Вентильный двигатель: принцип работы и схема. Вентильный двигатель схема


2QM.ru: Вентильный двигатель: принцип работы и схема

Для того чтобы решать задачи по контролю современных прецизионных систем, все чаще используется вентильный двигатель. Это характеризуется большим преимуществом таких приборов, а также активным формированием вычислительных возможностей микроэлектроники. Как известно, они могут обеспечить высокую плотность длительного момента и энергоэффективности по сравнению с другими видами двигателей.

Содержание статьи

Схема вентильного двигателя

Двигатель состоит из следующих деталей:

1. Задняя часть корпуса.2. Статор.3. Подшипник.4. Магнитный диск (ротор).5. Подшипник.6. Статор с обмоткой.7. Передняя часть корпуса.

У вентильного двигателя имеется взаимосвязь между многофазной обмоткой статора и ротора. У них присутствуют постоянные магниты и встроенный датчик положения. Коммутация прибора реализовывается при помощи вентильного преобразователя, вследствие чего он и получил такое название.

Схема вентильного двигателя состоит из задней крышки и печатной платы датчиков, втулки подшипника, вала и самого подшипника, магнитов ротора, изолирующего кольца, обмотки, трельчатой пружины, промежуточной втулки, датчика Холла, изоляции, корпуса и проводов.

В случае соединения обмоток «звездой» устройство имеет большие постоянные моменты, поэтому такую сборку применяют для управления осями. В случае скрепления обмоток «треугольником» их можно использовать для работы с большими скоростями. Чаще всего количество пар полюсов вычисляется численностью магнитов ротора, которые помогают определить соотношение электрических и механических оборотов.

Статор может быть изготовлен с безжелезным или железным сердечником. Используя такие конструкции с первым вариантом, можно обеспечить отсутствие притяжения магнитов ротора, но и в это же мгновение снижается на 20% эффективность двигателя из-за уменьшения значения постоянного момента.

Со схемы видно, что в статоре ток образуется в обмотках, а в роторе создается при помощи высокоэнергетических постоянных магнитов.Условные обозначения:- VT1-VT7 - транзисторные коммуникаторы;- A, B, C – фазы обмоток;- M – момент двигателя;- DR – датчик положения ротора;- U – регулятор напряжения питания двигателя;- S (south), N (north) – направление магнита;- UZ – частотный преобразователь;- BR – датчик частоты вращения;- VD – стабилитрон;- L – катушка индуктивности.

Схема двигателя показывает, что одним из основных преимуществ ротора, в котором установлены постоянные магниты, является уменьшение его диаметра и, как следствие, сокращение момента инерции. Такие приспособления могут быть встроенными в сам прибор или расположенными на его поверхности. Понижение этого показателя очень часто приводит к небольшим значениям баланса момента инерции самого двигателя и приведенного к его валу нагрузки, который и усложняет работу привода. По этой причине производители могут предложить стандартный и повышенный в 2-4 раза момент инерции.

Принципы работы

На сегодняшний день становится очень популярным вентильный двигатель, принцип работы которого основан на том, что контролер устройства начинает коммутировать обмотки статора. Благодаря этому вектор магнитного поля остается всегда сдвинутым на угол, приближающийся к 900 (-900) относительно ротора. Контролер рассчитан на управление током, который движется через обмотки двигателя, в том числе и величиной магнитного поля статора. Следовательно, можно регулировать момент, который воздействует на прибор. Показатель угла между векторами может определить направление вращения, которое действует на него.

Нужно учитывать, что речь идет об электрических градусах (они значительно меньше геометрических). Для примера приведем расчет вентильного двигателя с ротором, который в себе имеет 3 пары полюсов. Тогда оптимальным его углом будет 900 /3=300. Эти пары предусматривают 6 фаз обмоток коммутации, тогда получается, что вектор статора может перемещаться скачками по 600. Из этого видно, что настоящий угол между векторами обязательно будет варьироваться в пределах от 600 до 1200, начиная с вращения ротора.

Вентильный двигатель, принцип работы которого основывается на обороте фаз коммутации, из-за которых поток возбуждения поддерживается относительно постоянным движением якоря, после их взаимодействия начинает формировать вращающийся момент. Он устремляется повернуть ротор таким способом, чтобы все потоки возбуждения и якоря совпали воедино. Но во время его разворота датчик начинает переключать обмотки, и поток перемещается на следующий шаг. В этот момент результирующий вектор сдвинется, но останется полностью неподвижным сравнительно с потоком ротора, что в итоге и создаст вращающий момент вала.

Преимущества

Применяя вентильный двигатель в работе, можно отметить такие его достоинства:

- возможность применения широкого диапазона для модифицирования частоты вращения;

- высокая динамика и быстродействие;

- максимальная точность позиционирования;

- небольшие затраты на техническое обслуживание;

- устройство можно отнести к взрывозащищенным объектам;

- имеет способность переносить большие перегрузки в момент вращения;

- высокий КПД, который составляет более 90%;

- имеются скользящие электронные контакты, которые существенно увеличивают рабочий ресурс и срок службы;

- при длительной работе нет перегрева электродвигателя.

Недостатки

Несмотря на огромное количество достоинств, вентильный двигатель также имеет и недостатки в эксплуатации:- довольно сложное управление электродвигателем;- относительно высокая цена устройства из-за применения в его конструкции ротора, который имеет дорогостоящие постоянные магниты.

Вентильный индукторный двигатель

Вентильно-индукторный двигатель – это устройство, в котором предусмотрено переключающееся магнитное сопротивление. В нем преобразование энергии происходит за счет изменения индуктивности обмоток, которые располагаются на явно выраженных зубцах статора при передвижении зубчатого магнитного ротора. Питание устройство получает от электрического преобразователя, поочередно переключающего обмотки двигателя в строгости по перемещению ротора.

Вентильно-индукторный двигатель представляет собой комплексную сложную систему, в которой работают совместно разнообразные по своей физической природе компоненты. Для удачного проектирования таких устройств необходимы углубленные знания в области конструирования машин и механики, а также электроники, электромеханики и микропроцессорной техники.

Современное устройство выступает как электродвигатель, действующий совместно с электронным преобразователем, который изготавливается по интегральной технологии с использованием микропроцессора. Он позволяет осуществить качественное управление двигателем с наилучшими показателями переработки энергии.

Свойства двигателя

Такие устройства обладают высокой динамикой, большой перегрузочной способностью и точным позиционированием. Благодаря тому что в них отсутствуют движущие части, их использование возможно во взрывоопасной агрессивной среде. Такие моторы также называют и бесколлекторными, их основным преимуществом, по сравнению с коллекторными, является скорость, которая зависит от напряжения питания нагружающего момента. Также еще одним немаловажным свойством считается отсутствие истираемых и трущихся элементов, которые переключают контакты, благодаря чему вырастает ресурс пользования аппаратом.

Вентильные двигатели постоянного тока

Все двигатели постоянного тока можно назвать бесколлекторными. Они работают от сети с постоянным током. Щеточный узел предусмотрен для электрического объединения цепей ротора и статора. Такая деталь является самой уязвимой и достаточно сложной в обслуживании и ремонте.

Вентильный двигатель постоянного тока работает по тому же принципу, что и все синхронные устройства такого типа. Он представляет собой замкнутую систему, включающую силовой полупроводниковый преобразователь, датчик положения ротора и координатор.

Вентильные двигатели переменного тока

Такие устройства получают свое питание от сетей переменного тока. Скорость вращения ротора и движения первой гармоники магнитной силы статора полностью совпадают. Данный подтип двигателей можно использовать при высоких мощностях. К этой группе относятся шаговые и реактивные вентильные аппараты. Отличительной особенностью шаговых устройств является дискретное угловое смещение ротора при его работе. Питание обмоток формируется при помощи полупроводниковых компонентов. Управление вентильным двигателем осуществляется при последовательном смещении ротора, которое и создает переключение его питания с одних обмоток на другие. Это устройство можно разделить на одно-, трех- и многофазные, первые из которых могут содержать пусковую обмотку или фазосдвигающую цепь, а также запускаться вручную.

Принцип работы синхронного двигателя

Вентильный синхронный двигатель работает на основе взаимодействия магнитных полей ротора и статора. Схематически магнитное поле при вращении можно изобразить плюсами этих же магнитов, которые движутся со скоростью магнитного поля статора. Поле ротора также возможно изобразить как постоянный магнит, который делает обороты синхронно с полем статора. В случае отсутствия внешнего вращающего момента, который прикладывается к валу аппарата, оси полностью совпадают. Воздействующие силы притяжения проходят вдоль всей оси полюсов и могут компенсировать друг друга. Угол между ними приравнивается к нулю.

В случае если на вал машины будет воздействовать тормозной момент, то ротор перемещается в сторону с запаздыванием. Благодаря этому силы притяжения разбиваются на составляющие, которые направляются вдоль оси плюсовых показателей и перпендикулярно к оси полюсов. Если будет прикладываться внешний момент, который создает ускорение, то есть начинает действовать по направлению вращения вала, картинка по взаимодействию полей полностью изменится на обратную. Направленность углового смещения начинает трансформироваться на противоположное, и в связи с этим меняется направление тангенциальных сил и воздействие электромагнитного момента. При таком раскладе двигатель становится тормозным, а аппарат работает как генератор, который подводимую к валу механическую энергию преобразует в электрическую. Далее она перенаправляется в сеть, питающую статор.

Когда будет отсутствовать внешний, явнополюсный момент начнет принимать положение, при котором ось полюсов магнитного поля статора будет совпадать с продольной. Это размещение станет соответствовать минимальному сопротивлению потока в статоре.

В случае воздействия на вал машины тормозного момента ротор отклонится, при этом магнитное поле статора будет деформированным, так как поток стремится замкнуться по наименьшему сопротивлению. Для его определения необходимы силовые линии, направленность которых в каждой из точек будет соответствовать движению действия силы, поэтому изменение поля приведет к появлению тангенциального взаимодействия.

Рассмотрев все эти процессы в синхронных двигателях, можно выявить демонстративный принцип обратимости разнообразных машин, то есть возможность любого электрического аппарата изменить направленность преобразованной энергии на противоположную.

Бесколлекторные двигатели с постоянными магнитами

Вентильный двигатель с постоянными магнитами используется для решения серьезных оборонных и промышленных задач, так как такое устройство имеет большой запас мощности и эффективности.

Эти приборы чаще всего применяются в отраслях, где необходимы сравнительно низкие потребляющие мощности и небольшие габариты. Они могут иметь самые разные габариты, без технологических ограничений. В то же время большие аппараты не являются совершенно новыми, их чаще всего производят компании, которые стремятся преодолеть экономические трудности, ограничивающие ассортимент этих приборов. У них есть свои преимущества, среди которых можно отметить высокую эффективность из-за потерь в роторе и большую плотность мощности. Для управления бесколлекторными двигателями нужен частотно-регулируемый привод.

Анализ по затратам и результатам показывает, что устройства с постоянными магнитами намного предпочтительнее, по сравнению с другими, альтернативными технологиями. Чаще всего они используются для отраслей промышленности с достаточно тяжелым распорядком работы судовых двигателей, в военной и оборонной отрасли и других подразделениях, число которых непрерывно возрастает.

Реактивный двигатель

Вентильно-реактивный двигатель работает с использованием двухфазных обмоток, которые установлены вокруг диаметрально противоположных полюсов статора. Подача питания продвигается к ротору в соответствии с полюсами. Таким образом, его противодействие полностью сводится к минимуму.

Вентильный двигатель, своими руками созданный, обеспечивает высокоэффективную скорость привода при оптимизированном магнетизме для работы с реверсом. Информация о месторасположении ротора используется для того, чтобы управлять фазами подачи напряжения, так как это является оптимальным для достижения непрерывного и плавного крутящего момента и высокой эффективности.

Сигналы, которые выдает реактивный двигатель, накладываются на угловую ненасыщенную фазу индуктивности. Минимальное сопротивление полюса полностью соответствует максимальной индуктивности устройства.

Положительный момент можно получить только при углах, когда показатели позитивные. На небольших скоростях фазный ток обязательно должен быть ограниченным, чтобы произвести защиту электроники от высоких вольт-секунд.Механизм преобразования можно иллюстрировать линией реактивной энергии. Мощностная сфера характеризует собой питание, которое преобразовывается в механическую энергию. В случае его резкого отключения избыточная или остаточная сила возвращается к статору. Минимальные показатели влияния магнитного поля на производительность устройства являются основным его отличием от похожих устройств.

2qm.ru

Вентильный двигатель (Управление и упрощение) - Идеи по Энергии - Каталог статей

Авторы патента: Миляшов Н.Ф. (RU), Васильев А.В. (RU), Миляшов А.Н. (RU), Сабитов Р.Ф. (RU)

Изобретение относится к области электротехники, а именно к вентильным электродвигателям. Технический результат изобретения, заключающийся в упрощении схемы и конструкции электродвигателя, достигается путем того, что в вентильном электродвигателе, содержащем пассивный явнополюсный ротор с m полюсами, статор с 2n полюсами, несущими сосредоточенную на полюсах n-фазную обмотку, секции которой соединены с выходом n-фазного инвертора, выполненного на транзисторах в виде n-параллельно соединенных ячеек, фазные обмотки которых расположены на полюсах статора, инвертор выполнен с уменьшенным вдвое количеством транзисторов, каждый полюс статора дополнительно снабжен базовой обмоткой, а базовые обмотки, подключенные к базе транзистора каждой фазы, расположены на разных полюсах статора собственной и предыдущей по порядку чередования фаз и соединены встречно-последовательно. 4 ил.

Изобретение относится к электротехнике, в частности к вентильным электродвигателям, используемым в регулируемом электроприводе.

Известен вентильно-индукторный двигатель (ВИД) [Осташевский Н.А., Ковган А.Н. Вентильно-индукторный привод как перспективный вид регулируемого электропривода. //Електротехнiка и Електромеханiка-2002. №1. С.52-56], содержащий исполнительный двигатель (ИД), полупроводниковый преобразователь (ПП), управление преобразователем осуществляется системой управления (СУ) при помощи датчиков положения ротора (ДПР). Питание системы осуществляется от сети постоянного тока через выпрямитель (В). ИД представляет собой индукторную машину с пассивным ротором и сосредоточенными обмотками фаз на полюсах статора. На фиг.1 представлена структурная схема двигателя.

Основными недостатками данных двигателей является наличие ДПР, значительно усложняющего и удорожающего конструкцию двигателя, и сложность реализации системы управления коммутацией при применении бездатчикового управления.

Известен вентильный двигатель [Авторское свидетельство СССР №819893, М.кл3 Н 02 К 29/02, опубл. 07.04.81, БИ №13], у которого обмотки статора являются одновременно рабочими элементами ИД и ПП, представляющий собой электрическую машину, в которой двухфазный ПП совмещен с обмотками статора двухфазного асинхронного двигателя с короткозамкнутым ротором. На обмотках каждой из фаз собран генератор Ройера, а управление силовыми транзисторами осуществляется базовыми обмотками, расположенными на полюсах статора.

Недостатком двигателя является наличие большого числа силовых транзисторов на конденсаторов на фазу, цепи синхронизации, а также сложность конструкции самой электрической машины.

Наиболее близким заявленному является ВИД [Ильинский Н.Ф., Бычков М.Г. Вентильно-индукторный привод для легких электрических транспортных средств//Электротехника. 2000. №2. С.28-31], состоящий из ИД индукторного типа, коммутатора - ПП и развитого микропроцессорного блока управления - СУ. Исключение ДПР здесь осуществлено за счет специального управления коммутацией, когда текущая информация о значении токов используется для определения углов коммутации в любом режиме работы. Данный способ управления может быть реализован на базе микропроцессора.

Недостатком данного двигателя является наличие двойного числа транзисторов на фазу и сложность системы управления коммутацией. Здесь управление коммутацией основано на применении специально организованного "наблюдателя" в системе с релейным регулятором тока и ШИМ-генератором, ограничивающим частоту переключения силовых ключей инвертора. Кроме того, данный способ управления имеет дополнительные трудности реализации в приводах малой мощности, где необходимо принимать во внимание изменение удельного сопротивления обмоток при изменении температуры.

Задачей изобретения является упрощение схемы и конструкции двигателя.

Задача решается разработкой вентильного электродвигателя, содержащего пассивный явнополюсный ротор с m полюсами, статор с 2n полюсами, несущими сосредоточенную на полюсах n-фазную обмотку, секции которой соединены с выходом n-фазного инвертора, выполненного на транзисторах в виде n-параллельно соединенных ячеек, фазные обмотки которых расположены на полюсах статора. Причем инвертор выполнен с уменьшенным вдвое количеством транзисторов, каждый полюс статора дополнительно снабжен базовой обмоткой, а базовые обмотки, подключенные к базе транзистора каждой фазы, расположены на разных полюсах статора собственной и предыдущей обмоток по порядку чередования фаз и соединены встречно-последовательно.

 

На фиг.2 приведена принципиальная схема расположения фазных и базовых обмоток предлагаемого двигателя на основе трехфазной машины.

 

На фиг.3 приведена электрическая схема подключения фазных и базовых обмоток предлагаемого двигателя на основе трехфазной машины.

 

На фиг.4 приведены основные осцилограммы токов и напряжений на фазных и базовых обмотках.

Устройство содержит трехфазную машину переменного тока индукторного типа, включающую в себя явнополюсный ротор 1 и первичную трехфазную обмотку с секциями 2, 3, 4, состоящими соответственно из полуобмоток 2’, 2’’, 3’, 3’’, 4, 4’’, расположенную на полюсах статора, совместно с базовыми обмотками 5-10. Трехфазная обмотка электрической машины питается от источника постоянного напряжения через трехфазный инвертор, каждая фаза которого представляет собой однокаскадный генератор с магнитными связями и содержит одинаковые элементы. В качестве управляемых ключей в схеме используются транзисторы. Каждая фаза подключена одним концом к коллектору транзисторов 11, 12, 13, а другие концы фаз соединены с положительной точкой источника питания. Для устранения возможного пробоя транзиторов при их запирании, каждая из фазных обмоток шунтируется диодами 14, 15 и 16, включенными обратно по отношению к питающему напряжению схемы U.

Рассмотрим работу схемы с момента пуска. При подключении питания, в связи с разбросом параметров транзисторов допустим, что положительное напряжение U открывает транзистор 11 по его базовой цепи и этим начинается первая треть периода работы инвертора. Вследствие увеличения протекающего по первичной обмотке 2 тока в базовых обмотках 5-10 наводятся ЭДС (Е). Причем E5=E8, а Е6=Е7=Е9=Е10=0,3 Е5. Включение встречно-последовательно собственной и предыдущей по порядку чередования фазы базовых обмоток обусловлено тем, что суммарная ЭДС базовых обмоток открывает транзистор 11 и закрывает транзисторы 12 и 13. При увеличении тока в коллекторной цепи транзистора 11 рабочая точка перемещается по выходной характеристике и переходит из активной зоны в область насыщения. Прекращается увеличение тока коллектора, поэтому ЭДС в базовых обмотках становится равной нулю. Транзистор 11 закрывается. Ток коллектора протекает по замкнутой цепи: обмотка 2 - диод 14. Ток коллектора уменьшается, что приводит к возникновению противоположных по знаку ЭДС в базовых обмотках. Транзистор 12 открывается, и этим начинается вторая треть периода работы инвертора. Далее работа фаз В и С инвертора происходит аналогично фазе А. Периодическое подключение фазных обмоток 2, 3, 4 к источнику питания приводит за счет магнитного притяжения к смещению соответствующих полюсов явнополюсного ротора в направлении ближайших возбужденных полюсов статора. В результате возникает непрерывное вращение.

Рассматривая заявленное устройство в сравнении с аналогами и прототипом, можно сделать вывод о том, что заявленный вентильный электродвигатель имеет упрощенную схему управления за счет того, что новая совокупность признаков позволяет исключить систему “наблюдатель”, релейный регулятор и ШИМ-генератор, уменьшить вдвое количество силовых транзисторов, обладает высокой технологичностью и дешевизной при его практической реализации.

Формула изобретения

Вентильный электродвигатель, содержащий пассивный явнополюсный ротор с m полюсами, статор с 2n полюсами, несущими сосредоточенную на полюсах n-фазную обмотку, секции которой соединены с выходом n-фазного инвертора, выполненного на транзисторах в виде n параллельно соединенных ячеек, фазные обмотки которых расположены на полюсах статора, отличающийся тем, что инвертор выполнен с уменьшенным вдвое количеством транзисторов, каждый полюс статора дополнительно снабжен базовой обмоткой, а базовые обмотки, подключенные к базе транзистора каждой фазы, расположены на разных полюсах статора собственной и предыдущей по порядку чередования фаз и соединены встречно-последовательно.

___________________________________________________________________________________________

Мне понравилась идея  поэтому дополню материал своими соображениями организацией импульсной рекуперацией энергии в моторе

Сначала просто пустить самоиндукцию в цепь питания

Так же вариант применения рекуперационных трансформаторов

и доработанная схема на основе внедрения в неё рекуперационного трансформатора

 

ua-hho.do.am

Вентильные двигатели

Вентильные двигатели – электрические машины, функционально объединенные с управляемым полупроводниковым коммутатором. Они близки по конструктивным признакам и характеристикам к коллекторным двигателям. Вентильные двигатели имеют частоту вращения вала, не зависящую от частоты сети, регулирование частоты вращения осуществляется путем изменения потока возбуждения и тока в якоре. Вентильные двигатели обладают высоким пусковым моментом и хорошими энергетическими показателями. Благодаря отсутствию коллекторно-щеточного узла вентильные двигатели имеют большую надежность и долговечность.

Вентильные двигатели, как и коллекторные, имеют широкое разнообразие конструкций и схем включения обмоток.

На рис. 1 представлена схема вентильного двигателя, который имеет такую же обмотку якоря, как и машина постоянного тока. На роторе вентильного двигателя 1 расположена обмотка возбуждения или постоянные магниты. В пазах статора располагается многофазная обмотка якоря 2, секции или группа секций которой присоединены через полупроводниковые блоки 3 к распределительным шинам 4 и сети.

В положении, показанном на рис. 1, открыты тиристоры 1' и 5". Ток якоря Iя в обмотке статора проходит по двум параллельным ветвям и создается вращающий момент. При движении ротора происходит переключение тиристоров датчиками положения ротора.

При повороте ротора по часовой стрелке на угол 360/m, где m — число отпаек (фаз) обмотки якоря (в рассматриваемой машине m = 8) происходит переключение тиристоров. Включаются тиристоры 2' и 6", а 1' и 5" — отключаются и т.д.

Таким образом, при вращении ротора вращается и поле якоря. При этом происходит электромеханическое преобразование энергии.

При реверсе работают пары тиристоров: 1" и 5', 2" и 6' и т.д. Включение и отключение тиристоров осуществляется путем подачи импульсов напряжения со специальных датчиков, реагирующих на положение ротора.

+ U- Коммутатор по схеме рис. 1 по­лучается громоздким и вентильные дви­гатели по этой схеме практически не применяются. Чтобы упростить комму­татор, надо уменьшить число фаз машины.

Простейшей схемой вентильного двигателя является двухфазная схема, но наибольшее применение нашла трех­фазная схема (рис. 2). В этой схеме вентильная коммутация осуществляется трехфазным инвертором.

Система вентильной коммутации обычно состоит из датчика синхронизи­рующих сигналов, системы формирова­ния сигналов управления и управляемо­го коммутатора.

Датчик синхронизирующих сигналов задает порядок и частоту пере­ключения элементов коммутатора. При позиционном управлении — это датчик положения ротора, а при фазовом — датчик фазы напряжения якорной обмотки. Датчик положения ротора представляет собой встроен­ный в машину узел, состоящий из чувствительных элементов, закреплен­ных на статоре, и сигнальных элементов, закрепленных на роторе. Обыч­но используются фотоэлектрические или магнитомодуляционные датчики.

Система формирования сигналов управления обеспечивает усиление и формирование синхронизирующих сигналов.

Управляемый коммутатор осуществляет бесконтактные переключе­ния в силовых цепях вентильного двигателя. Управляемый коммутатор выполняется на полупроводниковых приборах или других переключаю­щих элементах, например герконах.

В управляемых коммутаторах на полупроводниковых приборах ис­пользуются полностью управляемые приборы (транзисторы, двухоперационные тиристоры) и не полностью управляемые (тиристоры, семисторы).

По способу коммутации управляемые коммутаторы на не полностью управляемых полупроводниковых приборах можно разделить на три ви­да: с естественной, принудительной и смешанной коммутацией. При ес­тественной коммутации переключения происходят под действием ЭДС якорной обмотки. При принудительной коммутации управление тирис­торами осуществляется под действием коммутирующего напряжения от­дельного источника либо напряжения питающей сети. При смешанной коммутации имеет место комбинация первого и второго способов.

Вентильные двигатели могут питаться от сети как постоянного, так и переменного тока. Если управляемый коммутатор питается от сети посто­янного тока, то он представляет собой инвертор — преобразователь по­стоянного тока в переменный. Если управляемый коммутатор подключен к сети переменного тока, то он выполняет функции преобразователя частоты.

Электромеханическая часть вентильных двигателей постоянного то­ка, как правило, аналогична известным конструктивным модификациям синхронных машин. Для маломощных приводов используются двигатели с постоянными магнитами, а также гистерезисные, реактивные и индук­торные двигатели. В приводах средней и большой мощности используют­ся двигатели с электромагнитным возбуждением.

Характерной особенностью вентильных двигателей, отличающей их от двигателей постоянного тока, является наличие дополнительного кана­ла управления по углу синхронизации инвертора. Этот канал использует­ся для обеспечения необходимой жесткости механической характеристи­ки и достижения большей перегрузочной способности.

Вентильные двигатели применяются и в приводах небольшой мощ­ности, где нежелательно применение механического коммутатора (проиг­рыватели, приборы магнитной записи и др.).

Вентильные двигатели большой мощности нашли применение там, где ранее использовались нерегулируемые асинхронные или синхронные двигатели. Выполнены вентильные двигатели мощностью 1600 кВт с ре­гулированием частоты вращения для привода компрессоров холодильных машин и насосов циркуляционных систем.

Ротором выступает постоянный магнит.

Обозначение диодов VD1…VD6.

ДП – датчик положения.

 

Коммутатор всегда включает VT1…VT6 так, чтобы магнитный поток статора был перпендикулярен магнитному потоку ротора, подобно тому, как это делается в ДПТ с помощью механического коммутатора.

При включенных VT2, VT3, VT4 диаграмма потоков такая:

При Uип=0 двигатель не будет развивать момента, по мере увеличения напряжения будут увеличиваться и токи.

Механические характеристики такого двигателя такие же, как и у ДПТ.

w01>w02>w03>w04

Uип1>Uип2>Uип3>Uип4

 

Шаговые двигатели

Шаговые, или импульсные двигатели питаются импульсами электрической энергии, а ротор в зависимости от полярности импульсов перемещается по часовой стрелке или против часовой стрелки на определенный угол-шаг. Шаговые двигатели обычно маломощные индикаторные. Основная задача их отрабатывать электрические импульсы, преобразуя электрические сигналы в угловые перемещения.

Для управления шаговыми двигателями используются коммутаторы на полупроводниковых элементах, формирующие импульсы, которые подаются на фазы обмотки шагового двигателя. Число фаз выбирается равным четырем или шести. Шаг двигателя может быть от 180 до 1°. В специальных установках шаг может быть несколько минут.

Шаговые двигатели могут быть выполнены на основе конструкции любых синхронных двигателей. Так как основным требованием к шаговым двигателям является точность отработки сигналов и высокая частота импульсов, предпочтительны конструкции шагового двигателя, выпол­ненного на базе реактивных и индукторных синхронных машин.

Шаговые двигатели характеризуются предельной частотой импульсов, которые двигатель обрабатывает без пропуска шага. Пусковые свойства шаговых двигателей характеризуются частотой приемистости — максимальной частотой импульсов, при которой возможен пуск без потери шагов. В зависимости от типа шагового двигателя и нагрузки частота приемистости колеблется от 10 до 104 Гц.

Математическое описание процессов преобразования энергии при импульсном питании осуществляется по уравнениям электромеханического преобразования энергии и их видоизменениям, когда форма напряжения — импульсная.

 

Счетчик подсчитывает количество fп – прямых и fн – обратных "шагов".

 

 

Одновременно включена только одна обмотка.

p – число пар полюсов;

m – фазность двигателя.

Характеристики двигателя:

1. aМ – цена импульса; определяет угловой шаг, совершаемый двигателем при единичном переключении (угол поворота за шаг).

2. Угловая характеристика двигателя

Для активного ротора:

угол Q снят для однополюсной однофазной машины.

Q=90° - нулевой момент; при Q>90° момент меняет знак.

Двигатель выполняет свои функции только в этом диапазоне изменения углов.

Мст – максимальный момент удержания.

При большой внешней нагрузке возможна потеря шага.

 

3. Частота приемистости – максимальная частота, до которой разгоняется двигатель при скачкообразном приложении импульсов из состояния покоя. Разгон при этом происходит за период одного импульса (подразумевается пуск на холостом ходу, то есть без нагрузки и присоединенных маховых масс). Если подавать импульсы часто, то наступит такая частота, которую двигатель не обработает.

4. Предельная динамическая характеристика – характеристика, связывающая частоту приемистости и момент инерции присоединенного к двигателю механизма.

Характеристика входит в документацию.

М2>М1 Þ fп2<fп1

 

 

 

 

Число шагов двигателя на оборот.

Для двигателя с активным ротором:

Число шагов зависит от способа управления:

симметричный (поочередное включение каждой обмотки) и несимметричный (одновременно может включаться несколько обмоток)

С помощью несимметричного способа управления можно получить дополнительные положения ротора.

Например, достигнуть углового шага a/2.

однополярный и разнополярное (удвоение числа возможных положений)

При однополярном симметричном управлении число положений n=pm, где р – число пар полюсов; m – число фаз двигателя.

р = число параллельных ветвей в любой фазе.

При однополярном несимметричном управлении n=2pm

При разнополярном несимметричном управлении n=4pm

Для двигателя с пассивным (перемагничиваемым) ротором:

zротора=zстатора-1

 

Пусть ток подан в обмотку j Þ на роторе появляется магнитное поле, которое противоположно магнитному полю статора, и полюса притягиваются. При этом минимизируется энергия электромагнитного поля за счет поворота ротора. Она минимальна, когда картина магнитных силовых линий слева и справа от оси симметрична, что соответствует совпадению осей зубцов.

Выключим ток в обмотке j и включим в обмотке k. Число зубцов меньше Þ картина силовых линий несимметрична Þ появляется усилие, смещающее ротор до центра симметрии, двигатель шагает на , где zр – число зубцов ротора Þ число положений, которые может принять ротор .

Такой двигатель удобен для глубокого редуцирования ротора (получения большого числа шагов).

 

Низковольтные двигатели: серии ДШ, ДША, ДШБ отличаются числом пар полюсов.

Более подробно о двигателях можно узнать из следующей литературы:

Копылов, Клоков. Справочник, 1988 г.

Кенио. Управление ШД.

Волков, Миловзоров. Выбор ШД (брошюра), 1978 г.

 

Методика выбора ШД

Кинематическая схема ШД.

Представляет собой корпус суппота.

 

 

Исходные данные:

i – передаточное число редуктора;

L – дискретность перемещения (цена шага, точность позиции) [м/имп];

tхв – шаг ходового винта [м/об];

vmax – максимальная скорость инструмента [м/мин];

Мс – момент сопротивления (включая трение холостого хода и сопротивление, вызываемое силами резания) [Нм];

Jпр – момент инерции.

Выбор ШД:

1. определение частоты приемистости

Если система регулирования реализует линейное изменение частоты (плавный разгон), то fп выбирается по f0, то есть ,

2. определение углового шага

На этом шаге может наоборот выбираться , - передаточное число

3. определение момента двигателя М

, где Мс – момент сопротивления на ходовом винте

Мст – момент синхронизации

Рекомендуется

4. проверка двигателя по динамическим режимам

f0 – разгон на холостом ходу.

f1 – разгон под нагрузкой (рабочие подачи).

 

 

Выбор двигателя

Похожие статьи:

poznayka.org

Вентильный двигатель принцип работы и схема

Вентильный двигатель: принцип работы и схема

Для того чтобы решать задачи по контролю современных прецизионных систем, все чаще используется вентильный двигатель. Это характеризуется большим преимуществом таких приборов, а также активным формированием вычислительных возможностей микроэлектроники. Как известно, они могут обеспечить высокую плотность длительного момента и энергоэффективности по сравнению с другими видами двигателей. Схема вентильного двигателя

Двигатель состоит из следующих деталей: 1. Задняя часть корпуса. 2. Статор. 3. Подшипник. 4. Магнитный диск (ротор). 5. Подшипник. 6. Статор с обмоткой. 7. Передняя часть корпуса. У вентильного двигателя имеется взаимосвязь между многофазной обмоткой статора и ротора. У них присутствуют постоянные магниты и встроенный датчик положения. Коммутация прибора реализовывается при помощи вентильного преобразователя, вследствие чего он и получил такое название.

Схема вентильного двигателя состоит из задней крышки и печатной платы датчиков, втулки подшипника, вала и самого подшипника, магнитов ротора, изолирующего кольца, обмотки, трельчатой пружины, промежуточной втулки, датчика Холла, изоляции, корпуса и проводов. В случае соединения обмоток «звездой» устройство имеет большие постоянные моменты, поэтому такую сборку применяют для управления осями. В случае скрепления обмоток «треугольником» их можно использовать для работы с большими скоростями. Чаще всего количество пар полюсов вычисляется численностью магнитов ротора, которые помогают определить соотношение электрических и механических оборотов. Статор может быть изготовлен с безжелезным или железным сердечником. Используя такие конструкции с первым вариантом, можно обеспечить отсутствие притяжения магнитов ротора, но и в это же мгновение снижается на 20% эффективность двигателя из-за уменьшения значения постоянного момента.

Со схемы видно, что в статоре ток образуется в обмотках, а в роторе создается при помощи высокоэнергетических постоянных магнитов. Условные обозначения: - VT1-VT7 - транзисторные коммуникаторы; - A, B, C – фазы обмоток; - M – момент двигателя; - DR – датчик положения ротора; - U – регулятор напряжения питания двигателя; - S (south), N (north) – направление магнита; - UZ – частотный преобразователь; - BR – датчик частоты вращения; - VD – стабилитрон; - L – катушка индуктивности. Схема двигателя показывает, что одним из основных преимуществ ротора, в котором установлены постоянные магниты, является уменьшение его диаметра и, как следствие, сокращение момента инерции. Такие приспособления могут быть встроенными в сам прибор или расположенными на его поверхности. Понижение этого показателя очень часто приводит к небольшим значениям баланса момента инерции самого двигателя и приведенного к его валу нагрузки, который и усложняет работу привода. По этой причине производители могут предложить стандартный и повышенный в 2-4 раза момент инерции. Принципы работы

На сегодняшний день становится очень популярным вентильный двигатель, принцип работы которого основан на том, что контролер устройства начинает коммутировать обмотки статора. Благодаря этому вектор магнитного поля остается всегда сдвинутым на угол, приближающийся к 900 (-900) относительно ротора. Контролер рассчитан на управление током, который движется через обмотки двигателя, в том числе и величиной магнитного поля статора. Следовательно, можно регулировать момент, который воздействует на прибор. Показатель угла между векторами может определить направление вращения, которое действует на него.

Нужно учитывать, что речь идет об электрических градусах (они значительно меньше геометрических). Для примера приведем расчет вентильного двигателя с ротором, который в себе имеет 3 пары полюсов. Тогда оптимальным его углом будет 900 /3=300. Эти пары предусматривают 6 фаз обмоток коммутации, тогда получается, что вектор статора может перемещаться скачками по 600. Из этого видно, что настоящий угол между векторами обязательно будет варьироваться в пределах от 600 до 1200, начиная с вращения ротора. Вентильный двигатель, принцип работы которого основывается на обороте фаз коммутации, из-за которых поток возбуждения поддерживается относительно постоянным движением якоря, после их взаимодействия начинает формировать вращающийся момент. Он устремляется повернуть ротор таким способом, чтобы все потоки возбуждения и якоря совпали воедино. Но во время его разворота датчик начинает переключать обмотки, и поток перемещается на следующий шаг. В этот момент результирующий вектор сдвинется, но останется полностью неподвижным сравнительно с потоком ротора, что в итоге и создаст вращающий момент вала. Преимущества

Применяя вентильный двигатель в работе, можно отметить такие его достоинства: - возможность применения широкого диапазона для модифицирования частоты вращения; - высокая динамика и быстродействие; - максимальная точность позиционирования; - небольшие затраты на техническое обслуживание; - устройство можно отнести к взрывозащищенным объектам; - имеет способность переносить большие перегрузки в момент вращения; - высокий КПД, который составляет более 90%; - имеются скользящие электронные контакты, которые существенно увеличивают рабочий ресурс и срок службы; - при длительной работе нет перегрева электродвигателя.

Недостатки

Несмотря на огромное количество достоинств, вентильный двигатель также имеет и недостатки в эксплуатации: - довольно сложное управление электродвигателем; - относительно высокая цена устройства из-за применения в его конструкции ротора, который имеет дорогостоящие постоянные магниты. Вентильный индукторный двигатель

Вентильно-индукторный двигатель – это устройство, в котором предусмотрено переключающееся магнитное сопротивление. В нем преобразование энергии происходит за счет изменения индуктивности обмоток, которые располагаются на явно выраженных зубцах статора при передвижении зубчатого магнитного ротора. Питание устройство получает от электрического преобразователя, поочередно переключающего обмотки двигателя в строгости по перемещению ротора. Свойства двигателя

Такие устройства обладают высокой динамикой, большой перегрузочной способностью и точным позиционированием. Благодаря тому, что в них отсутствуют движущие части, их использование возможно во взрывоопасной агрессивной среде. Такие моторы также называют и бесколлекторными, их основным преимуществом, по сравнению с коллекторными, является скорость, которая зависит от напряжения питания нагружающего момента. Также еще одним немаловажным свойством считается отсутствие истираемых и трущихся элементов, которые переключают контакты, благодаря чему вырастает ресурс пользования аппаратом.

Вентильные двигатели постоянного тока

Все двигатели постоянного тока можно назвать бесколлекторными. Они работают от сети с постоянным током. Щеточный узел предусмотрен для электрического объединения цепей ротора и статора. Такая деталь является самой уязвимой и достаточно сложной в обслуживании и ремонте.

Вентильный двигатель постоянного тока работает по тому же принципу, что и все синхронные устройства такого типа. Он представляет собой замкнутую систему, включающую силовой полупроводниковый преобразователь, датчик положения ротора и координатор.

Вентильные двигатели переменного тока

Такие устройства получают свое питание от сетей переменного тока. Скорость вращения ротора и движения первой гармоники магнитной силы статора полностью совпадают. Данный подтип двигателей можно использовать при высоких мощностях. К этой группе относятся шаговые и реактивные вентильные аппараты. Отличительной особенностью шаговых устройств является дискретное угловое смещение ротора при его работе. Питание обмоток формируется при помощи полупроводниковых компонентов. Управление вентильным двигателем осуществляется при последовательном смещении ротора, которое и создает переключение его питания с одних обмоток на другие. Это устройство можно разделить на одно-, трех- и многофазные, первые из которых могут содержать пусковую обмотку или фазосдвигающую цепь, а также запускаться вручную. Принцип работы синхронного двигателя

Вентильный синхронный двигатель работает на основе взаимодействия магнитных полей ротора и статора. Схематически магнитное поле при вращении можно изобразить плюсами этих же магнитов, которые движутся со скоростью магнитного поля статора. Поле ротора также возможно изобразить как постоянный магнит, который делает обороты синхронно с полем статора. В случае отсутствия внешнего вращающего момента, который прикладывается к валу аппарата, оси полностью совпадают. Воздействующие силы притяжения проходят вдоль всей оси полюсов и могут компенсировать друг друга. Угол между ними приравнивается к нулю. В случае если на вал машины будет воздействовать тормозной момент, то ротор перемещается в сторону с запаздыванием. Благодаря этому силы притяжения разбиваются на составляющие, которые направляются вдоль оси плюсовых показателей и перпендикулярно к оси полюсов. Если будет прикладываться внешний момент, который создает ускорение, то есть начинает действовать по направлению вращения вала, картинка по взаимодействию полей полностью изменится на обратную. Направленность углового смещения начинает трансформироваться на противоположное, и в связи с этим меняется направление тангенциальных сил и воздействие электромагнитного момента. При таком раскладе двигатель становится тормозным, а аппарат работает как генератор, который подводимую к валу механическую энергию преобразует в электрическую. Далее она перенаправляется в сеть, питающую статор. Когда будет отсутствовать внешний, явнополюсный момент начнет принимать положение, при котором ось полюсов магнитного поля статора будет совпадать с продольной. Это размещение станет соответствовать минимальному сопротивлению потока в статоре. В случае воздействия на вал машины тормозного момента ротор отклонится, при этом магнитное поле статора будет деформированным, так как поток стремится замкнуться по наименьшему сопротивлению. Для его определения необходимы силовые линии, направленность которых в каждой из точек будет соответствовать движению действия силы, поэтому изменение поля приведет к появлению тангенциального взаимодействия. Рассмотрев все эти процессы в синхронных двигателях, можно выявить демонстративный принцип обратимости разнообразных машин, то есть возможность любого электрического аппарата изменить направленность преобразованной энергии на противоположную. Бесколлекторные двигатели с постоянными магнитами

Вентильный двигатель с постоянными магнитами используется для решения серьезных оборонных и промышленных задач, так как такое устройство имеет большой запас мощности и эффективности. Эти приборы чаще всего применяются в отраслях, где необходимы сравнительно низкие потребляющие мощности и небольшие габариты.

Они могут иметь самые разные габариты, без технологических ограничений. В то же время большие аппараты не являются совершенно новыми, их чаще всего производят компании, которые стремятся преодолеть экономические трудности, ограничивающие ассортимент этих приборов. У них есть свои преимущества, среди которых можно отметить высокую эффективность из-за потерь в роторе и большую плотность мощности. Для управления бесколлекторными двигателями нужен частотно-регулируемый привод. Анализ по затратам и результатам показывает, что устройства с постоянными магнитами намного предпочтительнее, по сравнению с другими, альтернативными технологиями. Чаще всего они используются для отраслей промышленности с достаточно тяжелым распорядком работы судовых двигателей, в военной и оборонной отрасли и других подразделениях, число которых непрерывно возрастает.

Реактивный двигатель

Вентильно-реактивный двигатель работает с использованием двухфазных обмоток, которые установлены вокруг диаметрально противоположных полюсов статора. Подача питания продвигается к ротору в соответствии с полюсами. Таким образом, его противодействие полностью сводится к минимуму. Вентильный двигатель, своими руками созданный, обеспечивает высокоэффективную скорость привода при оптимизированном магнетизме для работы с реверсом. Информация о месторасположении ротора используется для того, чтобы управлять фазами подачи напряжения, так как это является оптимальным для достижения непрерывного и плавного крутящего момента, и высокой эффективности. Сигналы, которые выдает реактивный двигатель, накладываются на угловую ненасыщенную фазу индуктивности. Минимальное сопротивление полюса полностью соответствует максимальной индуктивности устройства. Положительный момент можно получить только при углах, когда показатели позитивные. На небольших скоростях фазный ток обязательно должен быть ограниченным, чтобы произвести защиту электроники от высоких вольт-секунд. Механизм преобразования можно иллюстрировать линией реактивной энергии. Мощностная сфера характеризует собой питание, которое преобразовывается в механическую энергию. В случае его резкого отключения избыточная или остаточная сила возвращается к статору. Минимальные показатели влияния магнитного поля на производительность устройства являются основным его отличием от похожих устройств.

topuch.ru

Вентильный двигатель: принцип работы и схема

Домашний уют 1 мая 2015

Для того чтобы решать задачи по контролю современных прецизионных систем, все чаще используется вентильный двигатель. Это характеризуется большим преимуществом таких приборов, а также активным формированием вычислительных возможностей микроэлектроники. Как известно, они могут обеспечить высокую плотность длительного момента и энергоэффективности по сравнению с другими видами двигателей.

Схема вентильного двигателя

Двигатель состоит из следующих деталей:

1. Задняя часть корпуса.2. Статор.3. Подшипник.4. Магнитный диск (ротор).5. Подшипник.6. Статор с обмоткой.7. Передняя часть корпуса.

У вентильного двигателя имеется взаимосвязь между многофазной обмоткой статора и ротора. У них присутствуют постоянные магниты и встроенный датчик положения. Коммутация прибора реализовывается при помощи вентильного преобразователя, вследствие чего он и получил такое название.

Схема вентильного двигателя состоит из задней крышки и печатной платы датчиков, втулки подшипника, вала и самого подшипника, магнитов ротора, изолирующего кольца, обмотки, трельчатой пружины, промежуточной втулки, датчика Холла, изоляции, корпуса и проводов.

В случае соединения обмоток «звездой» устройство имеет большие постоянные моменты, поэтому такую сборку применяют для управления осями. В случае скрепления обмоток «треугольником» их можно использовать для работы с большими скоростями. Чаще всего количество пар полюсов вычисляется численностью магнитов ротора, которые помогают определить соотношение электрических и механических оборотов.

Статор может быть изготовлен с безжелезным или железным сердечником. Используя такие конструкции с первым вариантом, можно обеспечить отсутствие притяжения магнитов ротора, но и в это же мгновение снижается на 20% эффективность двигателя из-за уменьшения значения постоянного момента.

Со схемы видно, что в статоре ток образуется в обмотках, а в роторе создается при помощи высокоэнергетических постоянных магнитов.Условные обозначения:- VT1-VT7 - транзисторные коммуникаторы;- A, B, C – фазы обмоток;- M – момент двигателя;- DR – датчик положения ротора;- U – регулятор напряжения питания двигателя;- S (south), N (north) – направление магнита;- UZ – частотный преобразователь;- BR – датчик частоты вращения;- VD – стабилитрон;- L – катушка индуктивности.

Схема двигателя показывает, что одним из основных преимуществ ротора, в котором установлены постоянные магниты, является уменьшение его диаметра и, как следствие, сокращение момента инерции. Такие приспособления могут быть встроенными в сам прибор или расположенными на его поверхности. Понижение этого показателя очень часто приводит к небольшим значениям баланса момента инерции самого двигателя и приведенного к его валу нагрузки, который и усложняет работу привода. По этой причине производители могут предложить стандартный и повышенный в 2-4 раза момент инерции.

Принципы работы

На сегодняшний день становится очень популярным вентильный двигатель, принцип работы которого основан на том, что контролер устройства начинает коммутировать обмотки статора. Благодаря этому вектор магнитного поля остается всегда сдвинутым на угол, приближающийся к 900 (-900) относительно ротора. Контролер рассчитан на управление током, который движется через обмотки двигателя, в том числе и величиной магнитного поля статора. Следовательно, можно регулировать момент, который воздействует на прибор. Показатель угла между векторами может определить направление вращения, которое действует на него.

Нужно учитывать, что речь идет об электрических градусах (они значительно меньше геометрических). Для примера приведем расчет вентильного двигателя с ротором, который в себе имеет 3 пары полюсов. Тогда оптимальным его углом будет 900 /3=300. Эти пары предусматривают 6 фаз обмоток коммутации, тогда получается, что вектор статора может перемещаться скачками по 600. Из этого видно, что настоящий угол между векторами обязательно будет варьироваться в пределах от 600 до 1200, начиная с вращения ротора.

Вентильный двигатель, принцип работы которого основывается на обороте фаз коммутации, из-за которых поток возбуждения поддерживается относительно постоянным движением якоря, после их взаимодействия начинает формировать вращающийся момент. Он устремляется повернуть ротор таким способом, чтобы все потоки возбуждения и якоря совпали воедино. Но во время его разворота датчик начинает переключать обмотки, и поток перемещается на следующий шаг. В этот момент результирующий вектор сдвинется, но останется полностью неподвижным сравнительно с потоком ротора, что в итоге и создаст вращающий момент вала.

Видео по теме

Преимущества

Применяя вентильный двигатель в работе, можно отметить такие его достоинства:

- возможность применения широкого диапазона для модифицирования частоты вращения;

- высокая динамика и быстродействие;

- максимальная точность позиционирования;

- небольшие затраты на техническое обслуживание;

- устройство можно отнести к взрывозащищенным объектам;

- имеет способность переносить большие перегрузки в момент вращения;

- высокий КПД, который составляет более 90%;

- имеются скользящие электронные контакты, которые существенно увеличивают рабочий ресурс и срок службы;

- при длительной работе нет перегрева электродвигателя.

Недостатки

Несмотря на огромное количество достоинств, вентильный двигатель также имеет и недостатки в эксплуатации:- довольно сложное управление электродвигателем;- относительно высокая цена устройства из-за применения в его конструкции ротора, который имеет дорогостоящие постоянные магниты.

Вентильный индукторный двигатель

Вентильно-индукторный двигатель – это устройство, в котором предусмотрено переключающееся магнитное сопротивление. В нем преобразование энергии происходит за счет изменения индуктивности обмоток, которые располагаются на явно выраженных зубцах статора при передвижении зубчатого магнитного ротора. Питание устройство получает от электрического преобразователя, поочередно переключающего обмотки двигателя в строгости по перемещению ротора.

Вентильно-индукторный двигатель представляет собой комплексную сложную систему, в которой работают совместно разнообразные по своей физической природе компоненты. Для удачного проектирования таких устройств необходимы углубленные знания в области конструирования машин и механики, а также электроники, электромеханики и микропроцессорной техники.

Современное устройство выступает как электродвигатель, действующий совместно с электронным преобразователем, который изготавливается по интегральной технологии с использованием микропроцессора. Он позволяет осуществить качественное управление двигателем с наилучшими показателями переработки энергии.

Свойства двигателя

Такие устройства обладают высокой динамикой, большой перегрузочной способностью и точным позиционированием. Благодаря тому что в них отсутствуют движущие части, их использование возможно во взрывоопасной агрессивной среде. Такие моторы также называют и бесколлекторными, их основным преимуществом, по сравнению с коллекторными, является скорость, которая зависит от напряжения питания нагружающего момента. Также еще одним немаловажным свойством считается отсутствие истираемых и трущихся элементов, которые переключают контакты, благодаря чему вырастает ресурс пользования аппаратом.

Вентильные двигатели постоянного тока

Все двигатели постоянного тока можно назвать бесколлекторными. Они работают от сети с постоянным током. Щеточный узел предусмотрен для электрического объединения цепей ротора и статора. Такая деталь является самой уязвимой и достаточно сложной в обслуживании и ремонте.

Вентильный двигатель постоянного тока работает по тому же принципу, что и все синхронные устройства такого типа. Он представляет собой замкнутую систему, включающую силовой полупроводниковый преобразователь, датчик положения ротора и координатор.

Вентильные двигатели переменного тока

Такие устройства получают свое питание от сетей переменного тока. Скорость вращения ротора и движения первой гармоники магнитной силы статора полностью совпадают. Данный подтип двигателей можно использовать при высоких мощностях. К этой группе относятся шаговые и реактивные вентильные аппараты. Отличительной особенностью шаговых устройств является дискретное угловое смещение ротора при его работе. Питание обмоток формируется при помощи полупроводниковых компонентов. Управление вентильным двигателем осуществляется при последовательном смещении ротора, которое и создает переключение его питания с одних обмоток на другие. Это устройство можно разделить на одно-, трех- и многофазные, первые из которых могут содержать пусковую обмотку или фазосдвигающую цепь, а также запускаться вручную.

Принцип работы синхронного двигателя

Вентильный синхронный двигатель работает на основе взаимодействия магнитных полей ротора и статора. Схематически магнитное поле при вращении можно изобразить плюсами этих же магнитов, которые движутся со скоростью магнитного поля статора. Поле ротора также возможно изобразить как постоянный магнит, который делает обороты синхронно с полем статора. В случае отсутствия внешнего вращающего момента, который прикладывается к валу аппарата, оси полностью совпадают. Воздействующие силы притяжения проходят вдоль всей оси полюсов и могут компенсировать друг друга. Угол между ними приравнивается к нулю.

В случае если на вал машины будет воздействовать тормозной момент, то ротор перемещается в сторону с запаздыванием. Благодаря этому силы притяжения разбиваются на составляющие, которые направляются вдоль оси плюсовых показателей и перпендикулярно к оси полюсов. Если будет прикладываться внешний момент, который создает ускорение, то есть начинает действовать по направлению вращения вала, картинка по взаимодействию полей полностью изменится на обратную. Направленность углового смещения начинает трансформироваться на противоположное, и в связи с этим меняется направление тангенциальных сил и воздействие электромагнитного момента. При таком раскладе двигатель становится тормозным, а аппарат работает как генератор, который подводимую к валу механическую энергию преобразует в электрическую. Далее она перенаправляется в сеть, питающую статор.

Когда будет отсутствовать внешний, явнополюсный момент начнет принимать положение, при котором ось полюсов магнитного поля статора будет совпадать с продольной. Это размещение станет соответствовать минимальному сопротивлению потока в статоре.

В случае воздействия на вал машины тормозного момента ротор отклонится, при этом магнитное поле статора будет деформированным, так как поток стремится замкнуться по наименьшему сопротивлению. Для его определения необходимы силовые линии, направленность которых в каждой из точек будет соответствовать движению действия силы, поэтому изменение поля приведет к появлению тангенциального взаимодействия.

Рассмотрев все эти процессы в синхронных двигателях, можно выявить демонстративный принцип обратимости разнообразных машин, то есть возможность любого электрического аппарата изменить направленность преобразованной энергии на противоположную.

Бесколлекторные двигатели с постоянными магнитами

Вентильный двигатель с постоянными магнитами используется для решения серьезных оборонных и промышленных задач, так как такое устройство имеет большой запас мощности и эффективности.

Эти приборы чаще всего применяются в отраслях, где необходимы сравнительно низкие потребляющие мощности и небольшие габариты. Они могут иметь самые разные габариты, без технологических ограничений. В то же время большие аппараты не являются совершенно новыми, их чаще всего производят компании, которые стремятся преодолеть экономические трудности, ограничивающие ассортимент этих приборов. У них есть свои преимущества, среди которых можно отметить высокую эффективность из-за потерь в роторе и большую плотность мощности. Для управления бесколлекторными двигателями нужен частотно-регулируемый привод.

Анализ по затратам и результатам показывает, что устройства с постоянными магнитами намного предпочтительнее, по сравнению с другими, альтернативными технологиями. Чаще всего они используются для отраслей промышленности с достаточно тяжелым распорядком работы судовых двигателей, в военной и оборонной отрасли и других подразделениях, число которых непрерывно возрастает.

Реактивный двигатель

Вентильно-реактивный двигатель работает с использованием двухфазных обмоток, которые установлены вокруг диаметрально противоположных полюсов статора. Подача питания продвигается к ротору в соответствии с полюсами. Таким образом, его противодействие полностью сводится к минимуму.

Вентильный двигатель, своими руками созданный, обеспечивает высокоэффективную скорость привода при оптимизированном магнетизме для работы с реверсом. Информация о месторасположении ротора используется для того, чтобы управлять фазами подачи напряжения, так как это является оптимальным для достижения непрерывного и плавного крутящего момента и высокой эффективности.

Сигналы, которые выдает реактивный двигатель, накладываются на угловую ненасыщенную фазу индуктивности. Минимальное сопротивление полюса полностью соответствует максимальной индуктивности устройства.

Положительный момент можно получить только при углах, когда показатели позитивные. На небольших скоростях фазный ток обязательно должен быть ограниченным, чтобы произвести защиту электроники от высоких вольт-секунд.Механизм преобразования можно иллюстрировать линией реактивной энергии. Мощностная сфера характеризует собой питание, которое преобразовывается в механическую энергию. В случае его резкого отключения избыточная или остаточная сила возвращается к статору. Минимальные показатели влияния магнитного поля на производительность устройства являются основным его отличием от похожих устройств.

Источник: fb.ru

Query failed: connection to localhost:9312 failed (errno=111, msg=Connection refused).

monateka.com

Вентильный двигатель: принцип работы и схема

Для того чтобы решать задачи по контролю современных прецизионных систем, все чаще используется вентильный двигатель. Это характеризуется большим преимуществом таких приборов, а также активным формированием вычислительных возможностей микроэлектроники. Как известно, они могут обеспечить высокую плотность длительного момента и энергоэффективности по сравнению с другими видами двигателей.

Схема вентильного двигателя

Двигатель состоит из следующих деталей:

1. Задняя часть корпуса.2. Статор.3. Подшипник.4. Магнитный диск (ротор).5. Подшипник.6. Статор с обмоткой.7. Передняя часть корпуса.

У вентильного двигателя имеется взаимосвязь между многофазной обмоткой статора и ротора. У них присутствуют постоянные магниты и встроенный датчик положения. Коммутация прибора реализовывается при помощи вентильного преобразователя, вследствие чего он и получил такое название.

Со схемы видно, что в статоре ток образуется в обмотках, а в роторе создается при помощи высокоэнергетических постоянных магнитов.Условные обозначения:- VT1-VT7 - транзисторные коммуникаторы;- A, B, C – фазы обмоток;- M – момент двигателя;- DR – датчик положения ротора;- U – регулятор напряжения питания двигателя;- S (south), N (north) – направление магнита;- UZ – частотный преобразователь;- BR – датчик частоты вращения;- VD – стабилитрон;- L – катушка индуктивности.

Схема двигателя показывает, что одним из основных преимуществ ротора, в котором установлены постоянные магниты, является уменьшение его диаметра и, как следствие, сокращение момента инерции. Такие приспособления могут быть встроенными в сам прибор или расположенными на его поверхности. Понижение этого показателя очень часто приводит к небольшим значениям баланса момента инерции самого двигателя и приведенного к его валу нагрузки, который и усложняет работу привода. По этой причине производители могут предложить стандартный и повышенный в 2-4 раза момент инерции.

Принципы работы

На сегодняшний день становится очень популярным вентильный двигатель, принцип работы которого основан на том, что контролер устройства начинает коммутировать обмотки статора. Благодаря этому вектор магнитного поля остается всегда сдвинутым на угол, приближающийся к 900 (-900) относительно ротора. Контролер рассчитан на управление током, который движется через обмотки двигателя, в том числе и величиной магнитного поля статора. Следовательно, можно регулировать момент, который воздействует на прибор. Показатель угла между векторами может определить направление вращения, которое действует на него.

Нужно учитывать, что речь идет об электрических градусах (они значительно меньше геометрических). Для примера приведем расчет вентильного двигателя с ротором, который в себе имеет 3 пары полюсов. Тогда оптимальным его углом будет 900 /3=300. Эти пары предусматривают 6 фаз обмоток коммутации, тогда получается, что вектор статора может перемещаться скачками по 600. Из этого видно, что настоящий угол между векторами обязательно будет варьироваться в пределах от 600 до 1200, начиная с вращения ротора.

Вентильный двигатель, принцип работы которого основывается на обороте фаз коммутации, из-за которых поток возбуждения поддерживается относительно постоянным движением якоря, после их взаимодействия начинает формировать вращающийся момент. Он устремляется повернуть ротор таким способом, чтобы все потоки возбуждения и якоря совпали воедино. Но во время его разворота датчик начинает переключать обмотки, и поток перемещается на следующий шаг. В этот момент результирующий вектор сдвинется, но останется полностью неподвижным сравнительно с потоком ротора, что в итоге и создаст вращающий момент вала.

Преимущества

Применяя вентильный двигатель в работе, можно отметить такие его достоинства:

- возможность применения широкого диапазона для модифицирования частоты вращения;

- высокая динамика и быстродействие;

- максимальная точность позиционирования;

- небольшие затраты на техническое обслуживание;

- устройство можно отнести к взрывозащищенным объектам;

- имеет способность переносить большие перегрузки в момент вращения;

- высокий КПД, который составляет более 90%;

- имеются скользящие электронные контакты, которые существенно увеличивают рабочий ресурс и срок службы;

- при длительной работе нет перегрева электродвигателя.

Недостатки

Несмотря на огромное количество достоинств, вентильный двигатель также имеет и недостатки в эксплуатации:- довольно сложное управление электродвигателем;- относительно высокая цена устройства из-за применения в его конструкции ротора, который имеет дорогостоящие постоянные магниты.

Вентильный индукторный двигатель

Вентильно-индукторный двигатель – это устройство, в котором предусмотрено переключающееся магнитное сопротивление. В нем преобразование энергии происходит за счет изменения индуктивности обмоток, которые располагаются на явно выраженных зубцах статора при передвижении зубчатого магнитного ротора. Питание устройство получает от электрического преобразователя, поочередно переключающего обмотки двигателя в строгости по перемещению ротора.

Вентильно-индукторный двигатель представляет собой комплексную сложную систему, в которой работают совместно разнообразные по своей физической природе компоненты. Для удачного проектирования таких устройств необходимы углубленные знания в области конструирования машин и механики, а также электроники, электромеханики и микропроцессорной техники.

Современное устройство выступает как электродвигатель, действующий совместно с электронным преобразователем, который изготавливается по интегральной технологии с использованием микропроцессора. Он позволяет осуществить качественное управление двигателем с наилучшими показателями переработки энергии.

Свойства двигателя

Такие устройства обладают высокой динамикой, большой перегрузочной способностью и точным позиционированием. Благодаря тому что в них отсутствуют движущие части, их использование возможно во взрывоопасной агрессивной среде. Такие моторы также называют и бесколлекторными, их основным преимуществом, по сравнению с коллекторными, является скорость, которая зависит от напряжения питания нагружающего момента. Также еще одним немаловажным свойством считается отсутствие истираемых и трущихся элементов, которые переключают контакты, благодаря чему вырастает ресурс пользования аппаратом.

Вентильные двигатели постоянного тока

Все двигатели постоянного тока можно назвать бесколлекторными. Они работают от сети с постоянным током. Щеточный узел предусмотрен для электрического объединения цепей ротора и статора. Такая деталь является самой уязвимой и достаточно сложной в обслуживании и ремонте.

Вентильный двигатель постоянного тока работает по тому же принципу, что и все синхронные устройства такого типа. Он представляет собой замкнутую систему, включающую силовой полупроводниковый преобразователь, датчик положения ротора и координатор.

Вентильные двигатели переменного тока

Такие устройства получают свое питание от сетей переменного тока. Скорость вращения ротора и движения первой гармоники магнитной силы статора полностью совпадают. Данный подтип двигателей можно использовать при высоких мощностях. К этой группе относятся шаговые и реактивные вентильные аппараты. Отличительной особенностью шаговых устройств является дискретное угловое смещение ротора при его работе. Питание обмоток формируется при помощи полупроводниковых компонентов. Управление вентильным двигателем осуществляется при последовательном смещении ротора, которое и создает переключение его питания с одних обмоток на другие. Это устройство можно разделить на одно-, трех- и многофазные, первые из которых могут содержать пусковую обмотку или фазосдвигающую цепь, а также запускаться вручную.

Принцип работы синхронного двигателя

Вентильный синхронный двигатель работает на основе взаимодействия магнитных полей ротора и статора. Схематически магнитное поле при вращении можно изобразить плюсами этих же магнитов, которые движутся со скоростью магнитного поля статора. Поле ротора также возможно изобразить как постоянный магнит, который делает обороты синхронно с полем статора. В случае отсутствия внешнего вращающего момента, который прикладывается к валу аппарата, оси полностью совпадают. Воздействующие силы притяжения проходят вдоль всей оси полюсов и могут компенсировать друг друга. Угол между ними приравнивается к нулю.

В случае если на вал машины будет воздействовать тормозной момент, то ротор перемещается в сторону с запаздыванием. Благодаря этому силы притяжения разбиваются на составляющие, которые направляются вдоль оси плюсовых показателей и перпендикулярно к оси полюсов. Если будет прикладываться внешний момент, который создает ускорение, то есть начинает действовать по направлению вращения вала, картинка по взаимодействию полей полностью изменится на обратную. Направленность углового смещения начинает трансформироваться на противоположное, и в связи с этим меняется направление тангенциальных сил и воздействие электромагнитного момента. При таком раскладе двигатель становится тормозным, а аппарат работает как генератор, который подводимую к валу механическую энергию преобразует в электрическую. Далее она перенаправляется в сеть, питающую статор.

Когда будет отсутствовать внешний, явнополюсный момент начнет принимать положение, при котором ось полюсов магнитного поля статора будет совпадать с продольной. Это размещение станет соответствовать минимальному сопротивлению потока в статоре.

В случае воздействия на вал машины тормозного момента ротор отклонится, при этом магнитное поле статора будет деформированным, так как поток стремится замкнуться по наименьшему сопротивлению. Для его определения необходимы силовые линии, направленность которых в каждой из точек будет соответствовать движению действия силы, поэтому изменение поля приведет к появлению тангенциального взаимодействия.

Рассмотрев все эти процессы в синхронных двигателях, можно выявить демонстративный принцип обратимости разнообразных машин, то есть возможность любого электрического аппарата изменить направленность преобразованной энергии на противоположную.

Бесколлекторные двигатели с постоянными магнитами

Вентильный двигатель с постоянными магнитами используется для решения серьезных оборонных и промышленных задач, так как такое устройство имеет большой запас мощности и эффективности.

Эти приборы чаще всего применяются в отраслях, где необходимы сравнительно низкие потребляющие мощности и небольшие габариты. Они могут иметь самые разные габариты, без технологических ограничений. В то же время большие аппараты не являются совершенно новыми, их чаще всего производят компании, которые стремятся преодолеть экономические трудности, ограничивающие ассортимент этих приборов. У них есть свои преимущества, среди которых можно отметить высокую эффективность из-за потерь в роторе и большую плотность мощности. Для управления бесколлекторными двигателями нужен частотно-регулируемый привод.

Анализ по затратам и результатам показывает, что устройства с постоянными магнитами намного предпочтительнее, по сравнению с другими, альтернативными технологиями. Чаще всего они используются для отраслей промышленности с достаточно тяжелым распорядком работы судовых двигателей, в военной и оборонной отрасли и других подразделениях, число которых непрерывно возрастает.

Реактивный двигатель

Вентильно-реактивный двигатель работает с использованием двухфазных обмоток, которые установлены вокруг диаметрально противоположных полюсов статора. Подача питания продвигается к ротору в соответствии с полюсами. Таким образом, его противодействие полностью сводится к минимуму.

Вентильный двигатель, своими руками созданный, обеспечивает высокоэффективную скорость привода при оптимизированном магнетизме для работы с реверсом. Информация о месторасположении ротора используется для того, чтобы управлять фазами подачи напряжения, так как это является оптимальным для достижения непрерывного и плавного крутящего момента и высокой эффективности.

Сигналы, которые выдает реактивный двигатель, накладываются на угловую ненасыщенную фазу индуктивности. Минимальное сопротивление полюса полностью соответствует максимальной индуктивности устройства.

Положительный момент можно получить только при углах, когда показатели позитивные. На небольших скоростях фазный ток обязательно должен быть ограниченным, чтобы произвести защиту электроники от высоких вольт-секунд.Механизм преобразования можно иллюстрировать линией реактивной энергии. Мощностная сфера характеризует собой питание, которое преобразовывается в механическую энергию. В случае его резкого отключения избыточная или остаточная сила возвращается к статору. Минимальные показатели влияния магнитного поля на производительность устройства являются основным его отличием от похожих устройств.

autogear.ru

Асинхронный вентильный двигатель

Изобретение относится к области электротехники и может найти применение в устройствах с питанием от источника постоянного тока, то есть с батарейным питанием или с питанием от сети постоянного тока. Предлагаемый асинхронный вентильный двигатель с питанием от источника постоянного тока содержит размещенную на статоре m-фазную обмотку с четным количеством фаз. Все фазные обмотки выполнены со средним выводом, подключенным к одной клемме источника питания. Ко второй клемме источника питания подключены посредством управляемых ключевых элементов концевые выводы n-ой обмотки, где n=1, 3, 5 и т.д., при этом концевые выводы (n+1)-ой обмотки соединены с упомянутыми выводами n-ой обмотки через диоды, включенные согласно по отношению к току в соответствующих секциях n-ой обмотки. Параллельно каждой секции (n+1)-ой обмотки включен конденсатор. Технический результат, достигаемый при использовании настоящего изобретения, заключается в упрощении конструкции путем упрощения схемы подключения асинхронного двигателя к источнику постоянного тока, а также в повышении надежности данного двигателя путем уменьшения количества коммутирующих ключевых элементов, в частности, приходящихся на фазу двигателя. 3 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области электротехники и может найти применение в устройствах с батарейным питанием или питанием от сети постоянного тока.

Уровень техники

Асинхронные двигатели относятся к машинам переменного тока и чаще всего применяются в электроприводах, использующих в качестве источника питания трех- или однофазную сеть переменного тока. Вращение ротора при этом обеспечивается вращающимся магнитным полем статора, условиями создания которого являются сдвинутый по фазе переменный ток, подаваемый на обмотки статора, и расположение обмоток статора со смещением в пространстве друг относительно друга.

В отличие от двигателей постоянного тока, асинхронные двигатели (АД) характеризуются такими ценными качествами, как надежность, бесконтактное исполнение (отсутствие коллекторно-щеточного механизма), невысокая стоимость и простота обслуживания, что делает их привлекательными для использования и в электроприводах постоянного тока.

Известны электроприводные устройства с питанием от источника постоянного тока, выполненные на основе асинхронного электродвигателя (см. патент RU 2193814, МПК: Н02Р 21/00, опубл. 27.11.2002 г., патент SU 949767, МПК: Н02Р 742, оп. 07.08.82 г., патент SU 1246322, оп. 23.07.86 г., патент SU 1582327, МПК: Н02Р 763, оп. 30.07.90 г.). Во всех известных решениях асинхронный двигатель подключают к источнику питания через автономный инвертор, на вход которого подается постоянное напряжение, а получаемый на выходе инвертора переменный ток с заданным количеством фаз и параметрами подается на фазные обмотки статора асинхронного двигателя. В качестве недостатка всех упомянутых устройств можно отметить их сложность.

Автономный инвертор может быть выполнен в виде коммутирующего устройства, содержащего полупроводниковые ключевые элементы (вентили), обеспечивающие поочередное подключение фазных обмоток АД к источнику питания. В качестве таких вентилей применяют частично или полностью управляемые полупроводниковые ключи: тиристоры и транзисторы. Известна схема питания статорной обмотки асинхронного двигателя от тиристорного преобразователя частоты (см. кн. Электроподвижной состав с асинхронными тяговыми двигателями, Н.А.Ротанов. М.: Транспорт, 1991, стр.14-15, или патент SU 1781805, МПК: Н02М 7/48, оп. 15.12.92 г.). Соблюдая определенную очередность открытия тиристоров и обеспечив коммутацию тока в них, получают вращающуюся МДС статорной обмотки, необходимую для создания электромагнитного момента. Для обеспечения нормальной работы схемы на входе преобразователя размещают индукционный накопитель энергии.

Известен вентильный электропривод постоянного тока, содержащий асинхронный двигатель с многофазной обмоткой и полупроводниковый коммутатор, выполненный по многофазной мостовой схеме, включенный между источником тока и фазными обмотками статора (см. патент SU 1775808, МПК: Н02К 29/00, оп. 15.11.92 г.).

Известна асинхронная вентильная машина, содержащая ротор, статор с трехфазной обмоткой, соединенной в звезду и подключенной к выходу мостового автономного инвертора, реализованного на полностью управляемых ключевых элементах - транзисторах (патент SU 1046863, МПК: Н02К 29/02, оп. 07.10.83 г.). На статоре размещена дополнительная трехфазная обмотка, обеспечивающая возможность непосредственного управления вентилями, однако наличие дополнительной обмотки не обеспечивает пуска двигателя, и для этого в схему введены дополнительные элементы.

Основным недостатком всех вышеупомянутых вентильных приводов является наличие большого количества коммутирующих элементов - по два и более на каждую фазу двигателя, что отрицательно сказывается на надежности его работы.

В качестве ближайшего аналога для заявляемого решения принят упомянутый выше вентильный электропривод патент SU №1775808, МПК: Н02К 29/00, оп. 15.11.92 г.

Общими признаками с заявляемым устройством являются следующие:

- наличие асинхронного двигателя с m-фазной статорной обмоткой,

- питание асинхронного двигателя от источника постоянного тока,

- наличие полностью управляемых ключевых элементов, обеспечивающих подключение фазных обмоток статора к источнику питания.

Раскрытие изобретения

Задачей заявляемого изобретения является упрощение схемы подключения асинхронного двигателя к источнику постоянного тока и повышение надежности его работы за счет уменьшения количества коммутирующих ключевых элементов, приходящихся на фазу двигателя.

Поставленная задача решена тем, что в асинхронном вентильном двигателе с питанием от источника постоянного тока, содержащем m-фазную статорную обмотку, подключенную к источнику питания посредством полностью управляемых ключевых элементов, согласно заявляемому изобретению на статоре размещено четное количество фазных обмоток, выполненных со средним выводом, средние выводы всех фазных обмоток подключены к одной клемме источника питания, а ко второй клемме источника питания через упомянутые ключевые элементы подключены концевые выводы n-ой обмотки, где n=1, 3, 5 и т.д., при этом концевые выводы (n+1)-ой обмотки соединены с концевыми выводами n-ой обмотки через диоды, включенные согласно по отношению к току в соответствующих секциях n-ой обмотки, а параллельно каждой секции (n+1)-ой обмотки включен конденсатор.

Принципиально иная, по сравнению с прототипом, схема включения фазных обмоток позволила исключить из схемы питания асинхронного двигателя инвертор тока как отдельное устройство и уменьшить вдвое количество коммутирующих элементов, приходящихся на фазу двигателя.

В основе работы заявляемого асинхронного электродвигателя лежит явление взаимной индукции, наводимой в секции соседней (n+1)-ой фазной обмотки при размыкании цепи питания соответствующей секции n-ой фазной обмотки, что поясняется конкретными примерами реализации устройства, приведенными ниже.

Обмотки статора работают попарно, в связи с чем количество фазных обмоток на статоре должно быть четным, т.е. m=2, 4, 6,.. Иначе говоря, асинхронный двигатель, выполненный согласно заявляемому решению, может быть двухфазным, четырехфазным и т.д.

Заявляемая схема подключения асинхронного двигателя к источнику постоянного тока обеспечивает создание пускового момента вращения на роторе, его раскручивание и дальнейшую работу без применения каких-либо дополнительных элементов.

Краткое описание чертежей

Заявляемое решение поясняется чертежами, где

На фиг.1 изображена схема асинхронного вентильного двигателя с двухфазной обмоткой статора.

На фиг.2 показаны временные графические зависимости тока на фазах двигателя.

На фиг.3 приведена схема асинхронного вентильного двигателя с четырехфазной обмоткой статора.

Осуществление изобретения

В общем случае обмотка статора является m-фазной, где m - четное число - 2, 4, 6 и т.д. Для простоты объяснения назовем n-ю обмотку, где n=1, 3, 5 и т.д. - главной, а соседнюю с ней (n+1)-ю обмотку - вспомогательной. С какой обмотки начинается отсчет - не важно, нумерация вводится условно, для наглядности объяснения.

Каждая фазная обмотка статора выполнена со средним выводом и состоит из двух изолированных секций с одинаковым числом витков. Средний вывод представляет собой конец обмотки первой секции фазы и начало ее второй секции. Средние выводы всех фаз подключены к одной клемме источника постоянной ЭДС (например, к положительной). Фазные обмотки соединены попарно таким образом, что концевые выводы n-ой обмотки, где n - натуральное число 1, 3, 5 и т.д., подключены ко второй (отрицательной) клемме источника питания через управляемые ключевые элементы, в качестве которых используют транзисторы. Концевые выводы ее соседней (n+1)-ой обмотки соединены с концевыми выводами соответствующей n-ой обмотки через диоды, включенные согласно по отношению к току в соответствующих секциях n-ой обмотки.

На фиг.1 приведена схема двухфазного асинхронного вентильного двигателя, выполненного согласно заявляемому изобретению. Асинхронный вентильный двигатель (см. фиг.1) содержит ротор 1 и статор 2 с главной L1L2 и вспомогательной L3L4 фазными обмотками, сдвинутыми в пространстве на 90 электрических градусов. Каждая обмотка выполнена со средним выводом, т.е. состоит из двух одинаковых секций L1 и L2, L3 и L4. Средние выводы фаз подключены к положительной клемме источника питания.

Концевые выводы секций L1 и L2 подключены к отрицательной клемме источника постоянного тока (постоянной ЭДС) через электронные ключи K1 и К2, выполненные в виде транзисторов, управляемых схемой управления (не показана).

Концевые выводы секций L3 и L4 подключены к концевым выводам секций L1 и L2 через диоды Д1 и Д2, включенные таким образом, что анод соответствующего диода подключен к соответствующему выводу секции главной обмотки (L1 или L2), а катод - к соответствующему выводу секции вспомогательной обмотки (L3 или L4).

Подключение диодов всегда должно быть согласовано с подключением фазных обмоток к источнику питания. Если изменить приведенную в примере полярность подключения фазных обмоток двигателя к источнику питания, то необходимо будет также изменить включение диодов на противоположное.

Параллельно секциям L3 и L4 вспомогательной обмотки подключены конденсаторы C1 и С2.

Устройство работает следующим образом.

Ключ K1 замкнут, ключ К2 разомкнут. Под действием ЭДС источника питания в секции L1 главной обмотки нарастает ток до определенного значения, магнитопровод главной обмотки накапливает энергию ωL1=L1·I2/2.

Размыкают ключ К1. Под действием ЭДС самоиндукции секции L1 главной обмотки происходит открытие диода Д1, и накопленная энергия ωL1 создает ток в цепи вспомогательной обмотки L3, при этом наличие в цепи конденсатора С2 позволяет уменьшить бросок напряжения на элементах схемы в момент размыкания ключа K1 и предотвратить его нежелательные последствия.

Магнитное поле в секции L1 уменьшается, а в секции L3 - нарастает. Уменьшение магнитного поля главной обмотки в совокупности с нарастающим полем вспомогательной обмотки создает смещение вектора магнитного поля в статоре двигателя от полюса главной обмотки к полюсу вспомогательной, которое захватывает ротор и создает на роторе вращающий момент.

Подключают к источнику питания вторую секцию L2 главной обмотки (замыкают ключ К2, ключ K1 разомкнут). Через заданное время схема управления размыкает ключ К2, и процесс повторяется, но уже для цепи элементов L2 Д2 C1 L4.

На роторе снова возникает вращающий момент, и ротор получает повторный «толчок», причем вращающий момент на роторе направлен в ту же сторону, что и на первом этапе.

Благодаря предложенной схеме подключения фазных обмоток, их выполнению со средним выводом и тому, что секции каждой фазной обмотки подключаются к источнику питания поочередно, в процессе каждого последующего такта железо статора перемагничивается, не уходя в насыщение.

Пульсации вращающегося магнитного поля сглаживаются благодаря инерционности ротора асинхронного двигателя, и последний быстро раскручивается.

Таким образом, предлагаемая схема включения асинхронного двигателя обеспечивает как получение пускового момента, так и дальнейшую работу двигателя.

Современная база полупроводниковых и микропроцессорных устройств позволяет реализовать необходимую схему управления коммутации ключей. Так, в действующей модели заявляемого двигателя схема управления была построена на основе микроконтроллера Atmega8515L, управляющего посредством драйвера IR2110L парой IGBT транзисторов IRG4PH50. В качестве диодов DLC цепочки применены диоды HFA16TA120.

Изменением периода коммутации ключей K1 и К2 можно регулировать частоту вращения ротора двигателя. Что также было подтверждено на экспериментальной модели двигателя, выполненной по схеме, приведенной на фиг.1. На фиг.2 приведены временные графические зависимости тока на фазах двигателя.

Можно повысить надежность двигателя, разместив на статоре две или три вышеописанных схемы, разнеся при этом обмотки в пространстве статора, а управляющие ключами импульсы - по времени. Подключение фазных обмоток может быть осуществлено как к одному, так и к разным источникам питания.

На фиг.3 приведена схема четырехфазного двигателя, выполненного согласно заявляемому изобретению. Коммутация ключей фазных обмоток L1L2 и L5L6 разнесена во времени, что позволило реализовать четырехфазный двигатель повышенной надежности.

При выходе из строя одной части схемы (пары фазных обмоток) двигатель будет продолжать работать.

Асинхронный вентильный двигатель с питанием от источника постоянного тока, содержащий m-фазную статорную обмотку, подключенную к источнику питания посредством полностью управляемых ключевых элементов, отличающийся тем, что на статоре размещено четное количество фазных обмоток, выполненных со средним выводом, средние выводы всех фазных обмоток подключены к одной клемме источника питания, а ко второй клемме источника питания через управляемые ключевые элементы подключены концевые выводы n-й обмотки, где n=1, 3, 5 и т.д., при этом концевые выводы (n+1)-й обмотки соединены с упомянутыми выводами n-й обмотки через диоды, включенные согласно по отношению к току в соответствующих секциях n-й обмотки, а параллельно каждой секции (n+1)-й обмотки включен конденсатор.

www.findpatent.ru