с коленчатым валом (не показан) через цепь 40 механизма газораспределения вместе со звездочкой 13a механизма газораспределения, смонтированной на конце распределительного вала 13 на стороне выпуска. Кожух 31 сцепляется с кронштейном 37 (показан на фиг. 2), расположенным в конце внешнего распределительного вала 17a, посредством использования крепежного болта 36. Часть 32 вала части 34 лопасти сцепляется с концом вала внутреннего распределительного вала 17b посредством использования крепежного болта 38. Когда лопасти 33 выполняют поворотное смещение внутри камеры 30 для фазы запаздывания, внутренний распределительный вал 17b смещается относительно внешнего распределительного вала 17a.

Фаза кулачка рабочего выступа 22a кулачка совмещается с фазой кулачка фиксированного кулачка 20, выступающей в качестве основы, посредством силы смещения элемента 42 возвратной пружины (показанного только на фиг. 2), который установлен в качестве перемычки между кожухом 31 и частью 34 лопасти. Каждая из камер 30 для фазы запаздывания соединяется с клапаном 44 регулирования расхода масла (в дальнейшем в этом документе, называемым OCV 44) и гидравлическим нагнетателем 45 (который состоит, например, из устройства, имеющего масляный насос для подачи масла) через различные масляные каналы 43 (частично показаны на фиг. 2), сформированные в кожухе 31, кронштейне 37 и подшипнике 18a. В распределительном вале 14 на стороне впуска, когда масло подается в камеры 30 для фазы запаздывания, выполняется изменение зазора, которое смещает рабочий выступ 22a кулачка от фиксированного кулачка 20 в направлении запаздывания.

Изменение зазора описано ниже. Выходной момент вала из коленчатого вала, передается через цепь 40 механизма газораспределения, звездочку 39 механизма газораспределения, кожух 31 и кронштейн 37 на внешний вал 17a, чтобы тем самым вращать фиксированный кулачок 20 и открывать/закрывать левый впускной клапан 10b через толкатели 9. В этот момент времени, если гидравлическое давление подается из OCV 44, чтобы продвигать камеры (не, показанные), расположенные на противоположной стороне, к камерам 30 для фазы запаздывания, рабочий выступ 22a кулачка совмещается с фазой кулачка фиксированного кулачка 20, как показано в состоянии, показанном посредством линии A по фиг. 5, в соответствии с силой смещения элемента 42 возвратной пружины. Как результат, правый впускной клапан 10a открывается/закрывается при сохранении фазы, идентичной фазе левого фиксированного кулачка 20. Когда гидравлическое давление гидравлического нагнетателя 45 подается через OCV 44 в камеры 30 для фазы запаздывания, лопасти 33 смещаются от исходного положения к стороне запаздывания внутри камер 30 для фазы запаздывания наряду с выводом гидравлического давления. В этот момент времени, вследствие управления на выводе гидравлического давления, например, после того, как лопасти 33 смещаются на пол-оборота внутри камер 30 для фазы запаздывания, внутренний распределительный вал 17b смещается на пол-оборота в направлении запаздывания. Смещение передается через запрессованный штифт 24 на контур 22 кулачка и смещает рабочий выступ 22a кулачка в направлении запаздывания. Посредством этого, время открытия/закрытия левого впускного клапана 10b, выступающее в качестве основы, является неизменным, как показано в состоянии, показанном посредством линии B по фиг. 5, и только время открытия/закрытия правого впускного клапана 10a изменяется. Вкратце, правый впускной клапан 10a открывается/закрывается согласно профилю кулачка рабочего выступа 22a кулачка в середине периода открытия/закрытия левого впускного клапана 10b. В результате управления выводом гидравлического давления, если лопасти 33 смещаются в положение наибольшего запаздывания, левый впускной клапан 10b остается неизменным по времени открытия/закрытия, как показано в состоянии, показанном посредством линии C по фиг. 5, тогда как правый впускной клапан 10a открывается/закрывается во время наибольшего запаздывания по сравнению с левым впускным клапаном 10b при сохранении времени открытия/закрытия перекрывающимся со временем открытия/закрытия левого впускного клапана 10b. Периоды открытия правого и левого впускных клапанов 10 варьируются в рамках диапазона от наименьшего периода α открытия до наибольшего периода β открытия согласно состоянию двигателя (изменение зазора).

Устройство 15 регулируемых клапанов, которое смещает фазу контура 22 кулачка относительно фиксированного кулачка 20, имеет уникальную проблему вследствие поворачиваемости контура 22 кулачка.

В отличие от фиксированного кулачка 20, контур 22 кулачка, комбинируемый со сдвоенным валом 17, должен допускать выполнение поворота на внешней периферийной поверхности внешнего распределительного вала 17a. Для этого существует микроскопический зазор, необходимый для поворота контура 22 кулачка, между контуром 22 кулачка и внешним распределительным валом 17a. Зазор дополнен допуском на компоненты контура 22 кулачка и внешнего распределительного вала 17a и допуском на монтаж во время комбинирования контура 22 кулачка и внешнего распределительного вала 17a. Рабочий выступ 22a кулачка, следовательно, легко смещать в широком диапазоне, и рабочая поверхность 22c кулачка подвержена колебаниям (нестабильна). Как показано на фиг. 6(a), рабочая поверхность 22c кулачка с большой вероятностью смещается относительно центра оси кулачка.

В состояниях, показанных посредством линий B и C по фиг. 5, неточное расположение возникает, поскольку нагрузка при подъеме клапана применяется с запаздыванием во времени. В общем распределительном вале, в котором кулачок составляет неразъемную часть элемента вала, если предусмотрена шейка кулачка между первым кулачком, расположенным в положении фиксированного кулачка, и вторым кулачком, расположенным в положении контура кулачка, первый и второй кулачки имеют практически идентичный подъем и время открытия и закрытия клапана, нагрузка при подъеме клапана применяется равномерно по ширине шейки кулачка. Это исключает увеличение неточного расположения. В устройстве 15 регулируемых клапанов, тем не менее, когда фиксированный кулачок 20 в качестве первого кулачка и контур 22 кулачка в качестве второго кулачка смещаются по фазе, большое неточное расположение возникает, поскольку нагрузка при подъеме клапана применяется с запаздываниями во времени к передней и задней части шейки 18b кулачка в направлении ширины шейки 18b кулачка.

Если неточное расположение рабочей поверхности 22c кулачка возникает, как показано на фиг. 6(a), может быть контакт между верхней поверхностью 9a, содержащей выпуклость, т.е. определенным положением поверхности контактирования с кулачком толкателя 9. Иногда, подъем клапана не выполняется согласно сконструированному кулачку. Если это происходит, рабочая поверхность 22c кулачка уменьшается по площади контакта относительно части контактирования с кулачком толкателя 9, как показано на фиг. 6(a), и прикладывается с высокой нагрузкой. Это лишает возможности сохранять соответствующую смазку, что вызывает увеличение трения и локальный износ в контактной части.

Помимо такой идеи, что фиксированный кулачок 20 и соответствующий рабочий выступ 22a кулачка являются идентичными по ширине кулачка, размер по ширине кулачка рабочей поверхности 22c кулачка рабочего выступа 22a кулачка, который варьирует фазы, увеличивается в большей степени, чем размер b по ширине кулачка рабочей поверхности 20a кулачка фиксированного кулачка 20, как показано на фиг. 1, 2 и 4. Размеры по ширине кулачка отличаются друг от друга таким образом. Рабочая поверхность 22c кулачка рабочего выступа 22a кулачка формируется так, что она имеет большую ширину кулачка, чем рабочая поверхность 20a кулачка фиксированного кулачка 20 (a>b).

Это позволяет, как показано на фиг. 6(b), не допускать контакта между верхней поверхностью 9a, содержащей выпуклость поверхности контактирования с кулачком толкателя 9, и концевой частью ширины кулачка рабочего выступа 22a кулачка, даже если неточное расположение возникает. Площадь контакта относительно верхней поверхности 9a (части контактирования с кулачком) поддерживается даже в состоянии нарушения расположения. Следовательно, нагрузка, прикладываемая к контактным частям рабочего выступа 22a кулачка и верхней поверхности 9a, распределяется, и максимальная нагрузка также понижается. То же применимо к неточному расположению, которое возникает в ответ на изменение зазора, а именно, неточное расположение, которое возникает, когда нагрузка при подъеме клапана прикладывается с запаздываниями во времени к передней и задней части шейки кулачка в направлении ширины шейки кулачка.

Если ширина кулачка рабочего выступа 22a кулачка увеличивается, допустимый диапазон относительно неточного расположения в рабочей поверхности 22c кулачка рабочего выступа 22a кулачка увеличивается. Кроме того, сам рабочий выступ 22a кулачка увеличивается по стабильности, что не допускает влияния зазора и допуска на монтаж при повороте рабочего выступа 22a кулачка.

Следовательно, с помощью простой конструкции можно повышать устойчивость к неточному расположению кулачка, который должен варьироваться по фазе. По этой причине, распределительный вал 14 может комбинироваться с головкой 2 блока цилиндров, аналогично традиционному кулачку (фиг.2), и тем самым исключает необходимость выполнения отнимающего много времени действия по совмещению и повышения точности в машинной обработке компонентов на предыдущей стадии (точность машинной обработки не требуется). Кроме того, максимальное значение нагрузки при смещении, прикладываемой к поверхности скольжения рабочего выступа 22a кулачка (второго кулачка) и поверхности скольжения внешнего распределительного вала 17a (элемента вала), которая вызывается посредством неточного расположения, уменьшается. Следовательно, можно не допускать ухудшения по реакции и локального износа, являющегося результатом увеличения трения. Поскольку наклон рабочего выступа 22a кулачка не допускается посредством увеличения размера по ширине кулачка, не допускается возникновение трения и локального износа, обусловленного нестабильностью рабочего выступа 22a кулачка, и соответствующие характеристики регулирования обеспечиваются. Помимо этого, поскольку конструктивный подъем клапана может быть получен, не возникает ухудшения рабочих характеристик и ухудшения NVH (шум, вибрации, неплавность движения). Поскольку внешний распределительный вал 17a изготавливается из трубчатого элемента, имеющего низкую жесткость при изгибе, если рабочий выступ 22a кулачка увеличивается по ширине кулачка, сила, передаваемая от рабочего выступа 22a кулачка на внешний распределительный вал 17a, распределяется, и соответствующие характеристики регулирования могут быть сохранены.

Как показано на фиг.1, размер b по ширине кулачка фиксированного кулачка 20 превышает размер по ширине кулачка распределительного вала, имеющего кулачок, который составляет неразъемную часть элемента вала, который используется в двигателе идентичной модели, т.е., например, размер c по ширине кулачка рабочей поверхности кулачка 12 выпускного клапана распределительного вала 13, имеющего кулачок 12 выпускного клапана, который составляет неразъемную часть вала 13a (показан на фиг.3), или размер по ширине кулачка (не показан) рабочей поверхности кулачка впускного клапана впускного распределительного вала, который составляет неразъемную часть кулачка впускного клапана, используемого в серии двигателей идентичной модели, которые не выполняют изменение зазора (a>c и b>c). Если эти размеры по ширине кулачка задаются при соответствующих оптимальных значениях, даже на фиксированный кулачок 20, выполненный посредством комбинирования с отдельными частями, не влияет допуск на монтаж, и можно реагировать на неточное расположение, вызываемое посредством изменения зазора.

Разумеется, вышеуказанные преимущества могут быть аналогично получены в случае, если выпуклость поверхности контактирования с кулачком толкателя 9 предоставляется на стороне рабочей поверхности 22c кулачка.

На Фиг. 7 показан второй вариант осуществления изобретения.

Второй вариант осуществления формируется посредством применения настоящего изобретения к устройству 50 регулируемых клапанов, которое дополнено функцией совместного варьирования фазы фиксированного кулачка 20 и фазы контура 22 кулачка, в отличие от устройства 15 регулируемых клапанов, в котором устройство 25 смены фаз присоединено к одному из концов сдвоенного вала 17 (элементу вала), который включает в себя комбинированные фиксированный кулачок 20 (первый кулачок) и контур 22 кулачка (второй кулачок), как показано в первом варианте осуществления.

В устройстве 50 регулируемых клапанов, механизм 25 смены фаз, имеющий конструкцию, идентичную конструкции первого варианта осуществления, соединяется с одним из концов сдвоенного вала 17 (элемента вала), сформированного посредством комбинирования фиксированного кулачка 20 (первого кулачка) и контура 22 кулачка (второго кулачка), т.е., например, концом на задней стороне двигателя, и второй механизм 51 смены фаз, имеющий конструкцию поворотной лопасти, к примеру, VVT (регулируемые фазы газораспределения) соединяется с концом на передней стороне двигателя, посредством чего фаза фиксированного кулачка 20 и фаза контура 22 кулачка совместно варьируются на основе неразъемного поворотного смещения внешнего распределительного вала 17 и внутреннего распределительного вала 17b, помимо изменения фазы посредством относительного смещения внешнего распределительного вала 17a и внутреннего распределительного вала 17b.

Если настоящее изобретение применяется к устройству 50 регулируемых клапанов, преимущество, идентичное преимуществу первого варианта осуществления, предоставляется. Ссылаясь на фиг. 7, составляющие части, идентичные составляющим частям первого варианта осуществления, содержат идентичные ссылочные позиции, и их описания опускаются.

На этом описание устройства регулируемых клапанов для двигателя внутреннего сгорания согласно изобретению завершено, но изобретение не ограничено вышеописанными вариантами осуществления.

Например, варианты осуществления используют конструкцию, в которой смещение кулачка передается в толкатели, чтобы приводить в действие клапаны. Вместо этого, тем не менее, изобретение может применяться к конструкции, в которой смещение кулачка передается в другой приводной элемент, т.е., например, элемент коромысла, тем самым приводя в действие клапаны. В случае приведения в движение клапанов посредством использования элемента коромысла, может рассматриваться возможность использования конструкции, которая включает в себя поверхность контактирования с кулачком на стороне кулачка элемента коромысла и секцию приведения в действие раздвоенного клапана на стороне клапана элемента коромысла и приводит в действие множество клапанов посредством одного кулачка. В этом случае, размер по ширине кулачка обозначает размер в расчете на клапан, который получается посредством деления фактической ширины кулачка на число приводящих клапанов (=фактический распределительный вал/число приводящих клапанов).

Изобретение может применяться к устройству регулируемых клапанов (не показано), которое изменяет фазы пары кулачков выпускного клапана относительно друг друга, вместо применения к устройству регулируемых клапанов, которое изменяет фазы пары кулачков впускного клапана относительно друг друга, аналогично вариантам осуществления.

Двигатель, который должен применяться, может быть двигателем, имеющим систему клапанов, в которой устройство регулируемых клапанов комбинируется с конструкцией, которая приводит в действие клапаны посредством распределительного вала, кулачок которого неразъемно формируется.

Перечень ссылочных позиций

10 - пара впускных клапанов

12 - кулачок выпускного клапана

13 - распределительный вал на стороне выпуска

14 - распределительный вал на стороне впуска

15 - устройство регулируемых клапанов

17 - сдвоенный вал (элемент вала)

17a - внешний распределительный вал

17b - внутренний распределительный вал

19 - кулачок впускного клапана

20 - фиксированный кулачок (первый кулачок)

20a - рабочая поверхность кулачка фиксированного кулачка

22a - рабочий выступ кулачка (второй кулачок)

22c - рабочая поверхность кулачка рабочего выступа кулачка

25 - механизм смены фаз кулачка

a - ширина кулачка рабочего выступа кулачка

b - ширина кулачка фиксированного кулачка

1. Устройство регулируемых клапанов для двигателя внутреннего сгорания, которое варьирует фазы клапана для пары впускных клапанов или фазы клапана для пары выпускных клапанов, которые предоставляются для каждого цилиндра, содержащее:элемент вала, который приводится в действие посредством выходного момента от коленчатого вала двигателя внутреннего сгорания;первый кулачок, который расположен на внешней поверхности элемента вала и имеет рабочую поверхность кулачка, которая приводит в действие один из пары впускных клапанов или один из пары выпускных клапанов;второй кулачок, который расположен на внешней поверхности элемента вала с возможностью смещения в направлении по окружности, и имеет рабочую поверхность кулачка, которая приводит в действие другой впускной клапан или другой выпускной клапан; имеханизм смены фазы кулачка, который изменяет фазу второго кулачка относительно первого кулачка,при этом рабочая поверхность кулачка второго кулачка сформирована так, что она имеет размер по ширине кулачка, который превышает ширину кулачка рабочей поверхности первого кулачка.

2. Устройство по п.1, в котором:элемент вала сконфигурирован посредством поворотной вставки внутреннего распределительного вала во внешний распределительный вал, состоящий из трубчатого элемента;первый кулачок расположен на внешней периферии внешнего распределительного вала, а второй кулачок расположен так, что он является поворотным вокруг оси внешнего распределительного вала; и фаза второго кулачка является регулируемой на основе первого кулачка в ответ на относительное смещение внешнего распределительного вала и внутреннего распределительного вала.

3. Устройство по п.1 или 2, в котором первый кулачок сформирован так, что его ширина превышает ширину кулачка распределительного вала, который составляет неразъемную часть элемента вала и который применяется в любой модели двигателя внутреннего сгорания, идентичной модели упомянутого двигателя внутреннего сгорания.

www.findpatent.ru

УСТРОЙСТВО ПРИВОДА КЛАПАНА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Область техники

Изобретение относится к машиностроению, в частности к двигателестроению, и может быть использовано в конструкции газораспределительного механизма двигателя внутреннего сгорания (ДВС). В общем случае, газораспределительный механизм предназначен для обеспечения своевременной подачи в цилиндры двигателя воздуха или топливно-воздушной смеси (в зависимости от типа двигателя) и выпуска из цилиндров отработанных газов [1]. Например, на широко распространенных четырехтактных поршневых двигателях внутреннего сгорания применяются клапанные газораспределительные механизмы, устройство таких механизмов включает: клапаны, привод клапанов, распределительный вал, привод распределительного вала.

Предшествующий уровень техники

Широко известны впускные и выпускные клапаны механического принципа действия, которые открываются толкающими усилиями кулачков распределительного вала, а закрываются под воздействием возвратной запорной пружины. Недостатком таких устройств является сложность конструкции из-за упругих возвратных запорных пружин (в некоторых устройствах установлено по две возвратно запорных пружины), повышенная шумность работы от наличия динамического взаимодействия кулачков с толкателями, наличия сил трения скольжения между кулачками и толкателями, а также значительных нагрузок на детали и механизмы, обеспечивающие работу газораспределительного механизма, снижающих коэффициент полезного действия автомобиля.

Известны и являются перспективными, в части возможности управления двигателем от электронной автоматики, электромагнитные приводы газораспределительных клапанов [2], однако существенным недостатком таких устройств также является наличие возвратной запорной пружины, для преодоления усилия которой необходима значительная тяговая сила, что делает габаритные размеры электромагнита и индуктивность недопустимо большими, а потребление энергии от бортовой сети автомобиля - значительным.

Известны беспружинные десмодромные газораспределительные механизмы [3] с принудительным открытием и закрытием клапанов, применяемые в двигателях с целью обеспечения надежной работы на высоких оборотах. Принудительное открытие и закрытие клапанов осуществляется от самостоятельных кулачков. Десмодромный механизм имеет ряд существенных недостатков, сдерживающих его широкое применение: высокая стоимость конструкции, обусловленная прецизионной точностью сопрягаемых деталей, сложность технического обслуживания, обусловленная наличием большого количества движущихся частей, склонных к износу. Применение таких механизмов может быть оправдано для специальных целей, например для использования в гоночных автомобилях («Mercedes-Benz W196», «O.S.C.A. Barchetta», «Mercedes-Benz 300 SLR») и мотоциклах («Ducati»).

Известны изобретения [4, 5, 6], направленные на решение задач усовершенствования перечисленных механизмов.

Наиболее близким по совокупности существенных признаков к заявленному изобретению является раскрытый в патенте UA 75426 на полезную модель бесконтактный привод клапана ДВС [7]. Данное устройство содержит распределительный вал, толкатель, выполненный из цилиндрического постоянного магнита, полюса которого расположены диагонально. Техническим результатом является снижение шума при работе двигателя, улучшение работы и увеличение долговечности устройства.

Раскрытие изобретения

Устройство привода клапана ДВС основано на использовании силовых магнитных полей постоянного магнита.

Техническим результатом, на достижение которого направлено заявленное изобретение, является расширение функциональных возможностей привода клапана ДВС для обеспечения надежной работы на высоких оборотах, создание оригинальной конструкции привода клапана ДВС, обеспечивающего повышение эффективности системы газораспределения, снижение потребления топлива, повышение коэффициента полезного действия двигателя и автомобиля в целом, повышение технологичности изготовления и применения унифицированного устройства, снижение нагрузки в целом на детали и механизмы, обеспечивающие работу газораспределительного механизма, что влечет за собой снижение потребления топлива, снижение токсичности выхлопных газов, повышение крутящего момента ДВС.

Указанный технический результат достигается тем, что в устройстве привода клапана ДВС, содержащем головку блока цилиндров, распределительный вал, установленный с возможностью вращения в головке блока цилиндров, кулачковый механизм, толкатель клапана, клапан и тарелку клапана, согласно изобретению распределительный вал, выполнен сборным, состоящим из штока с жестко установленными на нем посредством переходных втулок кулачками, каждый из которых представляет собой сборку, состоящую из постоянного магнита, имеющего аксиальное намагничивание, и боковых накладок, имеющих на площади прилегания к магниту пазы для фиксации магнита, выполняющих функцию рабочей поверхности кулачка, причем рабочие поверхности накладок кулачка, имея от постоянного магнита кулачка намагниченные разноименные полюса, расположенные вдоль оси вращения, разноименными полюсами находятся в постоянной магнитной и кинематической связи с рабочими поверхностями накладок сборного ролика, который состоит из постоянного магнита, имеющего аксиальное намагничивание, и боковых накладок, имеющих на площади прилегания к магниту пазы для фиксации магнита, выполняющих функцию рабочей поверхности ролика, которые также имея от постоянного магнита намагниченные разноименные полюса, расположенные вдоль оси вращения ролика, разноименными полюсами находятся в постоянной магнитной и кинематической связи с рабочими поверхностями боковых накладок кулачка, при этом ролик толкателя встроен в толкатель клапана через ось вращения ролика, а толкатель клапана содержит устройство крепления клапана.

Кроме того, боковые накладки кулачка и ролика выполнены из ферромагнитного материала, а распределительный вал, переходные втулки, толкатель клапана и ось вращения ролика изготовлены из немагнитного материала.

Данное устройство содержит жестко закрепленные кулачки, каждый из которых представляет собой сборку, состоящую из постоянного магнита, имеющего аксиальное намагничивание и разноименные полюса (N и S) вдоль оси вращения, изготовленного с возможностью работы в условиях высокой температуры (рабочая температура магнита 180 градусов по Цельсию) в форме эксцентрика, и боковых накладок в форме эксцентрика, на площади прилегания к магниту накладки имеют пазы (углубление) для фиксации магнита, изготовленные из ферромагнитного материала, обладающие высокой магнитной проницаемостью, выполняющие функцию магнитного поля на рабочую поверхность кулачка и функцию рабочей поверхности кулачка. Сборный ролик толкателя состоит из постоянного магнита, изготовленного с возможностью работы в условиях высокой температуры (рабочая температура магнита 180 градусов по Цельсию) в форме кольца, и боковых несущих кольцевых накладок, на площади прилегания к магниту накладки имеют пазы (углубление) для фиксации магнита, изготовленных из ферромагнитного материала, обладающих высокой магнитной проницаемостью, также выполняющих функцию магнитного поля на рабочую поверхность ролика, и функцию рабочей поверхности ролика, встроенного в толкатель клапана через ось вращения ролика, при этом толкатель клапана и ось вращения ролика, изготовлены из немагнитных материалов, и толкатель клапана содержит устройство крепления тарелки клапана.

Причем рабочие поверхности боковых ферромагнитных накладок кулачка, обладая высокой магнитной проницаемостью и имея от постоянного магнита кулачка намагниченные разноименные полюса (N и S), расположенные вдоль оси вращения распределительного вала, и рабочие поверхности боковых ферромагнитных накладок ролика, также обладая высокой магнитной проницаемостью и имея от постоянного магнита ролика намагниченные разноименные полюса (S и N), расположенные вдоль оси вращения ролика, разноименными полюсами находятся в постоянной магнитной и кинематической связи между собой.

Сборный кулачок распределительного вала, а также сборный ролик толкателя клапана со встроенным постоянным магнитом, имеющим аксиальное намагничивание и разноименные полюса (N и S - S и N) вдоль оси вращения, через боковые несущие ферромагнитные накладки, обладающие высокой магнитной проницаемостью, соответственно магнитной силой постоянного магнита, постоянно притягиваются друг к другу исключительно разноименными полюсами, выполняют две функции, а именно, вращаясь между собой, кулачок, набегая на ролик толкателя клапана, обеспечивает открытие клапана, а затем, сбегая с ролика толкателя клапана, закрывает клапан под действием мощных магнитных сил постоянных магнитов, что функционально заменяет действие возвратно запорной пружины. Таким образом, обеспечивается своевременное открытие и закрытие клапана с минимальными механическими потерями.

Краткое описание чертежей

Сущность изобретения поясняется фиг. 1-3, где изображен разрез устройства привода клапана ДВС, расположение полюсов постоянных магнитов кулачка и ролика, расположение полюсов постоянных магнитов на площади прилегания магнита к боковым накладкам, направление магнитных полей в ферромагнитных накладках кулачка и ролика, а также расположение полюсов на рабочих поверхностях накладок кулачка и ролика, где

1 - головка блока цилиндров,

2 - распределительный вал,

3 - переходные втулки,

4 - постоянный магнит кулачка,

5 - боковые накладки кулачка,

6 - паз (углубление) для фиксации магнита кулачка,

7 - боковые накладки ролика,

8 - паз (углубление) для фиксации магнита ролика,

9 - постоянный магнит ролика,

10 - ось вращения ролика,

11 - толкатель,

12 - крепление клапана,

13 - тарелка клапана,

14 - клапан,

15 - направляющая втулка клапана.

Устройство привода клапанов газораспределительного механизма двигателя внутреннего сгорания содержит головку блока цилиндров двигателя внутреннего сгорания 1, где в подшипниках скольжения, выполненных в виде разъемных опор, расположен сборный распределительный вал 2, на оси которого посредством переходных втулок 3 жестко закреплены сборные кулачки, состоящие из постоянного магнита в форме эксцентрика 4, имеющего аксиальное намагничивание с разноименными полюсами (N и S) вдоль оси вращения, и боковых накладок кулачка 5, имеющих паз 6 для фиксации магнита, обладающих высокой магнитной проницаемостью, выполняющих функцию магнитного поля на рабочую поверхность кулачка и функцию рабочей поверхности кулачка.

Боковые накладки кулачка 5, обладающие высокой магнитной проницаемостью, с помощью магнитных сил разноименных полюсов (N и S) постоянного магнита 4 находятся в постоянной магнитной и кинематической связи с боковыми накладками ролика 7, имеющими пазы 8 для фиксации магнита, также обладающими высокой магнитной проницаемостью, с помощью магнитных сил разноименных полюсов (S и N) постоянного магнита 9, имеющего аксиальное намагничивание магнитного поля вдоль оси вращения ролика, встроенного через ось 10 в толкатель 11, имеющего крепление клапана 12 с тарелкой клапана 13, обеспечивая постоянную магнитную и кинематическую связь между собой, в целом выполняют функцию возвратно-поступательного движения толкателя 11 клапана 14 через направляющую втулку 15, проводят своевременное открытие и закрытие клапана 14.

Осуществление изобретения

Работа устройства привода клапанов газораспределительного механизма двигателя внутреннего сгорания происходит следующим образом.

Распределительный вал приводится в движение от коленчатого вала с помощью привода, который осуществляет его вращение в два раза медленнее коленчатого вала (за один цикл работы двигателя конкретный клапан открывается только один раз). В качестве привода распределительного вала используется ременная, цепная и зубчатые передачи. Распределительный вал, как основная деталь газораспределительного механизма, служит для синхронизации впуска или выпуска и тактов работы двигателя. Составной частью распределительного вала являются его кулачки, количество которых соответствует количеству впускных и выпускных клапанов двигателя.

При вращении распределительного вала намагниченные боковые ферромагнитные накладки кулачка, находясь разноименными полюсами (N и S - S и N) в постоянной магнитной и кинематической связи с намагниченными боковыми ферромагнитными накладками ролика толкателя клапана, вращаясь между собой, осуществляя возвратно-поступательное движение толкателя клапана и клапана в целом, производят своевременное открытие и закрытие клапана.

Заявленное изобретение позволяет использовать магнитную силу притяжения разноименных полюсов (S и N) постоянных магнитов для постоянного контакта между кулачком распределительного вала и роликом толкателя клапана при его открытии и закрытии, а также избавиться от упругих пружин газораспределительного механизма, что в свою очередь в целом снизит нагрузку с деталей и механизмов, которые обеспечивают работу газораспределительного механизма ДВС, при этом повысить механический КПД двигателя.

Постоянный магнит изготавливают из железа, стали, чугуна и других сплавов железа, магнит всегда имеет два магнитных полюса: северный (N) и южный (S). Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти поля взаимодействуют между собой. Наиболее сильное магнитное поле постоянного магнита у его полюсов.

В заявленном устройстве постоянное и неразрывное магнитное взаимодействие кулачка 4 с роликом 7 происходит за счет разноименных полюсов магнитов, а именно направленного их аксиального намагничивания (фиг. 2). Аксиальная намагниченность (от английского axial - осевая) - это намагниченность через ось вращения, для дисков - это намагниченность через центральную ось вращения. Это значит, что вектор намагниченности проходит через толщину, то есть одна сторона плоскости магнита - северный полюс, а другая поверхность - южная. Для простоты, можно называть аксиальную намагниченность - через толщину. Большинство магнитов намагничены аксиально, чтобы достичь максимальной площади соприкосновения магнита с металлической поверхностью, а значит, и лучшего сцепления.

Ферромагнетики - это вещества, изготовленные из железа, никеля, кобальта и др., которые имеет высокую магнитную проницаемость, то есть обладают самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий магнитного поля. Ферромагнетики, в отличие от слабомагнитных диа- и парамагнетиков, являются сильномагнитными веществами, внутреннее магнитное поле в них может в сотни раз превосходить внешнее поле.

Согласно гипотезе французского ученого Ампера внутри вещества существуют элементарные электрические токи (точки Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси. При движении электронов возникают элементарные магнитные поля. При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.

За счет выполнения кулачка и ролика с постоянным магнитом с аксиальным направлением намагничиваемой поверхности, а также боковых ферромагнитных накладок, которые имеют высокую магнитную проницаемость, то есть обладая малым магнитным сопротивлением по сравнению с воздушным пространством, магнитное поле концентрируется в основном по стенкам ферромагнитных накладок, а именно на рабочие поверхности кулачка и ролика, которые расположены друг к другу разноименными полюсами, в результате происходит постоянное достаточно прочное их сцепление между собой.

Поэтому следует отметить, что для исключения нарушения и искажения направления магнитных полей постоянных магнитов, концентрируемых на рабочих поверхностях ферромагнитных накладок сборных кулачков и сборных роликов, а также потерь величины магнитных сил, распределительный вал, переходные втулки, толкатель, ось вращения ролика должны быть изготовлены из немагнитного материала, то есть с отрицательной магнитной восприимчивостью (диамагнетик).

Также следует отметить, что в зависимости от необходимости получения величины магнитных сил сцепления между рабочими поверхностями боковых ферромагнитных накладок сборных кулачков и сборных роликов толкателей установленные в сборных кулачках постоянные магниты могут быть выполнены в форме колец, кулачок или ролик, как в целом, так и по отдельности, могут быть выполнены с использованием постоянных магнитов или только ферромагнитного материала.

Эксплуатация предложенного устройства удобна, оптимальна и позволяет использовать унифицированную систему магнитного привода клапанов газораспределительного механизма двигателя внутреннего сгорания в течение долгого времени.

Конструкция устройства за счет внесения минимальных изменений в конструкцию ДВС может применяться во всех ДВС и позволяет переоснастить в условиях ремонтного салона уже существующие двигатели любых марок. Предполагается использование в ДВС любых производителей в автомобилестроении, судостроении и т.д.

Источники информации

1. Учебник по двигателям внутреннего сгорания. Часть 1. Двигатели внутреннего сгорания. Устройство и работа. Под ред. М.Г. Круглова. 3-е издание, переработанное и дополненное.

2. Ютт В.Е. Электрооборудование автомобилей. Учебник для студентов вузов. 3-е изд., перераб. и доп. - М.: Транспорт, 2000.

3. Интернет. Материал из Википедии. Газораспределительный механизм своевременного распределения впуска горючей смеси и выпуска отработавших газов.

4. Патент RU 2328605. «Система привода клапанов двигателя». МПК F01L 13/00, приоритет от 21.04.2004.

5. Патент RU 2298108. «Механизм газораспределения двигателя внутреннего сгорания». МПК F02D 13/02, приоритет от 04.05.2005.

6. Патент RU 2325540. «Кулачковый механизм привода клапана двигателя внутреннего сгорания». МПК F01L 31/22, приоритет от 29.05.2006.

7. Полезная модель, патент UA 75426 U (Государственное учреждение «Луганский Национальный Университет имени Тараса Шевченко»), МПК F01L 9/00, приоритет от 26.11.2012.

edrid.ru