Дизельный двигатель форсировать: Что значит «форсированный двигатель» и как это сделать

Содержание

Что значит «форсированный двигатель» и как это сделать

Знаете ли вы, уважаемый автомобилист, что значит форсированный двигатель? Такой мотор позволяет значительно повысить мощность, и тем самым автомобиль получает такую разгонную динамику, о которой даже подумать страшно. По сути, становишься обладателем настоящего гоночного болида, приобрести который слишком дорого обходится, и далеко не каждый россиянин может себе позволить его купить. А вот превратить обычный двигатель в форсированный можно даже своими руками. Об этом мы и расскажем в этой статье.

Форсированный дизельный двигатель

Форсировать двигатель — значит повысить его показатели за счёт уменьшения потерь энергии ДВС, уходящей на трение и работу дополнительного оборудования. Кроме того, повышение производительности двигателя подразумевает раскрытие его скрытых резервов.

Содержание

  • Что это такое
  • Несколько способов повысить производительность ДВС
  • Электронное и механическое форсирование ДВС
  • Минимизируем механические потери

Что это такое

Для начала хотелось бы отметить, что форсирование двигателя — это не новость или фантазия, а вполне реальная процедура, которую уже давно и успешно используют многие фирмы по проведению тюнинга. А такое понятие, как тюнинг, означает доработку таких заводских конструкций и параметров, которые полностью не раскрыты. По сути, каждый ДВС имеет резервы, которые нужно знать и уметь раскрывать.

Проводя форсирование двигателя, вы получаете возможность усилить заводские показатели ДВС. И делается это с определённой целью — получить более высокую производительность различных составляющих силового агрегата.

На видео показано, что такое форсированный двигатель:

Другими словами, форсировать двигатель означает увеличить мощность ДВС за счёт чего-то, а в нашем случае за счёт повышения рабочего объёма. И такой подход в деле используют не только так называемые тюнинговые фирмы, но и автоконцерны. К примеру, ДВС ВАЗ 2106 был получен путём форсирования ДВС ВАЗ 2103. И таких примеров множество.

Несколько способов повысить производительность ДВС

Форсирование двигателя имеет основные принципы, и такие работы могут быть проведены по-разному. Самым популярным и распространённым способом повышения производительности мотора является, как и было сказано выше, увеличение рабочего объёма камеры сгорания. Если у гоночного автомобиля такой параметр изменить бывает сложно, так как он жёстко прописан в техрегламенте, то для обычного легкового транспортного средства это возможно. По стандарту всех выпускаемых на сегодня легковых моделей авто ограничивается только геометрический размер ГБЦ.

Первый способ механического форсирования подразумевает замену коленвала на другой — с более увеличенным ходом и диаметром цилиндров.

Для форсирования двигателя можно заменить коленвал

Кроме этого, усилить двигатель внутреннего сгорания можно и другим методом. Это можно сделать путём установки приводного компрессора. Этот метод очень популярен в западных странах, в частности в США. На автомобиль устанавливается приводной компрессор или тот же механический нагнетатель, который проводится от коленвала. Что происходит? Благодаря этому методу (впрочем, то же происходит и при использовании первого способа) крутящий момент увеличивается во всём диапазоне эксплуатации ДВС.

Следующий способ поднять показатели ДВС — это сдвиг пика крутящего момента. Такой способ применяется в основном в спорте. Пик крутящего момента сдвигается в направлении высоких оборотов, и главной целью в таком случае является уменьшить сопротивление при впуске воздуха в цилиндры. Как этого добиться? Очень просто. Нужно устранить определённые ступеньки, которые образуются в области соединения впускного коллектора с ГБЦ и карбюратором. Для этого обычно полируют впускной коллектор, поле чего вставляют клапаны большего размера, используя специальные головки.

Что касается карбюратора, то его часто заменяют, используя для этого сдвоенный вариант с горизонтальным протоком. В итоге такой метод форсирования ДВС даёт увеличение суммарного сечения диффузоров, а смесь распределяется по всем цилиндрам равномерно, ведь потоку топливной смеси не приходится менять направление на выходе из карбюратора.

Установка и настройка распредвала для увеличения мощности двигателя

Следующий способ повышения мощности ДВС — это совершенно иная установка распределительного вала. Другими словами, его нужно поставить с широкими фазами, что значительно улучшает наполнение камеры сгорания на высоких оборотах и происходит это за счёт снижения момента «на низах». Из-за этого автомобиль, наделённый таким распредвалом, при движении вынуждает водителя постоянно задействовать рычаг КПП, чтобы обороты ДВС не падали, а сам силовой агрегат, если можно так выразиться — не тупел.

Настройка впуска и выпуска — это очередной способ повысить мощность двигателя. Что даёт этот способ? Благодаря ему удаётся повысить подачу крутящего момента в узком диапазоне за счёт резонанса. Форсирование ДВС этим методом позволяет увеличить мощность двигателя, и приходится уже ставить не обычные, а лёгкие кованые поршни, чтобы сохранить приемлемость инерционных нагрузок.

Наконец, увеличение степени сжатия даёт возможность увеличить показатели ДВС. Это объясняется тем, что детонация на высоких оборотах возникает довольно редко. Правда, владелец такого двигателя должен суметь обеспечивать свой автомобиль высокооктановым бензином, но, если знать, как уменьшать расход топлива, метод станет лучшим.

Говоря другими словами, этот способ форсирования двигателя подразумевает изменение фаз газораспределения.

Электронное и механическое форсирование ДВС

На видео рассказывается о простом способе форсирования двигателя:

Рассмотрим теперь методы форсирования ДВС с общей точки зрения, не вдаваясь во все тонкости. Самый подходящий и распространённый метод — это чип-тюнинг, который идеален для автомобилей современного типа. Знание этого способа форсирования ДВС является, по сути, методом того, как можно форсировать двигатель, вторгаясь в электронный мозг транспортного средства. Благодаря определённым способам коррекции или «прошивки» удаётся управлять программами, которые автоматически повышают производительность.
В таком случае следует установить дополнительные контроллеры или модули, что и станут, по сути, составляющими, которые увеличат мощность двигателя. Минусом такого способа является то, что проводить его в гараже своими руками просто невозможно, так как нужны особые знания и, самое главное, дорогостоящее оборудование.

Что касается механического форсирования ДВС, то этот метод более прост. Как и говорилось выше, метод подразумевает доработку уже существующих узлов автомобиля или их замену на новые.

Хотя такой вид тюнинга и прост, но начинать его без проведения особых расчётов не стоит.

Минимизируем механические потери

На видео рассказано о плюсах и минусах форсирования двигателя:

Практически все способы форсирования двигателя бывают направлены на одно — уменьшить механические потери ДВС. Куда же уходит немалая часть энергии двигателя? Оказывается, трение, которое происходит в цилиндрах любого ДВС, уменьшает производительность. В этом случае можно устанавливать сборные маслосъёмные кольца, тем самым увеличивая зазоры между цилиндром и поршнем. Этот способ не проводится на ура. Нужно вначале провести тщательную балансировку составляющих и все детали кривошипно-шатунного механизма подобрать по весу.

Трение в цилиндрах — это не единственная причина потери мощности ДВС. Кроме этого, потери объясняются и трением в шейках коленвала. В этом случае, как и было сказано выше, применяют установку распредвала с более широкими фазами и ещё дополнительно ставят систему под названием «сухой картер», которая значительно снижает насосные потери, затрачиваемые коленвалом. Следует помнить, что попадание на коленвал масла значительно тормозит его вращение.

Значительная часть энергии двигателя может уходить и на вспомогательное оборудование. Например, к ним относятся такие детали и приборы, как привод ГРМ, кондиционер, водяной насос, гидроусилитель и многое другое. В этом случае приходится увеличивать передаточное отношение генератора и привода водяного насоса.

Форсировать двухтактный двигатель — это не просто модернизация ДВС, а в наше время необходимость. Если на четырёхтактном двигателе имеется больший ресурс и экономичность, что делает форсирование делом правильным, но не обязательным, то на двухтактных ДВС сделать это уже важно. Кроме того, как утверждают эксперты, проводить форсирование на двухтактных двигателях легче.

Дизельный двигатель

Дизельный двигатель двигатель внутреннего сгорания, в котором:
— сжатию подвергается воздух, температура которого повышается до 600-700°С.
— топливо воспламеняется при соприкосновении с раскаленным воздухом.

Дизели ставят только на грузовики

Многие современные легковые автомобили имеют дизельные двигатели, причем, например, в Европе люди даже предпочитают дизели бензиновым двигателям.

Дизельный двигатель менее мощный, чем бензиновый

При современном уровне технологий чаще оказывается наоборот. Современный дизельный двигатель может превосходить бензиновый по мощности, не говоря уже о крутящем моменте, который обеспечивает эластичность и удобство управления разгоном.

Дизельные двигатели эффективны только при большом объеме

Для дизельного двигателя, точно так же, как и для бензинового, не существует ограничений по объему. Сейчас выпускаются автомобили с объемом дизельного двигателя 1,1; 1,3 литра, и даже мотоциклы с дизельным двигателем объемом 0,6 литра.

Даже если дизель мощнее, за счет своего веса он проигрывает по характеристикам бензиновому

Сейчас для дизельных двигателей применяются те же материалы, что и для бензиновых, поэтому они ненамного тяжелее.

Дизельный двигатель хуже заводится зимой

Если не экономить деньги на свечах накаливания и зимнем дизтопливе, то он будет запускаться в любой мороз с такой же легкостью.

Дизельный двигатель с турбиной расходует больше топлива

Как это ни парадоксально, но турбина в дизельном двигателе, в отличие от бензинового, снижает расход топлива. Это объясняется резко возрастающим крутящим моментом, который позволяет управлять машиной более спокойно.

Дизельный двигатель необходимо долго прогревать

Если прогревать дизельный двигатель регулярно, то на клапанах остаются остатки нагара и смол, которые при накоплении могут привести к неплотному прилеганию клапана к седлу и даже его стопорению. Но, тем не менее, турбодизели нуждаются в недолгом прогреве на холостом ходу для избежания поломок турбины.

Дизельный двигатель намного сложнее в обслуживании и ремонте

Дизельный двигатель по своей конструкции намного проще бензинового, так как в нем воспламенение происходит не от искры, производимой свечой зажигания, а от сжатия смеси в цилиндре. А так как простые конструкции всегда надежнее, то поломки этого типа двигателя происходят намного реже. В обслуживании и ремонте дизельные двигатели также намного проще по понятной причине.

Дизельный двигатель чрезвычайно шумный

Дизельный двигатель, оснащенный хорошим глушителем и современной системой впуска работает немного громче бензинового, но в большинстве случаев звук работы современных бензиновых и дизельных двигателей практически невозможно различить.

Любой дизель требует хорошего топлива

Во-первых, многие дизельные двигатели, особенно атмосферные, абсолютно не требовательны к топливу. А во-вторых даже на самый прихотливый дизель можно поставить фильтр-водоотделитель и фильтр твердых частиц, которые позволят заправлять автомобиль топливом любого качества.

Бензиновые двигатели все же надежнее — они лучше проверены

Это не так. Дизельные двигатели в среднем имеют ресурс на 40-50% больший, чем у бензинового двигателя.

В дизеле бесполезно применять сложную электронику

Дизельный двигатель допускает применение в нем любых сложных систем. Так, в современном дизельном двигателе применяются такие системы, как электронноуправляемые форсунки, общая аккумуляторно-возвратная топливная рампа Common Rail и другие.

Форсировать дизельный двигатель невозможно

Да, дизели хуже поддаются тюнингу, чем бензиновые двигатели, но поднять мощность в 1,5 раза без особого прироста расхода топлива все же возможно.

Автоматическая коробка передач и дизель несовместимы

Дизельный двигатель стыкуется с автоматической коробкой передач даже лучше бензинового за счет более высокого крутящего момента, который лучше приводит в действие гидротрансформатор.

Выхлоп дизельного двигателя сильнее загрязняет окружающую среду

При применении каталитических нейтрализаторов, рециркуляции выхлопных газов и сажевого фильтра выхлоп дизельного двигателя может соответствовать самым жестким экологическим нормам.

Дизельная машина дешевле бензиновой

При равном уровне оснащения машина с дизельным двигателем будет стоить дороже бензиновой за счет применения более дорогих электронных и очистных систем, но ее эксплуатация обойдется дешевле.

Вибронагруженность дизеля слишком высока

При четном количестве цилиндров в одном ряду вибронагруженность дизельного двигателя вполне приемлема, но если наоборот — то это утверждение становится правдивым.

В дизельный двигатель заливается такое же масло, как и в бензиновый

Для дизелей лучше использовать специальное масло, причем стоит внимательно изучить, для каких именно типов дизелей оно предназначено.

Системы повышения давления

Системы повышения давления

Ханну Яаскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

Abstract : Использование турбонаддува в бензиновых двигателях, исторически ограниченное автомобилями с высокими характеристиками, стало стандартной практикой в ​​двигателях уменьшенного размера, где наддув позволяет существенно увеличить удельный крутящий момент. Существуют значительные различия в требованиях к системе наддува бензиновых и дизельных двигателей легковых автомобилей. В дизелях требуется больший поток воздуха и более высокое давление наддува для заданного расхода топлива, а вестгейт и двухступенчатые системы наддува требуются при более низкой плотности крутящего момента по сравнению с бензиновыми двигателями.

  • Системы наддува бензиновых двигателей малой грузоподъемности
  • Системы наддува дизельных двигателей
  • Регулятор давления наддува

Хотя турбокомпрессоры применялись в серийных бензиновых двигателях на протяжении многих десятилетий, в основном они использовались на автомобилях с высокими характеристиками, за которые клиенты были готовы платить дополнительные расходы. Объемы производства этих автомобилей обычно были относительно небольшими. С появлением бензиновых двигателей с непосредственным впрыском уменьшенного размера, чтобы соответствовать различным нормативным ограничениям по выбросам парниковых газов и экономии топлива, ситуация изменилась. Объемы бензиновых двигателей с турбонаддувом быстро растут, в то время как готовность клиентов платить за производительность, возможно, не так сильно изменилась. Это сочетание увеличенных объемов, стремления снизить затраты, а также сочетание относительно новых технологий двигателей резко изменило подход к внедрению турбокомпрессора в серийный бензиновый двигатель за относительно короткое время.

Рисунок 1 . Кривые удельного крутящего момента при полной нагрузке для нескольких бензиновых двигателей с турбонаддувом и непосредственным впрыском

Чтобы лучше понять, как развивалась и куда движется современная технология турбонаддува для бензиновых двигателей уменьшенного объема, полезно изучить несколько примеров кривых крутящего момента при полной нагрузке для некоторых бензиновых двигателей с наддувом в категории менее 2,0 л. Рисунок 1.

Сначала рассмотрим два примера двигателей с одинарным турбокомпрессором середины 2000-х: Volkswagen 2,0 л FSI (280 Нм/147 кВт) и 1,4 л FSI (200 Нм/90 кВт). Эти двигатели имели максимальное BMEP около 1,8 МПа и удельную мощность менее 75 кВт / л. Обратите также внимание на то, что существует компромисс между удельной мощностью и минимальной частотой вращения двигателя, при которой достигается максимальный крутящий момент. Эти значения образуют удобную базовую линию, отражающую технологию, доступную производителям двигателей для экономичного массового производства бензиновых двигателей с непосредственным впрыском топлива в этот период. Для достижения более высокого BMEP 2,2 МПа, широкого диапазона частоты вращения двигателя с максимальным крутящим моментом и более высокой удельной мощности 90 кВт/л в середине 2000-х годов требовало двух компрессоров, что отражено на примере двигателя Volkswagen 1,4 л TSI (240 Нм/125 кВт), в котором использовалась комбинация нагнетателя и турбонагнетателя.

К началу второго десятилетия 21 века ситуация существенно изменилась. В 2011 году Ford объявил о своем 1,0-литровом двигателе EcoBoost (170 Нм/93 кВт), чей устойчивый крутящий момент () и мощность () были очень близки к значениям для 1,4-литрового TSI Volkswagen, но для этого требовался только один турбокомпрессор с перепускным клапаном (в при переходной работе этот 1,0-литровый EcoBoost развивал крутящий момент 200 Нм). 1,0-литровый EcoBoost также продемонстрировал значительное снижение минимальной частоты вращения двигателя, при которой мог быть достигнут максимальный крутящий момент, что является важным достижением, учитывая более высокий BMEP по сравнению с двигателями с одним турбокомпрессором, выпущенными всего несколькими годами ранее. Низкая частота вращения двигателя для достижения максимального крутящего момента является важным требованием для поддержания низкого расхода топлива в двигателях уменьшенных размеров.

Чтобы реализовать этот прирост производительности, 1,0-литровый EcoBoost, как и ряд других его предшественников, полагался на ряд доступных технологий двигателя, некоторые новые разработки, а также подход к проектированию, который гораздо более тесно интегрировал двигатель и турбокомпрессор в единый пакет. чем это делалось в прошлом.

###

Турбокомпрессоры — давление наддува и привода

| Советы по покупке

До того, как дизельные двигатели с турбонаддувом появились на рынке грузовиков, у вас не было выбора. Либо ты купил 6.9L IDI Ford F-серии (мощностью 170 или 180 л.с.) или 130-сильный 6,2-литровый Chevrolet C/K-серии. По состоянию на 2009 год Chevy, Dodge и Ford предлагают пакеты мощностью 350 л.с. и более, соответствующие гораздо более строгим стандартам выбросов. На вторичном рынке также появился турбонаддув, и 500 с лишним лошадиных сил стали повседневной цифрой. Турбокомпрессор — главная причина, по которой сегодняшние дизели могут достигать такого уровня мощности, поэтому, помня об этом, давайте подробнее рассмотрим, как работает самая важная часть вашего двигателя.

Основы
В среднем дневное давление воздуха на уровне моря составляет около 14,7 фунтов на квадратный дюйм (psi). Когда двигатель оснащен турбонаддувом, турбокомпрессор действует как высокоскоростной вентилятор, который нагнетает в двигатель больше воздуха. Величина давления, которое может создавать турбонаддув, измеряется в фунтах на квадратный дюйм выше атмосферного давления. Таким образом, двигатель с турбонаддувом и 15-фунтовым наддувом будет перемещать примерно в два раза больше воздуха, чем двигатель без наддува, и при прочих равных условиях будет иметь примерно вдвое большую мощность. В более новых дизелях давление наддува может достигать 40 фунтов на квадратный дюйм, но двигатель остается надежным и в три-четыре раза превышает мощность безнаддувного дизеля.

Принцип работы турбонагнетателя
Турбокомпрессор в своей простейшей форме состоит всего из нескольких частей: рамы, вала, компрессора, турбины, корпуса компрессора и выхлопа. Выхлопные газы двигателя используются для вращения турбины, которая, в свою очередь, приводит в действие компрессор через общий вал, который создает давление наддува, направляемое в двигатель. Эти типы турбокомпрессоров успешно использовались с 1920-х годов в гоночных и дизельных двигателях.

Здесь турбонаддув BD Super B виден рядом со стандартным HX35 (найден в 99-м году).4-‘981/2 двигателей Cummins). Хотя они могут выглядеть одинакового размера, есть несколько тонких отличий. Корпус компрессора больше, чтобы обеспечить более высокий максимальный воздушный поток, а корпус выхлопа меньше, чтобы улучшить характеристики раскрутки. Также присутствуют внутренние различия в смазке, подшипниках, колесах турбины и компрессора.

Давление наддува и привода
Хотя мы уже ввели давление наддува, другим важным аспектом турбонаддува является давление привода. Давление привода — это величина силы (в фунтах на квадратный дюйм), которая используется для вращения турбонагнетателя. Соотношение приводного давления и давления наддува 1:1 является идеальным, хотя в действительности приводное давление обычно немного выше, чем давление наддува. Если возникает ситуация, когда давление привода намного превышает давление наддува (скажем, наддув 35 фунтов на квадратный дюйм, давление привода 65 фунтов на квадратный дюйм), то вы можете столкнуться с проблемой. Чтобы имитировать ситуацию с высоким давлением, попробуйте сделать обычный вдох, затем прикройте рот рукой и выдохните. Вот что ты делаешь со своим двигателем. Высокое давление в приводе оказывает негативное воздействие на детали и снижает эффективность турбокомпрессора.

Слишком большой наддув также может быть проблемой для турбокомпрессоров. Чтобы увеличить наддув, турбины будут вращаться быстрее, и у каждого турбонагнетателя есть место, где он просто не может вращаться быстрее. Например, если у вас есть HX35 (установленный на Dodge 1/2 1/2 94-го года), он может производить только около 40 фунтов на квадратный дюйм, прежде чем превышение скорости станет угрозой. Если вы используете давление наддува 45 фунтов на квадратный дюйм или более на HX35 в течение длительного периода времени, ваш турбокомпрессор почти наверняка выйдет из строя.

Вот пример внешнего вестгейта (стрелка). Вестгейт забирает избыточное давление выхлопных газов из двигателя и отводит его в водосточную трубу. Таким образом, на турбонагнетателе можно использовать меньший корпус со стороны выхлопа для улучшения характеристик наматывания.

Внутренние и внешние вестгейты, а также Turbo Lag
В 1989 году, когда Dodge представила свой дизельный Ram D250, на двигатель Cummins был установлен турбонагнетатель WHC-1 без перепуска. Идея заключалась в том, что, поскольку эти грузовики в основном будут использоваться для перевозки, большой реакции не требуется. По мере того как грузовики становились все более популярными среди водителей ежедневно, потребность в турбокомпрессорах с лучшим откликом стала необходимостью. С момента, когда вы заглушите свой дизельный двигатель, до момента, когда он начнет создавать достаточное количество наддува (скажем, 10-15 фунтов на квадратный дюйм), проходит некоторое время. Этот период времени называется турболагом.

Чтобы уменьшить турбояму, Dodge и другие производители начали использовать гораздо меньшие корпуса выхлопных газов и перепускные клапаны своих турбонагнетателей, отводя выхлопные газы вокруг турбинного колеса. Меньший корпус выхлопной трубы помог бы турбонагнетателю быстрее раскрутиться, а вестгейт позволил бы сбросить избыточное давление привода, когда турбонагнетатель разогнался бы до нужной скорости. Когда дизельные грузовики модифицируются для производства большего количества топлива или более высоких оборотов, количество выхлопных газов может превышать пропускную способность внутреннего перепускного клапана. В этом случае можно установить корпус выхлопной трубы большего размера или добавить к турбосистеме внешний вестгейт, установленный в выпускном коллекторе. Следует отметить, что не все турбокомпрессоры имеют вестгейт. В соревнованиях, таких как буксировка саней, двигатель может работать только в очень узком рабочем диапазоне (скажем, 3500–5000 об/мин). Если управляемость не вызывает беспокойства, эти гоночные двигатели могут обойтись без корпусов с перепускным клапаном и при этом иметь благоприятное соотношение давления наддува и привода.

Это изображение того, что осталось от турбонагнетателя, у которого взорвалось колесо компрессора. Турбокомпрессор был разрушен в результате превышения скорости — было использовано слишком много закиси азота (что значительно увеличило давление в приводе) без надлежащего перепускного клапана.

Почему турбонагнетатель выходит из строя? Когда мне нужен новый?
Наиболее распространенная проблема, которая приводит к отказу турбонагнетателя, возникает, когда люди пытаются вытолкнуть штатный турбокомпрессор за его пределы, и либо выходит из строя вал, либо взрывается компрессор. Обе эти ситуации обычно являются результатом превышения скорости турбонагнетателя из-за избыточного давления в приводе. Установка внешнего вестгейта снизит давление привода, но у вас все равно может быть больше топлива, чем воздуха. В этом случае пришло время перейти на турбокомпрессор большего размера. Большинство стандартных турбокомпрессоров хороши примерно до 400-500 лошадиных сил. Кроме того, вестгейт и/или установка турбонагнетателя 62–71 мм (в зависимости от вашего применения) — верный выбор для обеспечения надежной мощности.

Турбины с изменяемой геометрией, корпуса с водяным охлаждением и многое другое
По мере развития технологий были найдены новые способы повышения долговечности и эффективности современных турбокомпрессоров. Многие турбокомпрессоры в настоящее время имеют водяное охлаждение для большей долговечности, а потребность в еще более быстродействующем турбонагнетателе привела к появлению на рынке турбокомпрессоров с изменяемой геометрией. Турбины с изменяемой геометрией (также называемые турбинами с изменяемой геометрией или сокращенно VGT или VNT) имеют небольшие лопасти, установленные на раме, которые открываются и направляют выхлопные газы к турбине во время работы на низких оборотах, помогая золотнику турбонагнетателя вращаться быстрее. Выхлопной газ также попадает на лопасти почти под прямым углом, что эффективно приводит к уменьшению площади корпуса, что также помогает раскручиваться и часто устраняет необходимость в вестгейте. Новый 4,5-литровый Duramax — хороший пример двигателя, в котором вместо перепускного клапана используется турбонагнетатель с изменяемой геометрией.