Воздух двигатель


Cистема питания двигателя воздухом

Строительные машины и оборудование, справочник

Категория:

   Автомобили Камаз Урал

Cистема питания двигателя воздухом

Система питания двигателя воздухом обеспечивает забор воздуха из атмосферы, очистку его от пыли и распределение очищенного воздуха по цилиндрам двигателя.

По конструкции системы питания воздухом двигателей автомобилей КамАЗ-5320, КамАЗ-4310 и Урал-4320 в основном аналогичны. Они состоят из воздушного фильтра., уплотнителя, воздухозаборника, впускных коллекторов, эжектора, индикатора, патрубков и трубопроводов, соединяющих воздухозаборник, фильтр, впускные коллекторы и эжектор отсоса пыли. На рис. 2.48 представлена система питания двигателя воздухом автомобиля КамАЗ-5320; на рис. 2.49 конструкция воздушного фильтра системы питания воздухом двигателей автомобилей КамАЗ-5320 и КамАЗ-4310, на которых воздушный фильтр установлен сзади кабины.

Незначительное конструктивное отличие в системах питания двигателей воздухом автомобилей КамАЗ-5320 и КамАЗ-4310 имеют системы забора воздуха. У автомобиля КамАЗ-5320 эта система включает в себя воздухозаборник (рис. 2.48), трубу воздухозаборника и входную трубу воздухоочистителя, соединенных между собой уплотнителем; у автомобиля КамАЗ-4310 она состоит из воздухозаборника, трубы воздухозаборника, переходника трубы и уплотнителя, соединяющего между собой воздушный фильтр с переходником.

Рис. 2.48. Система питания воздухом двигателя автомобиля КамАЗ-5320:1 — воздушный фильтр; 2 — входная труба к воздушному фильтру; 3 — уплотнитель; 4 — кронштейн кабины; 5 — труба воздухозаборника; 6 — хомут; 7 — воздухозаборник с сеткой; 8 — выходная труба из воздушного фильтра; 9 — патрубок отбора пыли

На автомобиле Урал-4320 в системе питания двигателя воздухом изменены конструкция корпуса фильтра, деталей его установки и крепления, а также системы забора воздуха вследствие установки воздушного фильтра на двигателе под капотом кабины.

Уплотнитель представляет собой гофрированный резиновый патрубок, внутрь которого вставлен нажимной диск, служащий опорой для распорной пружины. Последняя обеспечивает герметичность соединения уплотнителя 3 с трубой 5 воздухозаборника (КамАЗ-5320) или с переходником (КамАЗ-4310).

Эжектор обеспечивает отсос пыли из воздушного фильтра за счет энергии выхлопных газов. Он представляет из себя трубку диаметром 30 мм, один конец которой установлен внутри выхлоп-лого патрубка глушителя в зоне максимального разрежения, другой конец соединен с патрубком 9 отбора пыли с воздушного фильтра. Эжектор снабжен заслонкой с рубашкой, имеющей два положения: «Открыто» и «Закрыто». Заслонка закрывается только при преодолении бродов.

Рис. 2.49. Воздушный фильтр системы питания воздухом двигателей автомобилей КамАЗ-5320 и КамАЗ-4310:1 — корпус; 2 — патрубок отбора пыли; 3 — фильтрующий элемент; 4 — гайка; 5 — крышка; 6 — застежка; 7 — верхняя крышка; 8 — входной патрубок; 9— выходной патрубок

Индикатор сигнализирует о необходимости обслуживания воздушного фильтра. По мере засорения последнего возрастает разрежение во впускных коллекторах, снижающее мощность двигателя и ухудшающее его работу. По достижении предельно допустимой засоренности воздушного фильтра, что соответствует разрежению во впускных коллекторах 700 мм вод. ст., срабатывает индикатор, установленный на левом впускном коллекторе двигателя.

Воздушный фильтр сухого типа, двухступенчатый, с автоматическим отсосом пыли обеспечивает очистку поступающего в двигатель воздуха от пыли. Он состоит из корпуса (рис. 2.49), внутри которого на входе патрубка прикреплена инерционная решетка, фильтрующего элемента и крышки. Герметичность соединения крышки с корпусом обеспечивается уплотнительным кольцом.

Фильтрующий элемент состоит из наружного и внутреннего кожухов, изготовленных из перфорированной стали, и гофрированного фильтрующего картона, установленного внутри кожухов. К торцевым частям кожухов и фильтрующего картона приклеены специальным клеем металлические крышки. В корпусе фильтрующий элемент крепится гайкой.

Впускные коллекторы служат для распределения воздуха по цилиндрам. Через паронитовые прокладки они крепятся на боковых поверхностях головок цилиндров двигателя и соединяются между собой переходником. Стыки соединений уплотнены резиновой прокладкой.

Работа системы питания двигателя воздухом заключается в следующем. При пуске и работе двигателя воздух под воздействием разрежения, создаваемого в цилиндрах, засасывается через воздухозаборник, одновременно проходя предварительную очистку в сетке воздухозаборника, и через трубу воздухозаборника поступает в воздушный фильтр. Очистка воздуха в воздушном фильтре двухступенчатая. Первая ступень очистки воздуха осуществляется вследствие резкого изменения направления потока воздуха в инерционной решетке фильтра, где крупные частицы пыли отделяются и через патрубок отбора пыли под действием разрежения эжектора выбрасываются с выпускными газами в атмосферу. Вторая ступень очистки воздуха производится в картонном фильтрующем элементе. Проходя через поры карФона, воздух на его поверхности оставляет мелкие частицы ныли. Очищенный воздух через патрубок и соединительные трубы попадает в коллекторы, распределяющие воздух по цилиндрам двигателя.

Читать далее: Техническое обслуживание системы питания двигателя воздухом

Категория: - Автомобили Камаз Урал

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Автомобиль на сжатом воздухе — Русский Топ

Первый в мире серийный автомобиль с двигателем, работающим на сжатом воздухе, выпустила индийская компания Tata, известная на весь мир производством дешевых транспортных средств для небогатых людей.

Автомобиль Tata OneCAT весит 350 кг и может проезжать на одном запасе сжатого до давления в 300 атмосфер воздуха 130 км, разгоняясь при этом до 100 километров в час. Но такие показатели возможны только при максимально заполненных баках. Чем меньше плотность воздуха в них, тем ниже становится показатель максимальной скорости.

4 баллона, выполненные из углепластика с кевларовой оболочкой, длиной в 2 и диаметром в четверть метра каждый, расположены под днищем, вмещают 400 литров сжатого воздуха под давлением в 300 бар.

Внутри там всё очень простенько:

Но это объяснимо, поскольку автомобиль позиционируется в основном для использования в такси. Кстати, задумка небезинтересная — в отличие от электромобилей с их проблемно утилизируемыми аккумуляторами и низким КПД заряд-разрадного цикла (от 50% до 70% в зависимости от уровня токов заряда и разряда), сжатие воздуха, его хранение в баллоне и последующее использование довольно экономично и экологично.

Если заправлять автомобиль Tata OneCAT воздухом на компрессорной станции, это займет три-четыре минуты. «Подкачка» с помощью встроенного в машину мини-компрессора, работающего от розетки, длится три-четыре часа. «Воздушное топливо» стоит относительно дешево: если перевести его в бензиновый эквивалент, то получится, что машина расходует около литра на 100 км пути.

В пневмомобиле обычно нет никакой трансмиссии – ведь пневмодвигатель выдаёт максимальный крутящий момент сразу – даже в неподвижном состоянии. Воздушный двигатель также практически не требует профилактики, нормативный пробег между двумя техосмотрами составляет ни много ни мало 100 тысяч километров. А еще он практически не нуждается в масле — мотору хватит литра «смазки» на 50 тысяч километров пробега (для обычного авто потребуется порядка 30 литров масла).

Секрет нового автомобиля заключается в том, что его четырехцилиндровый двигатель объемом в 700 кубиков и весом всего в 35 килограммов работает на принципе смешивания сжатого воздуха с наружным, атмосферным воздухом. Этот силовой агрегат напоминает обычный двигатель внутреннего сгорания, но цилиндры у него разного диаметра — двое малых, приводных, и двое больших, рабочих. При работе двигателя наружный воздух засасывается в малые цилиндры, сжимается там поршнями и нагревается. Затем он выталкивается в два рабочих цилиндра и смешивается там с холодным сжатым воздухом, поступающим из бака. В результате воздушная смесь расширяется и приводит в движение рабочие поршни, а они — коленчатый вал двигателя.

Поскольку никакого сгорания в двигателе не происходит, его «выхлопными газами» будет только отработанный чистый воздух.

Разработчики воздушного двигателя из компании MDI подсчитали суммарный энергетический КПД в цепочке «нефтеперегонный завод – автомобиль» для трёх видов привода – бензинового, электрического и воздушного. И оказалось, что КПД воздушного привода составляет 20 процентов, что в два с лишним раза превышает КПД стандартного бензинового мотора и в полтора раза – КПД электропривода. К тому же сжатый воздух можно непосредственно запасать впрок, используя нестабильные возобновляемые источники энергии, вроде ветрогенераторов — тогда КПД получается еще выше.

При снижении температуры до –20С запас энергии пневмопривода снижается на 10% без каких-либо других вредных воздействий на его работу, в то время как запас энергии электрических батарей уменьшится примерно в 2 раза.

Кстати, отработанный в пневмодвигателе воздух имеет низкую температуру и может быть использован для охлаждения салона автомобиля в жаркое время года, то есть кондиционер вы получаете практически нахаляву, без лишних затрат энергии. Зато отопитель, увы, придется делать автономным. Но это куда лучше, чем у электромобиля — который вынужден тратить энергию как на отопление, так и на охлаждение.

Кстати, баллоны из стекло-углеволокна довольно безопасны — при повреждении они не взрываются, в них лишь появляются трещины, через которые воздух выходит наружу.

topru.org

Экологичные авто | Журнал Популярная Механика

MDI AIRpod — это нечто среднее между автомобилем и мотоциклом, прямой аналог мотоколяски-«инвалидки», как ее частенько называли в СССР. Благодаря 5,45-сильному воздушному двигателю трехколесная малолитражка массой всего 220 кг может разогнаться до 75 км/ч, а запас ее хода составляет 100 км в базовом варианте или 250 км в более серьезной конфигурации. Интересно, что у AIRpod вообще нет руля — машина управляется джойстиком. В теории она может передвигаться как по дорогам общего пользования, так и по велодорожкам.

У AIRpod есть все шансы на серийное производство, поскольку в городах с развитой велоструктурой, например в Амстердаме, такие машинки могут быть востребованы. Одна заправка воздухом на специально оборудованной станции занимает около полутора минут, а стоимость передвижения составляет в итоге порядка 0,5 на 100 км — дешевле просто некуда. Тем не менее заявленный срок серийного производства (весна 2014 года) уже прошел, а воз и ныне там. Возможно, MDI AIRpod появится на улицах европейских городов в 2015-м.

O2 Pursuit Кроссовый мотоцикл, построенный австралийцем Дином Бенстедом на шасси Yamaha, способен разгоняться до 140 км/ч и безостановочно ехать в течение трех часов на скорости 60 км/ч. Воздушный двигатель системы Анжело ди Пьетро весит всего лишь 10 кг.

Второй предсерийный концепт — это известный проект индийского гиганта Tata, автомобиль MiniCAT. Проект был запущен одновременно с AIRpod, но, в отличие от европейцев, индусы заложили в программу нормальный, полноценный микроавтомобиль с четырьмя колесами, багажником и традиционной компоновкой (в AIRpod, заметим, пассажиры и водитель сидят спинами друг к другу). Масса Tata чуть побольше, 350 кг, максимальная скорость — 100 км/ч, запас хода — 120 км, то есть MiniCAT в целом похож на машину, а не на игрушку. Интересно, что в компании Tata не мучились с разработкой воздушного двигателя «с нуля», а за $28 млн приобрели права на использование разработок MDI (что позволило последней удержаться на плаву) и усовершенствовали двигатель для приведения в движение более крупного транспортного средства. Одна из фишек этой технологии — использование тепла, выделяющегося при охлаждении расширяющегося воздуха, для нагрева воздуха при заправке баллонов.

Изначально Tata собиралась поставить MiniCAT на конвейер в середине 2012 года и производить порядка 6000 единиц в год. Но обкатка продолжается, а серийное производство отложено до лучших времен. За время разработки концепт успел сменить имя (ранее он назывался OneCAT) и дизайн, так что какая его версия поступит в итоге в продажу, не знает никто. Кажется, даже представители Tata.

На двух колесах

Чем легче автомобиль на сжатом воздухе, тем он более эффективен в плане эксплуатационных и экономических показателей. Логичный вывод из этого утверждения — почему бы не сделать скутер или мотоцикл?

Этим озаботился австралиец Дин Бенстед, который в 2011 году продемонстрировал миру кроссовый мотоцикл O2 Pursuit с силовым агрегатом, разработанным фирмой Engineair. Последняя специализируется на уже упомянутых роторных воздушных двигателях разработки Анжело ди Пьетро. По сути, это классической компоновки «ванкели» без сгорания — ротор приводится в движение подачей воздуха в камеры. Бенстед пошел при разработке от обратного. Сперва он заказал Engineair двигатель, а потом построил вокруг него мотоцикл, использовав раму и часть элементов от серийной Yamaha WR250R. Машина получилась на удивление энергоэффективной: на одной заправке она проходит 100 км и в теории развивает максимальную скорость 140 км/ч. Эти показатели, к слову, превышают аналогичные у многих электрических мотоциклов. Бенстед остроумно сыграл на форме баллона, вписав его в раму, — это позволило сэкономить место; двигатель в два раза компактнее своего бензинового собрата, а свободное место позволяет установить второй баллон, увеличив пробег мотоцикла в два раза.

Но, к сожалению, O2 Pursuit остался лишь одноразовой игрушкой, хотя и был номинирован на престижную изобретательскую премию, учрежденную Джеймсом Дайсоном. Спустя два года идею Бенстеда подхватил другой австралиец, Дарби Бичено, который предложил создать по схожей схеме не мотоцикл, а сугубо городское транспортное средство, скутер. Его EcoMoto 2013 должен быть сделан из металла и бамбука (никакого пластика), но дальше рендеров и чертежей дело пока что не продвинулось.

Помимо Бенстеда и Бичено, схожую машину в 2010 году построил Эвин И Ян (его проект назывался Green Speed Air Motorcycle). Все три конструктора, к слову, были студентами Королевского технологического института Мельбурна, и потому их проекты схожи, используют один и тот же двигатель и… не имеют шанса на серию, оставаясь исследовательскими работами.

Соревнование на скорость В 2011 году спортивный автомобиль Toyota Ku: Rin установил мировой рекорд скорости для транспортных средств, приводимых в движение энергией сжатого воздуха. Обычно пневмоавтомобили не разгоняются более чем до 100−110 км/ч, концепт же Toyota показал официальный результат 129,2 км/ч. Ввиду «заточенности» на скорость, Ku: Rin на одной зарядке мог проехать всего 3,2 км, но больше трехколесному одноместному болиду и не требовалось. Рекорд установлен. Интересно, что до того рекорд составлял всего лишь 75,2 км/ч и был установлен в Бонневилле болидом Silver Rod конструкции американца Дерека Маклиша летом 2010 года.

Корпорации на старте

Вышесказанное подтверждает, что у воздушных автомобилей будущее есть, но, скорее всего, не в «чистом виде». Все-таки они имеют свои ограничения. Тот же MDI AIRpod провалил абсолютно все краш-тесты, поскольку его сверхлегкая конструкция не позволяла должным образом защищать водителя и пассажиров.

А вот использовать пневмотехнологии в качестве дополнительного источника энергии в гибридном автомобиле вполне реально. В связи с этим компания Peugeot объявила о том, что с 2016 года часть кроссоверов Peugeot 2008 будет выпускаться в гибридном варианте, одним из элементов которого будет установка Hybrid Air. Эта система разработана в сотрудничестве с Bosch; суть ее в том, что энергия ДВС будет запасаться не в форме электроэнергии (как в обычных гибридах), а в баллонах со сжатым воздухом. Планы, правда, так и остались планами: на данный момент на серийные автомобили установка не ставится.

www.popmech.ru

ВХОД ВОЗДУХА В ДВИГАТЕЛЬ

Процесс сжатия воздуха

Для работы турбореактивного двигателя необходима непрерывная подача сжатого воздуха в камеры сгорания. Сжатие воздуха в этих типах двигателей происходит в специальных лопаточных машинах — компрессорах.

Лопаточными машинами компрессоры называются потому, что рабочими элементами в них являются лопатки. Компрессор турбореактивного двигателя приводится во вра­щение газовой турбиной.

При сжатии воздуха температура его повышается на 100—200° С.

В сжатом и подогретом воздухе топливо хорошо испаряется, быстро и полностью сгорает.

На современных турбореактивных двигателях применяются два типа компрессоров: центробежные и осевые. Каждый из них имеет свои преимущества и недостатки.

СТЕПЕНЬ СЖАТИЯ

Главной величиной, характеризующей компрессор турбо­реактивного двигателя, является степень повышения давления воздуха в компрессоре, называемая еще степенью сжатия; обозначают ее греческой буквой “эпсилон” - ε.

Степень сжатия компрессора - это отношение давления воздуха на выходе из компрессора к давлению воздуха на входе в него:

 
 

 

 

Где Р2 – давление на выходе компрессора, Р1 – давление на входе компрессора.

Степень сжатии — величина безразмерная, она показы­вает, во сколько раз повышается давление воздуха в ком­прессоре по сравнению с давлением воздуха перед ним.

Если взять отношение давления воздуха за компрессором к давлению воздуха, окружающего двигатель, то получим степень сжатия двигателя:

 
 

 

 

Где Р0 – давление атмосферного воздуха.

Чтобы представить себе разницу между этими двумя величинами, подсчитаем их для следующих условий: - ско­рость полета с0 = 0; давление окружающего воздуха РО = 1,033 кг/см2; давление перед компрессором Р1 = 0,92 кг/см2; давление за компрессором Р2 = 4,35 кг/см2. Тогда:

     
 
 
 

 

 

Как видно, εДВИГ меньше εКОМП.

Для современных ТРД величина степени сжатия ком­прессора лежит в пределах от 4,2 до 7,1 (иногда 8).

Степень сжатия двигателя зависит от скорости вращения колеса (ротора) компрессора, от высоты полета (от темпе­ратуры окружающего воздуха) и от скорости полета.

С увеличением скорости вращения колеса компрессора степень сжатия компрессора увеличивается.

В осевом компрессоре с увеличением числа его оборо­тов окружная скорость движения лопаток растет. Вслед­ствие этого увеличиваются силы, сжимающие воздух, и, сле­довательно, давление воздуха, выходящего из компрес­сора.

Так как давление воздуха на входе в компрессор остается постоянным (оно не зависит от скорости вращения колеса компрессора), то степень сжатия компрессора увеличивается.

В центробежном компрессоре с увеличением числа его оборотов растет окружная скорость колеса компрессора. Вследствие этого увеличиваются центробежные силы, сжи­мающие воздух, и, следовательно, давление воздуха, выхо­дящего из компрессора. В результате степень сжатия ком­прессора увеличивается.

 

ВХОД ВОЗДУХА В ДВИГАТЕЛЬ

Имея общее представление о работе турбореактивного двигателя и процессах, которые происходят в воздушно-газовом потоке, протекающей через двигатель, рассмотрим теперь более подробно работу отдельных элементов ТРД и процессы, происходящие в них.

Воздухоподводящие или входные каналы служат для подвода воздуха к компрессору с возможно меньшими поте­рями.

Входной канал является частью конструкции самолета или образуется обводами капотов двигателя и самого дви­гателя.

Изменение параметров воздуха во входном канале будет различно в зависимости от условий работы двигателя: на месте или в полете.

Поэтому рассмотрим отдельно эти два случая.

 

А. Двигатель работает на месте (скорость полета с0 = 0)

При работе двигателя на месте компрессор засасывает воздух из окружающей атмосферы. Скорость воздушного потока при подходе к двигателю возрастает от нуля у невозмущенного воздуха впереди двигателя (сечение 0-0) до скорости с1на входе в компрессор (сечение 1-1, рис. 1).

Для различных турбореактивных двигателей величина скорости с1 лежит в пределах от 70 до 180 м/сек.

Как показывает опыт, температура и давление воздуха во входном канале падают.

Чтобы понять, почему это происходит, напишем уравне­ние энергии движущегося потока воздуха для сечений 0-0 и 1-1

 
 

 

Где k – показатель адиабаты, R – газовая постоянная, g – ускорение свободного падения.

Так как двигатель работает на месте (неподвижен), то скорость с0 = 0. В этом случае уравнение энергии будет:

 
 

 

 

Подставив в последнее уравнение численное значение k, g, R, определим температуру Т1.. Она будет равна:

 

 

Из уравнения видно, что температура воздуха на входе в компрессор Т1 должна быть ниже, чем температура окру­жающего воздуха Т0. Для существующих ТРД это падение температуры составляет 8—10°. Разделив все члены этого уравнения на Т0, получим:

 

 

Рис.1 Изменение параметров воздуха при работе двигателя на месте.

 

Заменим отношение температур отношением давлений (считая процесс адиабатическим) и опреде­лим давление воздуха на входе в компрессор:

       
   
 
 

 

 

Так как с1 = 70-180 м/сек, то численная величина ква­дратной скобки будет меньше единицы. Следовательно, дав­ление на входе в компрессор Р1будет меньше давления окружающего воздуха Р0.Для выполненных ТРД падение давления во входном канале составляет 0,1-0,16 кг/смг.

 

Похожие статьи:

poznayka.org

Воздух вместо бензина | Грани

Принцип работы двигателя на сжатом воздухе

В начале века многочисленные СМИ пророчили, что вот-вот начнется массовое производство автомобилей, использующих воздух вместо топлива.

Поводом для такого смелого заявления послужила презентация автомобиля под названием e.Volution на выставке Auto Africa Expo-2000, которая состоялась в Йоханнесбурге. Изумленной общественности сообщили, что e.Volution может без дозаправки проехать около 200 километров, развивая скорость до 130 км/ч. Или же в течение 10 часов со средней скоростью 80 км/ч. Было заявлено, что стоимость такой поезд­ки обойдется владельцу в 30 центов. При этом весит машина всего 700 кг, а двигатель — 35 кг.Революционную новинку представила французская фирма MDI, которая тут же объявила о намерении начать серийный выпуск автомобилей, оборудованных двигателем на сжатом воздухе. Изобретателем двигателя является французский инженер-моторостроитель Гай Негр, известный как разработчик пусковых устройств для болидов “Формулы-1” и авиационных двигателей.Изобретатель заявил, что ему удалось создать двигатель, работающий исключительно на сжатом воздухе без каких бы то ни было примесей традиционного топлива. Свое детище француз назвал Zero Pollution, что означает нулевой выброс вредных веществ в атмосферу.Девизом Zero Pollution стало “Простой, экономичный и чистый”, то есть упор был сделан на его без­опасность и безвредность для экологии. Принцип работы двигателя, по словам изобретателя, таков: “Воздух засасывается в малый цилиндр и сжимается поршнем до уровня давления в 20 бар. При этом он разогревается до 400 градусов. Затем горячий воздух выталкивается в сферическую камеру. В “камеру сгорания” под давлением подается и холодный сжатый воздух из баллонов, он сразу же нагревается, расширяется, давление резко возрастает, поршень большого цилиндра возвращается и передает рабочее усилие на коленчатый вал. Можно даже сказать, что “воздушный” двигатель работает так же, как и обычный двигатель внутреннего сгорания, но только никакого сгорания тут нет”.Было заявлено, что выбросы автомобиля не опаснее углекислого газа, выделяемого при дыхании человека, двигатель можно смазывать растительным маслом, а электрическая система состоит всего лишь из двух проводов. Планировалось построить “воздухозаправочные” станции, способные наполнить 300-литровые баллоны всего за три минуты. Предполагалось, что продажи “воздухомобилей” начнутся в Южной Африке по цене около 10 тысяч долларов.Но после громких заявлений и всеобщего ликования что-то произошло. Внезапно все стихло, и о “воздухомобиле” почти забыли. Причина нелепая: страница в Интернете якобы не справляется с огромным потоком запросов.Есть мнение, что экологичную разработку саботировали автомобильные гиганты: предвидев приближающийся крах, когда выпускаемые ими бензиновые двигатели никому не будут нужны, они якобы решили выскочку задушить на корню.Однако и многие независимые эксперты настроены скорее скептически, тем более что ряд крупных автомобилестроительных концернов, например, “Фольксваген”, уже в 70-80-х годах вели исследования в этом направлении, но затем свернули их ввиду полной бесперспективности. Автомобильные компании уже потратили огромные деньги на эксперименты с электрическими автомобилями, которые оказались неудобными и дорогими.Однако ждать осталось недолго. Вероятно, уже в наступающем году мы точно узнаем, что же такое этот разработанный фирмой MDI двигатель на сжатом воздухе — революция в автомобилестроении или во всех смыслах слова дутая сенсация.В Интернете имеется коммерческое предложение, адресованное, по всей видимости, правительству Москвы. В этом документе одна столичная компания предлагает чиновникам “ознакомиться с предложением автомобильной фирмы MDI о производстве в Москве абсолютно экологически чистых и экономичных автомобилей”.Интерес представляет и изобретение Раиса Шаймухаметова — “садоход”, который “приводится в движение от сжатого воздуха: под капотом небольшой двигатель и серийный компрессор. Воздух вращает автономно друг от друга два блока (слева и справа) эксцентрических роторов (поршней). Роторы в блоке через ходовые колеса соединены гусеничной цепью”.В итоге сложилось двоякое впечатление: с одной стороны, не до конца понятная история с французским “воздухомобилем”, а с другой — куда более четкое ощущение, что “воздушный” транспорт давно используется, и в особенности почему-то в России. И притом с поза­прошлого века.

www.grani21.ru

Hybrid Air — гибридный двигатель на сжатом воздухе

К каким только способам не прибегают авто производители дабы привлечь внимание потребителей. Покупателя околдовывают модным футуристическим дизайном, беспрецедентными мерами безопасности, применением более экологичных двигателей и т.д и т.п.

Лично меня не очень трогают последние изыски различных дизайнерских студий — даже более того: для меня автомобиль был и будет оставаться неодушевлённым куском металла и пластика и все потуги маркетологов рассказать мне о том, как высоко в небо должна устремиться моя самооценка после покупки «нашей новейшей модели» есть ни что иное, как сотрясение воздуха. Ну по крайней мере лично для меня.

Более волнующая меня, как автовладельца, тема — вопросы экономичности и живучести. Топливо стоит далеко не три копейки, к тому же на просторах «великого и могучего» слишком много последователей Василия Алибабаевича из «Джентльменов удачи». Переключиться на использование альтернативных видов топлива авто производители пытаются уже давно. В США электрокары заняли довольно прочные позиции, однако позволить себе приобрести такую машинку может далеко не каждый — дорого очень. Вот если бы электрическими делали машины бюджетного класса…

Интересную цель поставили перед собой французские производители PSA Peugeot Citroen, ими инициирована интересная программа по снижению расхода топлива. Эта группа авто производителей ведёт разработки гибридной силовой установки которая смогла бы тратить всего два литра топлива на сто километров пути. Инженерам компании уже есть, что показать — сегодняшние наработки позволяют экономить до 45% топлива в сравнении с обыкновенным ДВС: пусть даже с такими показателями в два литра на сотню пока что не влезть, но к 2020 году обещают покорить и этот рубеж.

Заявления довольно смелые и интересные, однако интереснее было бы поближе взглянуть на эту столь гибридную и не менее экономичную установку. Система называется Hybrid Air и как становится понятным из её названия помимо традиционного топлива использует энергию воздуха, сжатого воздуха.

Концепция Hybrid Air не столь сложна и представляет собой гибрид трёх цилиндрового двигателя внутреннего сгорания и гидравлического двигателя — насоса. В качестве баков для альтернативного топлива в центральной части авто и под пространством багажника установлены два баллона: который побольше — для низкого давления; а тот, что поменьше, соответственно для высокого. Разгон автомобиля будет происходить на ДВС, после набора скорости в 70 км/ч в работу включается гидравлический двигатель. Посредством этого самого гидравлического двигателя и хитроумной планетарной трансмиссии энергия сжатого воздуха будет превращаться во вращательное движение колёс. Кроме того на таком авто предусмотрена и система рекуперации энергии — во время торможения гидравлический мотор выступает в роли помпы и закачивает воздух в баллон низкого давления — то есть столь желанная энергия не пропадёт даром.

Как заявляют инженеры компании автомобиль с гибридной установкой Hybrid Air, даже не смотря на большую на 100 кг по сравнению с традиционным мотором массу, будет иметь показатели топливной экономии на уровне не менее 45% и это при том, что изыски в данной области моторостроения далеки от завершения.

Ожидается, что гибридные системы первыми будут применяться на хэтчбеках Citroen C3 и Peugeot 208, а покататься на «воздухе» можно будет уже в 2016 году, причём в качестве основных рынков сбыта автомобилей с гибридом Hybrid Air французские менеджеры видят Россию и Китай.

www.sciencedebate2008.com

Влияние охлаждения надувочного воздуха

Возрастание температуры воздуха или заряда в компрессоре зависит от степени повышения давления, к. п. д. компрессора и теплообмена со стенками, т. е. от конструкции компрессора. При высоких степенях повышения давления температура на впуске двигателя может принимать высокие значения (если не приме­няется охлаждение наддувочного воздуха), что отрицательно влияет на двигатель с двух точек зрения.

1. Для наполнения цилиндра определяющей является плот­ность заряда на впуске

Из приведенного выражения видно, что повышение плотности при определенных условиях может быть значительно меньше, чем повышение давления; только в случае изоэнтропийного сжатия при n = 1 отношение плотностей равно отношению давлений.

2. С повышением температуры наддувочного воздуха значи­тельно возрастает термическая напряженность двигателя, так как общий температурный уровень рабочего цикла зависит от тем­пературы начала сжатия в цилиндре, т. е. в первую очередь от температуры воздуха на впуске.

Поэтому на двигателях с наддувом охлаждение наддувочного воздуха, которое было предложено еще Рудольфом Дизелем, является важнейшим и простейшим средством увеличения мощ­ности, которое тем эффективнее, чем выше степень повышения давления в компрессоре. Наряду с уменьшением потерь теплоты и улучшением механического к. п. д. (более высокая мощность без повышения уровня давления) охлаждение наддувочного воз­духа способствует также снижению удельного расхода топлива. Из табл. 7.1 видно, как изменяется температура воздуха в ком­прессоре лопаточного типа (теплоотводом в компрессоре пре­небрегаем) в зависимости от температуры всасываемого воздуха, к. п. д. компрессора и степени повышения давления; на рис. 7.6 приведены соответствующие температуры на выходе из компрес­сора.

Если вода, используемая в качестве охлаждающей жидкости, имеет температуру окружающей среды, то охлаждение надду­вочного воздуха выгодно применять уже при степенях повышения давления 1,5 : 1; при степенях повышения давления, превышаю­щих 2,0, учитывая термическую напряженность двигателя и свя­занную с ней эксплуатационную надежность, применение охлаж­дения наддувочного воздуха является необходимым.

Использование воды в качестве охлаждающей среды для охла­дителя наддувочного воздуха в большинстве случаев позволяет без слишком высоких затрат осуществлять охлаждение воздуха до температурного уровня, лишь на несколько градусов превы­шающего среднюю температуру воды. В табл. 7.2 показаны ре­зультаты измерений температур воды и воздуха, а также отведен­ных количеств теплоты на некоторых дизелях с наддувом.

Как следует из табл. 7.2, температура воздуха за охладителем лишь на несколько градусов выше (см. строки 6 и 11, в особен­ности графы 3 и 6), чем температура воды на входе в него. При этом вода, как правило, подводится перекрещивающимся потоком по отношению к воздуху, так что температура воздуха на выходе приближается к температуре воды на выходе. Кроме того, из зна­чений температуры, указанных в графах 4 и 5 таблицы, можно заключить, что охладитель наддувочного воздуха у приведенного здесь среднеоборотного судового дизеля меньше, чем у двух дру­гих двигателей. Разумеется, при этом следует иметь в виду, что при высоких степенях повышения давления часто умышленно ограничивают охлаждение наддувочного воздуха, принимая во внимание недопустимость достижения температуры точки росы. Отметим уже здесь, что применение воздуха в качестве охлаж­дающей среды также позволяет осуществлять охлаждение надду­вочного воздуха до температур, приблизительно на 15° С превы­шающих температуру окружающей среды. В ра­боте указывается на возрастание преимуществ использо­вания охлаждения наддувочного воздуха типа «воздух/воздух» па автомобильных двигателях при применении новой технологии обработки легких металлов.

Как показывает опыт, на величину количества теплоты, отво­димой в охладителе наддувочного воздуха, уменьшается отвод теплоты через стенки цилиндра. Иногда теплота, забираемая ох­ладителем наддувочного воздуха, при высокой степени наддува даже больше, чем теплота, отводимая через детали, образующие камеру сгорания (табл. 7.2, строки 13 и 14, графы 4 и 5). Сумма этих величин у различных двигателей с наддувом и охлаждением наддувочного воздуха отличается мало (см. строку 15). Это яв­ляется важным при анализе затрат на охладитель. Естественно, общие затраты на охлаждение у двигателя с охлаждением надду­вочного воздуха будут больше, так как он имеет большую мощ­ность и охладитель для обеспечения низких температур надду­вочного воздуха должен работать при более низкой разности тем­ператур между охлаждающей средой и воздухом на выходе из охладителя; однако затраты не настолько выше, как это можно было бы предположить исходя только из количества теплоты, от­водимой посредством охладителя.

Ориентировочно можно считать, что при равном давлении наддува и понижении температуры наддувочного воздуха на 10° С увеличение плотности воздуха составляет около 3%. Благодаря этому можно при постоянном коэффициенте избытка воздуха и постоянном удельном расходе топлива повысить мощность на 3%. Но так как при более низкой температуре удельный расход топ­лива улучшается (эмпирически найденные значения составляют приблизительно 0,5% на 10° С понижения температуры), то повышение мощности при том же коэффициенте избытка воздуха составит даже около 3,5%. Для остающейся неизменной терми­ческой напряженности (характеризуемой температурой деталей, образующих камеру сгорания) иногда благодаря снижению тем­пературы наддувочного воздуха возможно даже еще большее по­вышение мощности, чем это соответствует постоянному коэффи­циенту избытка воздуха. Так, например, из измерений температуры поршня на одноцилиндровом опытном двигателе в зависимости от температуры воздуха на впуске при равной мощности, с одной стороны, и в зависимости от мощности при равной температуре на впуске, с другой стороны, следует [7.6], что с понижением температуры воздуха на 10° С возможно увеличение мощности на 5% при равной температуре поршня.

Влияние температуры наддувочного воздуха на тепловую напряженность и удельный расход топлива можно с большой ве­роятностью предсказать на основе расчета рабочего цикла. В табл. 7.3 приведены результаты расчетов, выполненных фирмой MAN (г. Аугсбург), в которых определено изменение некоторых эксплуатационных параметров среднеоборотного дизеля с надду­вом и охлаждением наддувочного воздуха при повышении тем­пературы воздуха на впуске (обусловленном повышением тем­пературы атмосферного воздуха или уменьшением теплоотвода в охладителе наддувочного воздуха) на 40° С. Начальная мощ­ность соответствовала среднему эффективному давлению 17,6 бар и частоте вращения 430 об/мин. Из переменных величин, включаю­щих теплоту, подведенную с топливом Qтоп, эквивалентное сече­ние турбины Fт экв; давление воздуха на впуске двигателя рвп; количество теплоты, отводимой через стенки Qст как масштаб для определения термической напряженности, в каждом случае постоянными поддерживались две.

Наиболее интересными в этой связи являются значения, при­веденные в графе 6, которые благодаря соответствующему подбору Fт экв и Qтоп выбирались так, чтобы давление наддува рвп и теплота, отводимая через стенки, Qст оставались постоянными. Из таблицы видно, что при принятых допущениях более высокой (на 40° С) температуре наддувочного воздуха соответствует среднее эффективное давление, меньшее на 14,7%, и к. п. д., меньший на 2%.

Таким образом, понижение температуры наддувочного воз­духа па 10" С сопровождалось бы повышением эффективной мощ­ности па 3,7% и эффективного к. п. д. на 0,5%, что хорошо сов­падает с опытными данными.

Согласно графе 5, при расчете которой Fт экв принималась постоянной (соответственно изменялось давление наддува рвп), при постоянстве теплоты, отводимой через стенки Qст, на каждые 10° С изменения температуры воздуха на впуске двигателя при­ходится изменение мощности на 4,2%.

Из этих немногочисленных примеров, число которых легко могло быть увеличено, представляется достаточно обоснованным вывод о том, что охлаждение наддувочного воздуха при равных критериях ограничения нагрузки позволяет обеспечить значи­тельно более высокую степень наддува и является наиболее эффективным и дешевым способом увеличения мощности двига­телей с наддувом. К этому следует добавить еще и то, что охла­ждение наддувочного воздуха способствует уменьшению содер­жания вредных компонентов в выпускных газах двигателей.

vdvizhke.ru


Смотрите также