Бензиновый карбюраторный двигатель: Карбюраторный двигатель рабочее тело

Бензиновый карбюраторный двигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Cтраница 1

Бензиновые карбюраторные двигатели легко конвертируются в газовые. Для этого достаточна замена карбюратора смесителем и изменение степени сжатия ( достигаемое проще всего изменением высоты поршней) и некоторые второстепенные конструктивные переделки. В целом двигатель остается тем же.
 [1]

Бензиновые карбюраторные двигатели сравнительно легко конвертировать в газовые. Для этого достаточна замена карбюратора смесителем и изменение степени сжатия ( достигаемое проще всего изменением высоты поршней) и некоторые второстепенные конструктивные переделки. В целом двигатель остается тем же.
 [2]

Бензиновые карбюраторные двигатели подвергают частичной разборке и осмотру. Днища поршней и головку блока очищают от нагара; изношенные поршневые кольца заменяют на новые; клапаны притирают к седлам; фильтры очищают от грязи и промывают; карбюратор промывают и осматривают; обнаруженные неисправности устраняются.
 [3]

Благодаря тому, что бензиновый карбюраторный двигатель обладает лучшими пусковыми свойствами, иногда его используют в качестве стартера для запуска дизеля. В этом случае сам пусковой двигатель запускается чаще всего с помощью рукоятки.
 [4]

Наиболее распространенные в настоящее время бензиновые карбюраторные двигатели могут быть заменены двигателями других типов, отработавшие газы которых содержат меньше токсичных веществ: дизелями и особенно их малотоксичными модификациями; двигателями, работающими на газовом топливе; газотурбинными, роторно-поршневыми или электрическими двигателями.
 [5]

Универсальные ( газобензиновые) автомобили имеют бензиновые карбюраторные двигатели, приспособленные для работы на газе и полностью сохраняющие возможность работать на бензине. Приспособление двигателя для работы на газе заключается в дополнительной установке газоподающей аппаратуры. Вся система бензоподачи остается неизменной.
 [6]

Краткие технические характеристики карбюраторных двигателей.
 [7]

Для передвижных электростанций небольших мощностей в качестве первичных двигателей применяются бензиновые карбюраторные двигатели мощностью до 30 л. с. типов Л-12 / 4; Л-12 / 4М, и ГАЗ-МК.
 [8]

Предназначен для проверки технического состояния 2 -, 4 -, 6 — и 8-цилиндровых бензиновых карбюраторных двигателей с номинальным напряжением электрооборудования 12 В.
 [9]

Влияние присадок на нагарообразование.
 [10]

Буман [7], посвятивший специальную книгу углеродистым отложениям в двигателе, отмечает, что в бензиновых карбюраторных двигателях, как и в дизелях, нагар образуется главным образом из масла, так как уже при пуске двигателя в камеру сгорания проникает масло, которое затем в условиях высоких температур газа и стенок частично карбонизируется.
 [11]

На рис. 9 — 2 а представлен цикл с изохорным подводом тепла ( цикл Отто), являющийся идеальным циклом двигателей низкого сжатия, примером которых могут служить бензиновые карбюраторные двигатели. На рис. 9 — 2 6 показан цикл с изобарным подводом тепла ( цикл Дизеля), являющийся идеальным циклом компрессорных двигателей высокого сжатия.
 [12]

Конечно, по сравнению с паровой машиной, это удивительно высокая экономичность, но в самой идее двигателя внутреннего сгорания таятся значительно большие возможности, чем те, которыми располагает бензиновый карбюраторный двигатель.
 [13]

Внешние и частичные скоростные характеристики карбюраторного двигателя при углах опережения зажигания.| Внешние скоростные характеристики автомобильного двигателя.
 [14]

В последние годы в связи с резким увеличением автомобильного транспорта газовое топливо начинает находить более широкое применение, заменяя бензин. На газовое топливо обычно переводят бензиновые карбюраторные двигатели путем небольшого их переконструирования, при этом токсичность выпускаемых газов делается значительно меньше.
 [15]

Страницы:  

   1

   2

Топливо для карбюраторных двигателей

Топливо для карбюраторных двигателей

Требования, предъявляемые к бензинам. Топливом для карбюраторных двигателей являются автомобильные бензины. Требования, предъявляемые к качеству применяемого бензина, следующие: быстрое образование бензино-воздушной (горючей) смеси необходимого состава; сгорание рабочей смеси с нормальной скоростью (без детонации), минимальное коррозирующее воздействие на детали системы питания двигателя; небольшие отложения смолистых веществ в системе питания в двигателе; наименьшее отравляющее воздействие на организм человека и окружающую среду; сохранность первоначальных свойств в длительном интервале времени.

Показатели качества бензинов. Качество бензинов определяет ГОСТ 2084—77.

Все марки автомобильных бензинов имеют буквенно-цифровое обозначение: А-72, А-76, АИ-93, АИ-98. Буква А обозначает «Автомобильный бензин», следующие за ней цифры — октановое число бензина в безразмерных единицах.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Октановое число является показателем, определяющим детонационные свойства бензина. Детонацией называется сгорание рабочей смеси в цилиндрах двигателя со скоростью, превышающей скорость звука. Это явление сопровождается резкими металлическими стуками, перегревом и падением мощности двигателя.

При детонации в двигателе возникают ударные нагрузки, которые могут стать причиной его разрушения. Детонация является результатом образования в рабочей смеси углеводородных перекисей, которые самовоспламеняются и сгорают со сверхзвуковой скоростью. Чем выше октановое число бензина, тем меньше возможность появления детонации.

Кроме октанового числа бензина на возникновение детонации при работе двигателя влияют следующие эксплуатационные факторы: перегрев двигателя свыше нормы, большая нагрузка при малой частоте вращения коленчатого вала, неправильная (ранняя) установка зажигания. Следовательно, для устранения детонации в двигателе необходимо изменить режим его работы: снять нагрузку и повысить частоту вращения, выдерживать нормальный тепловой режим, а также следить за правильной установкой зажигания.

Из конструктивных факторов, влияющих на возникновение детонации, нужно отметить такие, как форма камеры сгорания, расположение свечи зажигания, диаметр цилиндра, и такой важнейший конструктивный параметр двигателя, как степень сжатия.

Для каждого типа карбюраторного двигателя допускается применение бензина со строго определенным октановым числом. Величина октанового числа применяемого бензина определяется степенью сжатия двигателя. Чем выше степень сжатия, тем более высокое октановое число должен иметь бензин. Например, при степени сжатия 7—7,2 применяют бензин А-76, а при 8,5—8,8 — бензин АИ-93.

Октановое число бензинов в нашей стране определяют по моторному и исследовательскому методам, сущность которых заключается в сравнении работы одноцилиндрового двигателя на испытуемом бензине и на эталонном топливе. В качестве эталонного топлива используют смесь двух углеводородов — изооктана и нормального гептана. Октановое число первого принимают за 100 единиц, а второго — за 0. Если составлять смесь из этих углеводородов в определенном процентном отношении, то оно и будет характеризовать октановое число. Так, смесь из 76% изооктана и 24% гептана будет равноценна бензину с октановым числом 76.

Испытание бензина по моторному методу проводят следующим образом: вначале запускают двигатель на испытуемом бензине и доводят его при повышении нагрузки до возникновения детонации, которая фиксируется по шкале указателя детонации. Затем переводят питание двигателя на эталонную смесь, имеющую предполагаемое октановое число на две единицы больше, чем у бензина. Если в фиксированном режиме нагрузки детонация не наступит, то двигатель переводят на другую смесь с октановым числом, меньшим на две единицы, и опять наблюдают за возникновением детонации. Если детонация будет наблюдаться, то подсчитывают величину октанового числа как среднее арифметическое октановых чисел двух взятых эталонных смесей. С целью большей достоверности указанное испытание проводят три раза.

Исследовательский метод испытания бензина по схеме проведения не отличается от моторного. Разница заключается лишь в режиме нагрузки на двигатель в момент испытания. Величина нагрузки устанавливается несколько меньше, чем при моторном методе. В результате детонация будет возникать при эталонных смесях с большим содержанием изооктана. Поэтому октановое число, получаемое по исследовательскому методу, будет на несколько единиц выше, чем по моторному.

Метод определения октанового числа отражается в марке бензина. Буква А обозначает, что октановое число определено моторным методом, буква И — свидетельствует о величине октанового числа, определенного по исследовательскому методу.

Для повышения октанового числа в некоторые бензины добавляют специальные присадки. Чаще всего это этиловая жидкость с антидетонатором ТЭС (тетраэтилсвинец). Бензин с антидетонационной присадкой называется этилированным и для отличия от обычных бензинов окрашивается. При этом каждой марке бензина соответствует определенный цвет окраски. Например, этилированный бензин А-76 окрашивают в желтый цвет. Применение этилированных бензинов ограничивается из-за повышенной токсичности их продуктов сгорания.

Фракционный состав бензина определяет способность образовывать в карбюраторе однородную топливовоздушную смесь нужного состава и является показателем испаряемости бензина в процессе карбюрации. В ГОСТ 2084—77 указаны температуры, при которых перегоняются 10, 50, 90% бензина. Эти температуры свидетельствуют о наличии в бензине определенных фракций.

По температуре перегонки 10% бензина можно судить о наличии в нем пусковых фракций, от которых зависит легкость пуска холодного двигателя. Чем ниже температура tю, тем легче и быстрее можно пустить холодный двигатель.

Устойчивость работы двигателя с малой частотой вращения коленчатого вала зависит от температуры испарения 50% бензина Чем ниже эта температура, тем лучше испаряются средние рабочие фракции бензина, обеспечивая поступление горючей смеси в двигатель. Эти же фракции определяют приемистость двигателя, т. е. его способность переходить с малой частоты вращения коленчатого вала на большую.

Температура испарения 90% бензина (t90) и температура конца перегонки свидетельствуют об интенсивности и полноте сгорания рабочей смеси при работе двигателя на полной мощности. Применение бензина с высокой температурой конца перегонки приводит к повышенному износу двигателя и перерасходу бензина.

Остаток и потери, определяемые при перегонке, характеризуют свойство бензина давать отложения при сгорании в двигателе, а также его физическую стабильность (испаряемость при хранении).

Давление насыщенных паров характеризует так же, как и фракционный состав, испаряемость бензина. Чем выше давление насыщенных паров бензина, тем легче он испаряется и быстрее происходит пуск холодного двигателя. Если давление насыщенных паров слишком велико, то бензин может испариться до поступления в смесительную камеру карбюратора, что приведет к образованию паровых пробок в системе питания и к остановке или перебоям в работе двигателя. В высокогорных районах, на юге применяют бензин с низким давлением насыщенных паров. Зимой, наоборот, желательно применять бензины с несколько повышенным давлением насыщенных паров.

Коррозионные свойства бензинов определяются содержанием в них органических и минеральных кислот, щелочей, серы и других соединений. При попадании воды в бензин могут образоваться активные разрушители черных и цветных металлов. Наличие в бензине кислот и щелочей проверяют пробой на нейтральность с помощью индикаторов метилоранжа и фенолфталеина, а содержание активной серы — испытанием на медной пластинке (опусканием пластинки в бензин).

Присутствие перечисленных веществ в бензинах ГОСТом не допускается, а общее содержание серы может быть в пределах 0,12—0,01%, причем значения, меньшие на порядок, относятся к бензинам, аттестованным государственным Знаком качества.

Автомобильные бензины содержат в своем составе непредельные углеводороды, которые, окисляясь при хранении, образуют смолистые отложения. Оседая на деталях топливной аппаратуры, впускном трубопроводе двигателя и на клапанах, смолы нарушают рабочий режим и снижают мощность двигателя. Содержание фактических смол в бензине допускается в пределах от 2 до 10 мг/100 мл.

Индукционный период характеризует склонность бензина к окислению (химическую стабильность) и смолообразование в процессе хранения и потребления. Индукционный период измеряется временем в минутах, в течение которого испытуемый бензин не окисляется под давлением в среде чистого кислорода при температуре 100°С. Началом окисления считается момент изменения давления в специальном приборе, где определяется этот показатель. Индукционный период для бензинов массового потребления составляет 600—990 мин.

Гарантированный срок хранения бензинов на складах и нефтебазах составляет 5 лет. В период этого срока допускается изменение фракционного состава на 1—3 °С. Новый Государственный стандарт на автомобильные бензины (ГОСТ 2084—77) предусматривает повышение требований к бензинам массового потребления и особенно к бензинам с государственным Знаком качества.

По сравнению с бензинами массового потребления в бензинах А-76, АИ-93 и АИ-98 со Знаком качества значительно снижены: кислотность в 3—3,7 раза, содержание фактических смол в 1,3— 3,5 раза, содержание серы в 5—10 раз.

Бензины марок А-76 и АИ-98 со Знаком качества выпускают только летнего вида, а остальные бензины — летнего и зимнего видов. Летние бензины применяют с 1 апреля по 1 октября, а зимние— с 1 октября по 1 апреля, причем в северных и северо-восточных районах круглогодично. Летние бензины также можно применять в течение всего года в южных районах.

Бензины массового потребления А-76, АИ-93 и АИ-98 выпускают этилированными. Но в целях снижения их токсичности и отложений на деталях двигателей содержание свинца в антидетонационной присадке снижено до 0,24 г вместо 0,41 г на 1 кг бензина А-76 и до 0,50 г вместо 0,82 г на 1 кг бензина АИ-93 или АИ-98.

Бензин А-72 должен выпускаться неэтилированным, но до 1982 г. некоторым нефтеперерабатывающим заводам разрешен выпуск этилированного бензина А-72, который окрашен в розовый цвет.

При использовании товарных бензинов на автотранспортных предприятиях необходимо контролировать их качество по паспорту. Паспорт содержит важнейшие показатели бензина: октановое число, фракционный состав, содержание ТЭС, фактических смол и давление насыщенных паров.

Бензин считается удовлетворяющим ГОСТу, если основные показатели имеют отклонения в допустимых пределах, и тогда его можно использовать по прямому назначению. Если отклонения показателей превышают норму, то бензин исправляют смешением с другим бензином более высокого качества, пользуясь правилом среднеарифметического смешения

Исправление качества топлив путем смешения по какому-либо показателю ведут таким образом, чтобы не испортить другие показатели.

—-

В качестве топлива для карбюраторных двигателей применяются бензины и газы. Выпускаемые бензины должны удовлетворять следующим требованиям.

1. Иметь высокую теплоту сгорания. Теплота сгорания различных топлив зависит от их химического состава и измеряется в килокалориях на один килограмм (ккал/кг или кДж/кг). У топлив, применяемых в двигателях внутреннего сгорания, учитывается низшая теплота сгорания, исключающая теплоту, которая расходуется на испарение содержащейся в топливе влаги. Высшая теплота сгорания жидких топлив примерно на 600 ккал/кг больше низшей теплоты сгорания. Так, теплота сгорания бензина, плотность которого в среднем 0,745 г/см3 (при 20 °С), должна находиться в пределах 10500— 11000 ккал/кг.

2. Обладать хорошей испаряемостью. Быстрый запуск карбюраторных двигателей и нормальная их работа зависят от испаряемости бензина. Об испаряемости бензина судят по его фракционному составу и упругости паров, которые определяются лабораторным путем. По фракционному составу (ГОСТ 2084—73) определяются свойства бензина, влияющие на работу двигателя. Температура выкипания 10% бензина должна быть не выше 80 °С, что соответствует испарению легких фракций и характеризует пусковые свойства бензина. Температура выкипания 50% бензина не должна превышать 145 °С и характеризует быстроту прогрева двигателя после запуска и устойчивую работу. Температура выкипания 90% бензина должна быть не выше 195 °С и характеризует общую испаряемость бензина и полноту его сгорания в двигателях.

3. Иметь хорошую детонационную стойкость. Детонационная стойкость бензина оценивается октановым числом. Скорость сгорания рабочей смеси при нормальной работе двигателя составляет 25—35 м/с. При детонации скорость сгорания рабочей смеси достигает 2000—2500 м/с и сопровождается появлением ударной волны и резким повышением давления газов. Для повышения детонационной стойкости в бензин добавляют этиловую жидкость, содержащую тетраэтилсвинец РЬ (С2Н6)4 в количестве 0,41—0,82 г на 1 кг бензина.

4. Обладать хорошей физико-химической стабильностью. При хранении, транспортировке, использовании бензин не должен изменять свои физико-химические качества. При длительном хранении в бензине образуются смолы и другие продукты окисления. Содержание фактических смол в бензинах А-72, А-76, АИ-93, АИ-98 в соответствии с ГОСТ 2084—73 допускается 5—10 мг на 100 мл на месте потребления бензина. В автомобильные бензины с примесью продуктов термического и каталитического крекинга добавляется антиокислитель в количестве 0,007—0,010% параоксидифениламина и 0,05—0,15% древесно-смоляного антиокислителя прямой гонки или пиролиза-та (ГОСТ 2084—73).

5. Не содержать механических примесей, воды, водорастворимых кислот и щелочей. При транспортировке и заправке в бензин попадают вода, пыль и другие загрязняющие примеси. Бензин способен растворять в себе небольшое количество (до 0,04%) воды, которая при понижении температуры превращается в кристаллы льда. Кристаллы льда покрывают фильтрующие элементы топливных фильтров, что приводит к прекращению подачи топлива в двигатель. Наличие твердых механических примесей вызывает засорение топливопроводов, жиклеров и каналов системы питания двигателя. Присутствие водорастворимых кислот и щелочей является причиной коррозии деталей системы питания двигателя.

Указанные автомобильные бензины, кроме бензина АИ-98, подразделяются на виды: летний и зимний. Летний вид бензина применяется во всех областях страны, за исключением северных и северо-восточных, с 1-го апреля по 1-е октября. В южных областях этот бензин применяется всесезонно. Зимний вид* бензина применяется в северных и северо-восточных областях всесезонно, а в остальных областях с 1-го октября по 1-е апреля.

В паспортах на бензины указывается марка и вид бензина.

Марки бензинов А-66, А-72, А-76 обозначают следующее: А – автомобильный; 66; 72; 76 — октановые числа, определенные моторным методом. Марки бензинов АИ-93, АИ-98 расшифровываются так: А — автомобильный; И — исследовательский метод; 93; 98 — октановые числа, определенные нсследователь-ским методом. Выпускаемые бензины, кроме А-72, этилированные. При транспортировке, хранении и заправке в топливные баки автомобилей необходимо строго соблюдать правила техники безопасности. В Москве, Ленинграде и других городах запрещено использование этилированных бензинов. Детонационная стойкость неэтилированных бензинов обеспечивается введением нужного количества высокооктановых компонентов.

Основными физико-химическими константами бензина, влияющими на износ двигателя, являются его фракционный состав и особенно температура конца разгонки, антидетонационная стойкость (определяемая октановым числом), содержание серы, сернистых соединений, водорастворимых и органических кислот и щелочей.

Повышенный износ двигателя при применении бензинов с высокой температурой конца разгонки является следствием смывания масляной пленки с зеркала цилиндров и разжижения картерного масла неиспа-рившейся частью топлива (рис. 19).

При повышении температуры конца разгонки бензина повышается также расход топлива. Это объясняется тем, что неиспарившиеся частицы топлива, имеющиеся в смеси к началу ее воспламенения, сгорают на линии расширения при значительных потерях тепла в охлаждающую воду.

Влияние октанового числа бензина на износ двигателя обусловливается тем, что при работе его с детонацией возникают высокие динамические нагрузки в деталях кривошипно-шатунного механизма,. повышается температура деталей, выгорает смазка в зазорах и др. Испытания, проведенные в НАМИ, показали, что детонация вызывает повышенный износ цилиндров двигателя во всех поясах, особенно в верхнем.

Рис. 1. График зависимости общего износа двигателя и расхода бензина от температуры конца кипения бензина:
1 — расход бензина; 2 — общий износ двигателя.

Радиальные износы цилиндров при детонации распределяются неравномерно. Наибольший износ будет в местах, наиболее удаленных от запальной свечи и связанных с возникновением детонации.

Кроме октанового числа топлива и конструктивных особенностей двигателя, на развитие и протекание детонационного сгорания влияют температура и состав смеси, тепловой и нагрузочный режимы двигателя, наличие нагара в камерах сгорания, угол опережения зажигания, скорость вращения коленчатого вала и другие факторы.

Большое влияние на износ двигателя оказывает содержание серы в бензине. Так, если при содержании серы в бензине 0,003% износ двигателя принять за 1, то при увеличении содержания серы до 0,1 % износ увеличивается в 2,7 раза, а при содержании серы 0,2% — в 3,9.

Повышенное содержание серы в бензине не только ускоряет износ цилиндров, поршневых колец и клапанов, шеек коленчатого вала, подшипников и других деталей, но и увеличивает нагарообразование в камерах сгорания. При этом интенсивно протекает процесс старения картерного масла (вследствие образования железных мыл, действующих как катализатор), увеличиваются диаметры жиклеров и, следовательно, повышается расход топлива двигателем.

Некоторое уменьшение вредного влияния серы на износ может быть достигнуто повышением теплового режима двигателя.

При повышенном содержании в бензине смолистых и легко-осмоляющихся веществ увеличивается количество смолистых отложений во впускном трубопроводе двигателя, а также стимулируется процесс образования нагара. Поэтому бензин проверяется на содержание так называемых фактических смол.

В зависимости от химической и физической стабильности бензина (способности осмоляться и окисляться, длительное время сохранять легкие фракции) определяются сроки и методы его хранения в автохозяйствах.

Как работает карбюратор?

Как работает карбюратор? — Объясните этот материал

Вы здесь:
Домашняя страница >
Инжиниринг >
Карбюраторы

  • Дом
  • индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Топливо плюс воздух равно движению — это основная наука, стоящая за большинством транспортных средств.
которые путешествуют по земле, по морю или по небу. Автомобили, грузовики и
автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая в
металлические цилиндры внутри их двигателей. Точно сколько топлива и воздуха
потребности двигателя меняются от момента к моменту, в зависимости от того, как долго
он работает, как быстро вы едете и множество других
факторы. В современных двигателях используется система с электронным управлением.
позвонил впрыск топлива для регулирования топливно-воздушной смеси так что это
ровно с минуты поворота ключа до момента переключения
двигатель снова выключается, когда вы достигаете пункта назначения. Но пока эти
были изобретены умные устройства, практически все двигатели полагались на
изобретательные устройства для смешивания топлива и воздуха, называемые карбюраторами (пишется
«карбюратор» в некоторых странах и часто сокращается до «карбюратора»). Что они собой представляют и как они работают? Давайте посмотрим поближе!

Работа: Коротко о карбюраторах: они добавляют топливо (красный) в воздух (синий), чтобы получилась смесь, подходящая для сгорания в цилиндрах. Цилиндры современных автомобилей более эффективно питаются системами впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Содержание

  1. Как двигатели сжигают топливо
  2. Что такое карбюратор?
  3. Кто изобрел карбюратор?
  4. Как работает карбюратор?
  5. Узнать больше

Как двигатели сжигают топливо

Двигатели — это механические вещи, но
они тоже химические вещества: они
разработан вокруг химической реакции, называемой сгоранием : когда
вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод
диоксид и вода как продукты жизнедеятельности. Для эффективного сжигания топлива вам
должны использовать много воздуха. Это в равной степени относится и к автомобильному двигателю.
что касается свечи, костра на открытом воздухе, угля или
дрова в чьем-то доме.

С костром вам никогда не придется
беспокойтесь о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении не хватает воздуха и
гораздо важнее. Слишком мало кислорода вызовет пожар в помещении (или
даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы
производят опасные загрязнения воздуха, в том числе токсичные
угарный газ.

Рекламные ссылки

Работа: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, чтобы топливовоздушная смесь сгорала должным образом. Это называется стехиометрической смесью и получается 94 процента воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у вас есть
достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется
стехиометрическая смесь . (Стехиометрия является частью химии,
химический эквивалент проверки того, что у вас достаточно каждого ингредиента
прежде чем приступить к приготовлению пищи по рецепту. ) В случае автомобильного двигателя,
соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это
зависит от того, из чего именно состоит топливо).
Слишком много воздуха и недостаточно топлива означает, что двигатель горит
«бедный», когда слишком много топлива и недостаточно воздуха называется
сжигание «богатых». Немного избыточное количество воздуха (слегка обедненная смесь) даст лучшую экономию топлива, а небольшое количество воздуха (слегка богатая смесь) даст лучшую производительность. Иметь слишком много воздуха так же плохо, как и слишком
маленький; оба вредны для двигателя по-разному.

«Карбюратор называют «Сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать необходимую мощность или работать плавно, если его «сердце» не выполняет свои функции должным образом.»

Эдвард Кэмерон, The New York Times, 1910

Что такое карбюратор?

Бензиновые двигатели рассчитаны на всасывание точно необходимого количества воздуха, поэтому
топливо сгорает правильно, независимо от того, запускается ли двигатель холодным или
греется на максимальной скорости. Правильный подбор топливно-воздушной смеси
работа умного механического устройства под названием карбюратор : а
трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая
их вместе в разных количествах, чтобы удовлетворить широкий спектр различных
условия вождения.

Вы можете подумать, что слово «карбюратор» довольно странное, но оно происходит от глагола «карбюратор».
Это химический термин, означающий обогащение газа путем соединения его с углеродом.
или углеводороды. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом.
(углеводород).

Фото: Регулировка ручного карбюратора «дроссель» (клапан впуска воздуха)
в двигателе DeSoto Firedome 1956 года выпуска. Фото Лори Пирсон предоставлено Корпусом морской пехоты США и DVIDS.

Кто изобрел карбюратор?

Карбюраторы существуют с конца 19 века.
века, когда они были впервые разработаны пионером автомобилестроения (и
основатель Mercedes) Карл Бенц (1844–1929). Раньше были
попытки «карбюрации» другими способами. Например, французский пионер двигателей
Жозеф Этьен Ленуар (1822–1819 гг.).00) изначально использовал вращающийся цилиндр
с прикрепленными губками, которые погружались в топливо при повороте,
вынимая его из контейнера и перемешивая с воздухом. [1]

На приведенной ниже диаграмме, которую я раскрасил для облегчения понимания, показан исходный
Карбюратор Benz 1888 года выпуска; основной принцип работы (объясненный в рамке ниже) остается прежним и по сей день.

Иллюстрация: очень упрощенная схема оригинального карбюратора Карла Бенца из
его патент 1888 г. Топливо из бака (синий, D) поступает в то, что он назвал генератором (зеленый, A).
внизу, где он испаряется. Пары топлива проходят вверх по серой трубе и встречаются с поступающим воздухом.
вниз по той же трубе, которая входит из атмосферы через перфорацию вверху. Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они
сжечь, чтобы сделать власть. Работа из патента США 382 585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана предоставлено
ВМС США и Викисклад.

Карбюраторы сильно различаются по конструкции и сложности. Самый простой из возможных
по сути большая вертикальная воздушная труба над цилиндрами двигателя с
горизонтальная топливная труба, соединенная с одной стороны. Когда воздух течет вниз
трубы, он должен проходить через узкий изгиб посередине, который
заставляет его ускоряться и заставляет его давление падать. Это перегнулось
раздел называется Вентури . Падение давления воздуха
создает эффект всасывания, который всасывает воздух через топливную трубку в
сторона.

Рисунок: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом. Это пример закона сохранения энергии: если бы давление не падало, жидкость получала бы дополнительную энергию, втекая в узкое сечение, что нарушало бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам и нужно, но как
можно ли отрегулировать топливовоздушную смесь? Карбюратор имеет два поворотных
клапаны выше и ниже трубки Вентури. Вверху есть
клапан, называемый дросселем , который регулирует количество воздуха, которое может проходить
дюйм. Если дроссель закрыт, меньше воздуха проходит через трубу и
Вентури всасывает больше топлива, поэтому двигатель получает богатую топливом
смесь. Это удобно, когда двигатель холодный, при первом запуске и
работает довольно медленно. Под трубкой Вентури есть второй клапан.
называется дроссельная заслонка . Чем больше дроссельная заслонка открыта, тем больше
воздух проходит через карбюратор и чем больше топлива он всасывает из
труба в сторону. Чем больше топлива и воздуха поступает в двигатель, тем
высвобождает больше энергии и производит больше мощности, и машина едет быстрее.
Вот почему открытие дроссельной заслонки заставляет автомобиль ускоряться: это
эквивалентно дуновению костра, чтобы получить больше кислорода и сделать его
сгореть быстрее. Дроссель соединен с педалью акселератора
в машине или дроссель на руле мотоцикла.

Подача топлива в карбюратор немного сложнее, чем мы описывали до сих пор.
К топливной трубе прикреплен своего рода мини-топливный бак, называемый
поплавково-питательная камера (небольшой бачок с поплавком и клапаном внутри).
Когда камера подает топливо в карбюратор,
уровень топлива падает, а вместе с ним падает и поплавок. Когда поплавок опускается ниже определенного уровня, он открывает клапан, пропуская топливо.
в камеру, чтобы заправить ее из основного бензобака. Как только камера заполняется, поплавок поднимается,
закрывает клапан, и подача топлива снова отключается. (
поплавковая камера работает как туалет, с поплавком
эффективно выполняет ту же работу, что и шаровой кран — клапан, который помогает наполнять туалет.
с нужным количеством воды после промывки.
Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

В общем, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя воздушную заслонку (синюю) можно настроить так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубы воздух нагнетается через узкий изгиб, называемый трубкой Вентури. Это ускоряет
    и приводит к падению его давления.
  4. Падение давления воздуха создает всасывание в топливной трубе (справа), всасывая топливо (оранжевый).
  5. Дроссель (зеленый) — это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, и автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевое) подается из мини-топливного бака, называемого поплавковой камерой.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает верхний клапан.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывать клапан.

Узнать больше

На этом сайте

  • Тормоза
  • Автомобильные бензиновые двигатели
  • Шестерни
  • Дизельные двигатели
  • Колеса и оси

Книги

Для читателей постарше
  • Карбюраторы Holley: Как восстановить Майк Мавигран. КарТех, 2016.
  • Руководство по карбюратору Rochester

  • Майка Стаблфилда. Хейнс, 1994.
  • Карбюраторы Weber от Пэта Брейдена. Книги HP, 1988.
Для младших читателей
  • Car Science by Richard Hammond. Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет автомобили двигаться (9–12 лет).

Видеоролики

  • Карбюраторы — объяснение: Это видео от Engineering Explained охватывает почти ту же тему, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объяснение Pimpinpenz. Хороший наглядный обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

  • Попрощавшись с карбюраторами, Nascar готовит переход на систему впрыска топлива Пол Стенквист. The New York Times, 20 июля 2011 г. Как Nascar наконец отказалась от карбюраторов в гоночном сезоне 2012 г. и почему это заняло так много времени.
  • Технология; «Прощай, карбюраторы» Джона Холуса. Нью-Йорк Таймс, 22 октября 19 г.81. Статья из архива The Times предвещает появление впрыска топлива в начале 1980-х годов.
  • Новый карбюратор Форда с регулируемой скоростью Вентури от EF Lindsley. Popular Science, август 1976 г. В этой старой статье из архива Pop Sci есть несколько отличных иллюстраций в разрезе различных типов карбюраторов Вентури.

Патенты

Для получения более подробной технической информации см.:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство смешения топлива с воздухом, изобретенное в конце 19 в.19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1,520,261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1 938 497: Карбюратор Чарльза Н. Пога. 5 декабря 1933 г. Эта конструкция направлена ​​​​на то, чтобы испарить больше топлива и обеспечить большую мощность двигателя.
  • Патент США 4 501 709: Карбюратор Вентури с регулируемой скоростью работы Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В карбюраторе этого более современного типа размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.

Каталожные номера

  1. ↑   Газовые и нефтяные двигатели: Практический трактат о внутреннем сгорании
    Двигатель Уильяма Робинсона. Э. и Ф.Н. Спон, 1890, стр. 175.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оцените эту страницу

Пожалуйста, оцените или оставьте отзыв на этой странице, и я сделаю пожертвование WaterAid.

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2009/2021) Карбюраторы. Получено с https://www.explainthatstuff.com/how-carburetors-work.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем веб-сайте…

  • Связь
  • Компьютеры
  • Электричество и электроника
  • Энергия
  • Машиностроение
  • Окружающая среда
  • Гаджеты
  • Домашняя жизнь
  • Материалы
  • Наука
  • Инструменты и инструменты
  • Транспорт

↑ Вернуться к началу

степень сжатия

| технология | Британика

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • В этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Британика Классика
    Посмотрите эти ретро-видео из архивов Британской энциклопедии.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.