Возбуждения двигателя


Двигатели параллельного возбуждения

     СОДЕРЖАНИЕ:

  1. Естественные скоростная и механическая характеристики.
  2. Регулирование скорости посредством ослабления магнитного потока.
  3. Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики.
  4. Регулирование скорости посредством изменения напряжения якоря.
  5. Рабочие характеристики.

Естественные скоростная и механическая характеристики

Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

Скоростная и механическая характеристики двигателя определяются равенствами (7) и (9), представленными в статье "Общие сведения о двигателях постоянного тока", при U = const и iв = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными.

Если щетки находятся на геометрической нейтрали, при увеличении Iа поток Фδ несколько уменьшится вследствие действия поперечной реакции якоря. В результате этого скорость n, согласно выражению (7), представленному в статье "Общие сведения о двигателях постоянного тока", будет стремится возрасти. С другой стороны, падение напряжения Rа × Iа вызывает уменьшение скорости. Таким образом, возможны три  вида скоростной характеристики, изображенные на рис. 1: 1 – при преобладании влияния Rа × Iа; 2 – при взаимной компенсации влияния Rа × Iа и уменьшения Фδ; 3 – при преобладании влияния уменьшения Фδ.

Ввиду того что изменение Фδ относительно мало, механические характеристики n = f(M) двигателя параллельного возбуждения, определяемые равенством (9), представленным в статье "Общие сведения о двигателях постоянного тока", при U = const и iв = const совпадают по виду с характеристиками n = f(Iа) (рисунок 1). По этой же причине эти характеристики практически прямолинейны.

Рисунок 1. Виды естественных скоростных и механических характеристик двигателя параллельного возбуждения

Характеристики вида 3 (рисунок 1) неприемлемы по условиям устойчивой работы (смотрите статью "Регулирование скорости вращения и устойчивость работы двигателей постоянного тока"). Поэтому двигатели параллельного возбуждения изготавливаются со слегка падающими характеристиками вида 1 (рисунок 1). В современных высокоиспользованных машинах ввиду довольно сильного насыщения зубцов якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рисунок 1) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, намагничивающая сила которой составляет до 10% от намагничивающей силы параллельной обмотки возбуждения. При этом уменьшение Фδ под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей,  а двигатель с такой обмоткой по-прежнему называется двигателем параллельного возбуждения.

Изменение скорости вращения Δn (рисунок 1) при переходе от холостого хода (Iа = Iа0) к номинальной нагрузке (Iа = Iан) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2 – 8% от nн. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и прочее).

Рисунок 2. Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения

Регулирование скорости посредством ослабления магнитного потока

Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения Rр.в (смотрите рисунок 1, б в статье "Общие сведения о генераторах постоянного тока" и рисунок 1 в статье "Пуск двигателей постоянного тока"). При отсутствии добавочного сопротивления в цепи якоря (Rра = 0) и U = const характеристики n = f(Iа) и n = f(M), определяемые равенствами (7) и (9), представленными в статье "Общие сведения о двигателях постоянного тока", для разных значений Rр.в, iв или Фδ имеют вид, показанный на рисунке 2. Все характеристики n = f(Iа) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе Iа, который, согласно выражению (5), представленному в статье "Общие сведения о двигателях постоянного тока", равен

Iа = U / Rа .

Однако механические характеристики n = f(M) пересекают ось абсцисс в разных точках.

Нижняя характеристика на рисунке 2 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой Mст = f(n) для рабочей машины, соединенной с двигателем (жирная штриховая линия на рисунке 2).

Точка холостого хода двигателя (M = M0, Iа = Iа0) лежит несколько правее оси ординат на рисунке 2. С увеличением скорости вращения n вследствие увеличения механических потерь M0 и Iа0 также увеличиваются (тонкая штриховая линия на рисунке 2).

Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения n, то Eа [смотрите выражение (6) в статье "Общие сведения о двигателях постоянного тока"] будет увеличиваться, а Iа и M будут, согласно равенствам (5) и (8), представленным в статье "Общие сведения о двигателях постоянного тока", уменьшаться. При Iа = 0 и M = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости Iа и M изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рисунке 2 левее оси ординат).

Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1 : 2. Изготавливаются также двигатели с регулированием скорости таким способом в пределах до 1 : 5 или даже 1 : 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов (смотрите статью "Регулирование скорости вращения и устойчивость работы двигателей постоянного тока") или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики

Если последовательно в цепь якоря включить добавочное сопротивление Rра (рисунок 3, а), то вместо выражений (7) и (9), представленных в статье "Общие сведения о двигателях постоянного тока", получим

(1)

 

(2)

Сопротивление Rра может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.

Рисунок 3. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а) и соответствующие механические и скоростные характеристики (б)

Характеристики n = f(M) и n = f(Iа) для различных значений Rра = const при U = const и iв = const изображены на рисунке 3, б (Rра1 < Rра2 < Rра3). Верхняя характеристика (Rра = 0) является естественной. Каждая из характеристик пересекает ось абсцисс  (n = 0) в точке, для которой

Продолжения этих характеристик под осью абсцисс на рисунке 3 соответствуют торможению двигателя противовключением. В этом случае n < 0, э. д. с. Eа имеет противоположный знак и складывается с напряжением сети U, вследствие чего

а момент двигателя M действует против направления вращения и является поэтому тормозящим.

Если в режиме холостого хода (Iа = Iа0) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режим Iа = 0, а затем Iа изменит направление и машина перейдет в режим генератора (участки характеристик на рисунке 3, б слева от оси ординат).

Как видно из рисунка 3, б, при включении Rра характеристики становятся менее жесткими, а при больших значениях Rра – круто падающими, или мягкими.

Если кривая момента сопротивления Mст = f(n) имеет вид, изображенный на рисунке 3, б жирной штриховой линией, то значения n при установившемся режиме работы для каждого значения Rра определяются точками пересечения соответствующих кривых. Чем больше Rра, тем меньше n и ниже коэффициент полезного действия (к. п. д.).

Регулирование скорости посредством изменения напряжения якоря

Регулирование скорости посредством изменения напряжения якоря может осуществляется с помощью агрегата "генератор – двигатель" (Г – Д), называемого также агрегатом Леонарда (рисунок 4). В этом случае первичный двигатель ПД (переменного тока, внутреннего сгорания и тому подобный) вращает с постоянной скоростью генератор постоянного тока Г. Якорь генератора непосредственно подключен к якорю двигателя постоянного тока Д, который служит приводом рабочей машины РМ. Обмотки возбуждения генератора ОВГ и двигателя ОВД питаются от независимого источника – сети постоянного тока (рисунок 4) или от возбудителей (небольших генераторов постоянного тока) на валу первичного двигателя ПД. Регулирование тока возбуждения генератора iв.г должно производиться практически от нуля (на рисунке 4 с помощью реостата, включенного по потенциометрической схеме). При необходимости реверсирования двигателя можно изменить полярность генератора (на рисунке 4 с помощью переключателя П).

Рисунок 4. Схема агрегата "генератор – двигатель" для регулирования скорости двигателя независимого возбуждения

Пуск двигателя Д и регулирование его скорости осуществляют следующим образом. При максимальном iв.д и iв.г = 0 производят пуск первичного двигателя ПД. Затем плавно увеличивают iв.г, и при небольшом напряжении генератора U двигатель Д придет во вращение. Регулируя, далее, U в пределах до U = Uн, можно получить любые скорости вращения двигателя до n = nн. Дальнейшее увеличение n возможно путем уменьшения iв.д. Для реверсирования двигателя уменьшают iв.г до нуля, переключают ОВГ и снова увеличивают iв.г от значения iв.г = 0.

Когда рабочая машина создает резко пульсирующую нагрузку (например, некоторые прокатные станы) и нежелательно, чтобы пики нагрузки полностью передавались первичному двигателю или в сеть переменного тока, двигатель Д можно снабдить маховиком (агрегат Г – Д – М, или агрегат Леонарда – Ильгнера). В этом случае при понижении n во время пика нагрузки часть этой нагрузки покрывается за счет кинетической энергии маховика. Эффективность действия маховика будет больше при более мягкой характеристике двигателя ПД или Д.

В последнее время все чаще двигатель ПД и генератор Г заменяют полупроводниковым выпрямителем с регулируемым напряжением. В этом случае рассматриваемый агрегат называют также вентильным (тиристорным) приводом.

Рассмотренные агрегаты используются при необходимости регулирования скорости вращения двигателя с высоким к. п. д. в широких пределах – до 1 : 100 и более (крупные металлорежущие станки, прокатные станы и так далее).

Отметим, что изменение U с целью регулирования n по схеме рисунка 1, б, показанного в статье "Общие сведения о генераторах постоянного тока" и рисунка 3, а, не дает желаемых результатов, так как одновременно с изменением напряжения цепи якоря изменяется пропорционально U также ток возбуждения. Так как регулирование U можно производить только от значения U = Uн вниз, то вскоре магнитная цепь окажется насыщенной, вследствие чего U и iв будут изменяться пропорционально друг другу. Согласно равенству (7), представленному в статье "Общие сведения о двигателях постоянного тока"), n при этом существенным образом не меняется.

В последнее время все больше распространяется так называемое импульсное регулирование двигателей постоянного тока. При этом цепь якоря двигателя питается от источника постоянного тока с постоянным напряжением через тиристоры, которые периодически, с частотой 1 – 3 кГц включаются и отключаются. Чтобы сгладить при этом кривую тока якоря, на его зажимах подключаются конденсаторы. Напряжение на зажимах якоря в этом случае практически постоянно и пропорционально отношению времени включения тиристоров ко времени продолжительности всего цикла. Таким образом, импульсный метод позволяет регулировать скорость вращения двигателя при его питании от источника с постоянным напряжением в широких пределах без реостата в цепи якоря и практически без дополнительных потерь. Таким же образом, без пускового реостата и без дополнительных потерь, может производиться пуск двигателя.

Импульсный способ регулирования в экономическом отношении весьма выгоден для управления двигателями, работающими в режимах переменной скорости вращения с частыми пусками, например на электрифицированном транспорте.

Рисунок 5. Рабочие характеристики двигателя параллельного возбуждения Pн = 10 кВт, Uн = 200 В, nн = 950 об/мин

Рабочие характеристики

Рабочие характеристики представляют собой зависимости потребляемой мощности P1, потребляемого тока I, скорости n, момента M, и к. п. д. η от полезной мощности P2 при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рисунке 5.

Одновременно с увеличением мощности на валу P2 растет и момент на валу M. Поскольку с увеличением P2 и M скорость n несколько уменьшается, то M ∼ P2 / n растет несколько быстрее P2. Увеличение P2 и M, естественно, сопровождается увеличением тока двигателя I. Пропорционально I растет также потребляемая из сети мощность P1. При холостом ходе (P2 = 0) к. п. д. η = 0, затем с увеличением P2 сначала η быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря η снова начинает уменьшаться.

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

www.electromechanics.ru

Двигатель последовательного возбуждения

 

В этом двигателе обмотка возбуждения включена последова­тельно в цепь якоря (рис. 24, а), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = Iа = Iв. При небольших нагрузках магнитная система машины не насыщена и зависимость магнитно­го потока от тока нагрузки прямо пропорциональна, т. е. Ф = kфIа . В этом случае найдем по (25.24) электромагнитный момент:

Формула частоты вращения (29.5) примет вид

(29.15)

Здесь kф– коэффициент пропорциональности.

Таким образом, вращающий момент двигателя при ненасы­щенном состоянии магнитной системы пропорционален квадрату тока, а частота вращения обратно пропорциональна току нагрузки.

Рис. 24. Двигатель последовательного возбуждения:

а – принципиальная схема; б – рабочие характеристики;

в – механические характеристики; 1 – естественная характеристика;

2 – искусственная характе­ристика

На рис. 24, б представлены рабочие характеристики М = f(I)и n = f(I)двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки практически не изменяется и характеристики двигате­ля приобретают почти прямолинейный характер. Характери­стика частоты вращения двигателя последовательного возбуж­дения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой.

При уменьшении нагрузки двигателя последовательного воз­буждения частота вращения резко увеличивается и при нагрузке меньше 25% от номинальной может достигнуть опасных для дви­гателя значений («разнос»). Поэтому работа двигателя последова­тельного возбуждения или его пуск при нагрузке на валу меньше 25% от номинальной недопустима.

Для более надежной работы вал двигателя последовательного возбуждения должен быть жестко соединен с рабочим механиз­мом посредством муфты и зубчатой передачи. Применение ремен­ной передачи недопустимо, так как при обрыве или сбросе ремня может произойти «разнос» двигателя. Учитывая возможность ра­боты двигателя на повышенных частотах вращения, двигатели по­следовательного возбуждения, согласно ГОСТу, подвергают ис­пытанию в течение 2 мин на превышение частоты вращения на 20% сверх максимальной, указанной на заводском щите, но не меньше чем на 50% сверх номинальной.

Механические характеристики двигателя последовательного возбуждения n = ¦(M) представлены на рис. 24, в. Резко падаю­щие кривые механических характеристик (естественная 1 и искус­ственная 2) обеспечивают двигателю последовательного возбуж­дения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значе­ние, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент. Эта особен­ность двигателей последовательного возбуждения является одной из причин их широкого применения в качестве тяговых двигателей на транспорте, а также в качестве крановых двигателей в подъем­ных установках, т. е. во всех случаях электропривода с тяжелыми условиями пуска и сочетания значительных нагрузок на вал двига­теля с малой частотой вращения.

Номинальное изменение частоты вращения двигателя после­довательного возбуждения

(29.16)

где – частота вращения при нагрузке двигателя, составляю­щей 25% от номинальной.

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо маг­нитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат Rрг(рис. 25, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вра­щения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощно­сти двигателя этот способ неэкономичен из-за больших потерь энергии в Rрг. Кроме того, реостат Rрг,рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим.

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 25, б). Так, при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух дви­гателей на каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей воз­можно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько одинаковых тяговых двигателей.

Изменение подводимого к двигателю напряжения возможно также при питании двигателя от источника постоянного тока с регулируемым напряжением. При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 26).

Рис. 25. Регулирование частоты вращения двигателей последователь­ного возбуждения

 

Рис. 26. Механические характеристики последовательного возбуждение при изменении подводимого напряжения

Регулировать частоту вращения двигателя изменением маг­нитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом rрг, секционированием обмотки возбужде­ния и шунтированием обмотки якоря реостатом rш. Включение реостата rрг,шунтирующего обмотку возбуждения (рис. 25, в), а также уменьшение сопротивления этого реостата ведет к сниже­нию тока возбуждения Iв = Ia – Iрг, а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего (см. рис. 25, а), применяется чаще и оценива­ется коэффициентом регули­рования kpr = (Ipr/Ia)×100%. Обычно сопротивление рео­стата rрг принимается таким, чтобы kpr ³50%.

При секционировании об­мотки возбуждения (рис. 25, г) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунтировании обмотки якоря реостатом rш(см. рис. 25, в) увеличивается ток возбуждения Iв = Iв + Iв, что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко.

 

Похожие статьи:

poznayka.org

35. Характеристика дпт с последовательным возбуждением.

Схема двигателя. Схема двигателя последовательного возбуждения изображена на рис. 1.31. Ток, потребляемый двигателем из сети, протекает по якорю и обмотке возбуждения, соединенной с якорем последовательно. Поэтому I =  Iя = Iв.

Также последовательно с якорем включен пусковой реостат Rп, который, как и у двигателя параллельного возбуждения, после выпуска выводится.

Уравнение механической характеристики. Уравнение механической характеристики может быть получено из формулы (1.6). При токах нагрузки, меньших (0,8 – 0,9) Iном, можно считать, что магнитная цепь двигателя не насыщена и магнитный поток Ф пропорционален току I : Ф = kI, где k = const. (При больших токах коэффициент k несколько уменьшается). Заменяя в (1.2) Ф, получаем М = См kIоткуда

Iя =

Ф =.                                           (1.10)

Подставим Ф в (1.6):

n = (1.11)

График, соответствующий (1.11), представлен на рис. 1.32 (кривая 1). При изменении момента нагрузки частота вращения двигателя резко изменяется – характеристики подобного типа называются «мягкими».  При  холостом  ходе,  когда М » 0, частота вращения двигателя безгранично возрастает и двигатель «идет вразнос». Ток, потребляемый двигателем последовательного возбуждения, при увеличении нагрузки растет в меньшей степени, чем у двигателя параллельного возбуждения. Это объясняется тем, что одновременно с ростом тока растет поток возбуждения и вращающий момент становится равным моменту нагрузки при меньшем токе. Эта особенность двигателя последовательного возбуждения используется там, где есть значительные механические перегрузки двигателя: на электрифицированном транспорте, в подъемно-транспортных механизмах и других устройствах.

Регулирование частоты вращения. Регулирование частоты вращения двигателей постоянного тока, как указывалось выше, возможно тремя способами.

Изменение возбуждения можно осуществить включением реостата Rр1 параллельно обмотке возбуждения (см. рис. 1.31) или включением реостата Rр2 параллельно якорю. При включении реостата Rр1 параллельно обмотке возбуждения магнитный поток Ф можно уменьшать от номинального до минимального Фmin. Частота вращения двигателя при этом будет увеличиваться (в формуле (1.11) уменьшается коэффициент k). Механические характеристики, соответствующие этому случаю, показаны на рис. 1.32, кривые 2, 3. При включении реостата параллельно якорю ток в обмотке возбуждения, магнитный поток и коэффициент k увеличиваются, а частота вращения двигателя уменьшается. Механические характеристики для этого случая изображены на рис. 1.32, кривые 4, 5. Однако регулирование вращения реостатом, включенном параллельно якорю, применяется редко, так как потери мощности в реостате и КПД двигателя уменьшается.

Изменение частоты вращения путем изменения сопротивления цепи якоря возможно при включении реостата Rр3 последовательно в цепь якоря (рис. 1.31). Реостат Rр3 увеличивает сопротивление цепи якоря, что ведет к уменьшению частоты вращения относительно естественной характеристики. (В (1.11) вместо Rя надо подставить Rя + Rр3.) Механические характеристики при этом способе регулирования представлены на рис. 1.32, кривые 6, 7. Подобное регулирование используется сравнительно редко из-за больших потерь в регулировочном реостате.

Наконец, регулирование частоты вращения изменением напряжения сети, как и в двигателях параллельного возбуждения, возможно только в сторону уменьшения частоты вращения при питании двигателя от отдельного генератора или управляемого выпрямителя. Механическая характеристика при этом способе регулирования изображена на рис. 1.32, кривая 8. При наличии двух двигателей, работающих на общую нагрузку, они с параллельного соединения могут переключаться на последовательное, напряжение U на каждом двигателе при этом уменьшается вдвое, соответственно уменьшается и частота вращения.

Тормозные режимы двигателя последовательного возбуждения. Режим генераторного торможения с отдачей энергии в сеть в двигателе последовательного возбуждения невозможен, так как получить частоту вращения n>nx не представляется возможным (nх = ).

Режим торможения противовключением можно получить, так же как в двигателе параллельного возбуждения, путем переключения выводов обмотки якоря или обмотки возбуждения.

studfiles.net

РАДИОЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА » Характеристики двигателей последовательного возбуждения

В двигателе последовательного возбуждения, который иногда называют сериесным, обмотка возбуждения включена последовательно с обмоткой якоря (рис. 1). Для такого двигателя справедливо равенство Iв=Ia=I, следовательно, его магнитный поток Ф зависит от нагрузки Ф=f (Ia). В этом главная особенность двигателя последовательного возбуждения и она определяет его свойства.

Рис. 1  — Схема электродвигателя последовательного возбуждения

Скоростная характеристика представляет зависимость n=f (Ia) при U=Uн. Она не может быть точно выражена аналитически во всем диапазоне изменения нагрузки от холостого хода до номинальной из-за отсутствия прямой пропорциональной зависимости между Ia и Ф. Приняв допущение Ф=кIa, запишем аналитическую зависимость скоростной характеристики в виде

При увеличении тока нагрузки гиперболический характер скоростной характеристики нарушается и приближается к линейному, так как при насыщении магнитной цепи машины с увеличением тока Ia магнитный поток остается практически постоянным (рис. 2). Крутизна характеристики зависит от величины Σr.

Рис. 2 — Скоростные характеристики двигателя  последовательного возбуждения

Таким образом, скорость сериесного двигателя резко изменяется с изменением нагрузки и такая характеристика называется «мягкой».

При малых нагрузках (до 0,25 Iн) скорость двигателя после­довательного возбуждения может возрасти до опасных пределов (двигатель идет «вразнос»), поэтому работа таких двигателей на холостом ходу не допускается.

Моментная характеристика — это зависимость M=f (Ia) при U=Uн. Если предположить, что магнитная цепь не насыщена, то Ф=кIa и, следовательно , имеем

М=смIaФ=смкIa2

Это уравнение квадратичной параболы.

Кривая моментной характе­ристики изображена на рисунке 3.8. По мере увеличения тока Ia  магнитная система двигателя насыщается, и характеристика постепенно приближается к прямой.

Рис. 3 — Моментная  характеристика двигателя  последовательного возбуждения

Таким образом, электродвигатель последовательного возбуждения развивает момент, пропорциональный Ia2, что и определяет главное его преимущество. Так как при пуске Ia=(1,5...2) Iн, то двигатель последовательного возбуждения развивает значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения, поэтому он широко используется в условиях тяжелых пусков и при возможных перегрузках.

Механическая характеристика представляет собой зависимость n=f (M) при U=Uн. Аналитическое выражение этой характеристики может быть получено только в частном случае, когда магнитная цепь машины ненасыщенна и поток Ф пропорционален току якоря Ia. Тогда можно записать

Решая совместно уравнения , получаем

т.е. механическая характеристика двигателя последовательного возбуждения, также как и скоростная, имеет гиперболический характер (рис. 4).

Рис. 4 — Механические характеристики двигателя последовательного возбуждения

Характеристика КПД двигателя последовательного возбуждения имеет обычный для электродвигателей вид (рис. 2 ).

www.radioingener.ru

Двигатель постоянного тока последовательного возбуждения (ДПТ ПВ) - Help for engineer

Двигатель постоянного тока последовательного возбуждения (ДПТ ПВ)

Двигатель постоянного тока последовательного возбуждения представляет собой электрическую машину постоянного тока, в которой обмотка возбуждения подключена последовательно с обмоткой якоря. Для данного типа двигателей справедливо равенство: ток, протекающий в якорной обмотке, равен току в обмотке возбуждения I=Iв=Iя, что является его главной отличительной особенностью от остальных типов двигателей.

Рисунок 1 – Схема подключения ДПТ ПВ

Стоит обратить внимание на зависимость магнитного потока от нагрузки Ф=f(Iя). Если двигатель будет работать на 25% своей номинальной мощности или меньше, то магнитный поток будет крайне мал, что приведет к постоянному увеличению скорости вала. Препятствовать разгону будут лишь механические потери, и двигатель пойдет в "разнос". Это приведет к быстрому выходу машины из строя. Все описанное в соответствии с формулой: 

 

Исходя из вышесказанного, ДПТ ПВ нельзя использовать на холостом ходу, постоянно требуется контроль тока якоря. С этой целью последовательно с обмоткой возбуждения устанавливают минимальное токовое реле, которое замыкает якорную цепь только в том случае, если нагрузка на валу достаточна для поддержания номинальной работы двигателя.

Пуск двигателя производят с пусковым сопротивлением, также включенным последовательно в цепь якоря. После пуска это сопротивление выводят, и машина продолжает работать в номинальном режиме на своей естественной характеристике.

Механическая и электромеханическая характеристики ДПТ ПВ одинаковы и имеют гиперболический вид (рисунок 2).

Рисунок 2 – Механическая и электромеханическая характеристики ДПТ ПВ

Скорость вращения ротора двигателя постоянного тока с последовательным возбуждением производится регулированием двух параметров:

    - питающее напряжение;
    - магнитный поток полюсов двигателя.

 

Для изменения скорости при помощи входного напряжения, в роторную цепь вводят специальное добавочное сопротивление, или же можно использовать пусковой реостат и для этой цели. Но следует заметить, данный способ является крайне неэкономичным и нецелесообразным, так как большое количество энергии будет рассеиваться на реостате.

Регулировка скорости изменением магнитного потока, осуществляется включением реостата параллельно обмотке возбуждения. Изменяя сопротивление – меняем ток, протекающий через обмотку возбуждения. Иногда обмотку возбуждения разбивают на несколько параллельных секций. В некоторых типах двигателей предусмотрена возможность отключения витков обмотки, так добиваются того же эффекта регулирования. 

Тормозные режимы

В данном двигателе отсутствует режим генераторного торможения с отдачей энергии в сеть. На рисунке 2 вы можете видеть, что ветка гиперболы естественной характеристики не пересекает ось ординат (отрицательная скорость отсутствует).

Торможение противовключением получают путем переключения выводов якорной обмотки.

 ДПТ ПВ нельзя соединять с механизмом при помощи ременной передачи, так как соскакивание или разрыв ремня приведет к разгрузке двигателя, что вызовет мгновенное повышение числа оборотов и последующему выходу из строя.

ДПТ ПВ нашли свое основное применение в качестве тяговых двигателей подвижного состава электровозов общего назначения, электровозов метрополитена и в трамваях.

Добавить комментарий

h4e.ru


Смотрите также