Двигатель асинхронный описание: Асинхронные электродвигатели с короткозамкнутым ротором. Конструктивные особенности и области применения | Полезные статьи

Асинхронные двигатели — MirMarine

Cайт Mirmarine.net просит поддержки.
Из за введенных санкций и событий с 24 февраля сайт Mirmarine.net оказался в тяжелом положении.
Если у вас есть возможность, поддержите финансово.
Поддержать

  1. Главная
  2. Электромеханик
  3. Асинхронные двигатели


Асинхронными называются двигатели, у которых число оборотов ротора отстает от скорости вращения магнитного поля статора при прохождении в его обмотках трехфазного тока. При прохождении в обмотках статора трехфазной машины трехфазного тока возникает вращающееся магнитное поле, под действием которого в роторе индуктируется электрический ток. В результате взаимодействия вращающегося магнитного поля статора стоками, индуктируемыми в проводниках ротора, возникает механическое усилие, действующее на проводник с током, которое и создает вращающий момент, приводящий в движение ротор. При этом число оборотов ротора у асинхронного двигателя всегда меньше числа оборотов вращающегося магнитного поля статора за счет скольжения ротора, которое у современных двигателей составляет примерно 2—5%.


Таким образом, асинхронный двигатель получает энергию, подводимую к ротору вращающимся магнитным потоком (индуктивно) в отличие от двигателей постоянного тока, у которых энергия подводится по проводам.


Асинхронные двигатели в отличие от синхронных возбуждаются переменным током.


Асинхронный двигатель, так же как и синхронный, состоит из двух основных частей: статора с фазными обмотками, по которым проходит трехфазный переменный ток, и ротора, ось которого уложена в подшипниках. Ротор может быть коротко-замкнутым и фазным (рис. 175).


Короткозамкнутый ротор(рис. 175, в) представляет из себя цилиндр, по окружности которого параллельно его оси расположены проводники, замкнутые между собой с обеих сторон ротора кольцами (в виде беличьего колеса).


Асинхронный двигатель с таким ротором называется короткозамкнутым. К недостаткам их относятся малый пусковой момент и большой ток в обмотках статора при пуске. Если хотят увеличить пусковой момент или уменьшить пусковой ток, применяют асинхронные двигатели с фазным ротором (рис. 175,г).


У этих двигателей на роторе размещают такую же обмотку, как и на статоре. При этом концы обмоток соединяют с контактными кольцами (рис. 175, д), расположенными на валу двигателя. Контактные кольца при помощи щеток соединяются с пусковым реостатом. Для пуска двигателя в питающую сеть включают статор, после чего постепенно выводят из цепи ротора сопротивление пускового реостата. Когда двигатель пущен в ход, контактные кольца при помощи особых приспособлений замыкаются накоротко, а щетки поднимаются над кольцами. Остановка электродвигателя производится простым выключением рубильника. После остановки двигателя необходимо опустить щетки и разомкнуть контактные кольца. На рис. 176 показан продольный разрез асинхронного двигателя с фазным ротором. На валу 1 двигателя имеется механизм для замыкания контактных колец 8 и подъема щеток ручкой 7. В корпусе 6 статора помещена обмотка 5, уложенная в пазы 4 стали статора. В пазах 2 стали ротора лежит обмотка 3 ротора.


Пуск в ход электродвигателя с короткозамкнутым ротором может быть осуществлен непосредственным включением рубильника на полное рабочее напряжение сети (способ прямого пуска.) Однако вследствие резкого возрастания индуктируемой э. д. с. и величины пускового тока напряжение в сети в пусковой момент снижается, что отрицательно сказывается на работе приводного двигателя и других потребителей, питающихся от этой сети. В случае большой величины пускового тока, для его уменьшения асинхронные двигатели с короткозамкнутым ротором обычно пускают двумя способами: переключением обмоток статора в момент пуска со звезды на треугольник, если обмотки статора при нормальной работе электродвигателя соединены треугольником или включением электродвигателя через пусковое сопротивление (или автотрансформатор) в цепи статора.


Остановка электродвигателя производится выключением рубильника. После остановки электродвигателя пусковой реостат или автотрансформатор полностью вводится. Скорость вращения асинхронных двигателей регулируют, изменяя сопротивление реостата, включенного в цепь ротора (у электродвигателей с фазным ротором) и переключением статорных обмоток для изменения числа пар полюсов (у электродвигателей с коротко-замкнутым ротором).


Изменение направления вращения асинхронных электродвигателей достигается изменением направления вращающегося магнитного поля статора путем переключения любых двух из трех фаз обмотки статора (с помощью проводов, соединяющих зажимы статорной обмотки с сетью) при помощи обычного двухполюсного переключателя.


Асинхронные двигатели

  • просты по конструкции
  • обладают по сравнению с двигателями постоянного тока меньшими габаритами и весом, вследствие чего он значительно дешевле
  • более надежны в эксплуатации
  • требуют меньшего внимания при обслуживании из-за отсутствия у них вращающегося коллектора и щеточного аппарата
  • обладают более высоким к. п. д.
  • аппаратура управления ими значительно проще и дешевле, чем у двигателей постоянного тока
  • Асинхронные двигатели работают без искрообразования, которое возможно в машинах постоянного тока с нарушенной коммутацией, поэтому они более безопасны в пожарном отношении.


Перечисленными основными преимуществами асинхронных двигателей объясняется современная тенденция повсеместного внедрения переменного тока на морских судах. Следует отметить, что в промышленности асинхронные двигатели давно завоевали господствующее положение по сравнению с другими типами электродвигателей. Асинхронные двигатели строятся мощностью от долей киловатта до многих тысяч киловатт. На судах морского флота в основном применяются асинхронные двигатели с короткозамкнутым ротором, которые выпускаются в водозащищенном и брызгозащищенном исполнении и рассчитаны на напряжение 380/220 в.

  • Электромеханик

Асинхронный двигатель — конструктивные особенности и принцип работы

Асинхронный двигатель являет собой электрический двигатель, работающий на переменном токе. Асинхронной эта электрическая машина названа потому, что частота, с которой вращается движущаяся часть двигателя – ротор, не равняется частоте, с которой вращается магнитное поле, которое создается благодаря протеканию переменного тока по обмотке недвижимой части двигателя – статора. Асинхронный двигатель – наиболее распространенный из всех электрических двигателей, он получил широчайшую популярность во всех отраслях промышленности, машиностроения и прочее.

Асинхронный двигатель в своей конструкции обязательно имеет две самые важные части: ротор и статор. Эти части разделены небольшим воздушным зазором. Активными частями двигателя также можно называть обмотки и магнитопровод. Конструктивные части обеспечивают охлаждение, вращение ротора, прочность и жесткость.

Статор – это литой стальной либо чугунный корпус цилиндрической формы. Внутри корпуса статора расположен магнитопровод, в специальные вырубленные пазы которого уложена обмотка статора. Оба конца обмотки выведены в клемную коробку и соединяются либо треугольником, либо звездой. С торцов корпус статора полностью закрыт подшипниками. В эти подшипники прессуются подшипники на валу ротора. Ротор асинхронного двигателя же представляет собой стальной вал, на который также напрессован магнитопровод.

Конструктивно роторы можно поделить на две основные группы. Сам двигатель будет носить свое наименование в соответствии с принципом конструкции ротора. Асинхронный двигатель с короткозамкнутым ротором — это первый  тип. Есть и второй. Это асинхронный двигатель с фазным ротором. В пазы двигателя с ротором короткозамкнутым (его еще называют «беличья клетка» ввиду схожести внешнего вида такого ротора с клеткой у белки) заливают алюминиевые стержни и замыкают их по торцам. У фазного ротора есть в наличии три обмотки, которые соединяются между собой в звезду. Концы обмоток прикреплены к закрепленным на валу кольцам. При запуске двигателя к кольцам прижимаются специальные неподвижные щетки. К этим щеткам подключены сопротивления, призванные уменьшить пусковой ток и плавно запустить асинхронный двигатель. Во всех случаях к обмотке статора подводят трехфазное напряжение.

Принцип работы любого асинхронного двигателя прост. В основе лежит знаменитый закон электромагнитной индукции. Магнитное поле статора, создаваемое трехфазной системой напряжения, вращается под действием тока, проходящего по обмотке статора. Это магнитное поле пересекает обмотку и проводники обмотки ротора. От этого в обмотке ротора создается электродвижущая сила (ЭДС) по закону электромагнитной индукции. Эта ЭДС вызывает протекание в обмотке ротора переменного тока. Этот ток ротора впоследствии и сам создает магнитное поле, которое взаимодействует с магнитным полем статора. Этот процесс и запускает вращение ротора в магнитных полях.

Часто для уменьшения пускового тока (а он у асинхронного двигателя может во много раз превышать рабочий ток) применяют пусковые конденсаторы, подключаемые последовательно к пусковой обмотке. После пуска этот конденсатор выключается, сохраняя рабочие характеристики неизменными.

Асинхронный двигатель: конструкция, работа и отличия

Асинхронный двигатель является наиболее широко используемым двигателем в промышленности. Практически невозможно представить себе отрасль без использования этого двигателя, поскольку он работает на субсинхронной скорости. известный как асинхронный двигатель. Приняв на себя такую ​​важную роль, необходимо изучить ее детально. В этой статье обсуждается обзор асинхронного двигателя, его определение, работа, конструкция, различия и области применения.

Определение: Двигатель переменного тока, в котором статор не синхронизирован с ротором и может свободно вращаться со скоростью, меньшей синхронной скорости из-за скольжения. Это связано с тем, что вращающееся магнитное поле не взаимодействует с индуцированным полем ротора. В этом двигателе крутящий момент создается, когда ротор не находится в фазе со статором, а ток, индуцируемый в роторе, подчиняется закону Ленца.

асинхронный двигатель

Однако, если каким-либо образом ротор выровняется со статором, это создаст состояние блокировки ротора и крутящего момента не будет. Этот двигатель всегда работает с отстающим коэффициентом мощности, так как ротор отстает от статора. Коэффициент мощности этого двигателя в основном зависит от конструкции и тока нагрузки, в отличие от синхронного двигателя, где его можно легко изменить, изменив ток возбуждения.

Работа асинхронного двигателя

Этот двигатель работает по принципу закона Ленца, который гласит, что направление тока, индуцируемого в проводнике за счет изменения магнитного поля, таково, что магнитное поле, создаваемое индуктируемым током, противодействует изменяющемуся магнитному полю, которое создает Это.

Изменяющееся магнитное поле создается трехфазным или разделенным фазным током, подаваемым на обмотку статора, и поскольку это магнитное поле пересекает проводники ротора, возникает индуцированный ток в роторе, противодействующий изменяющемуся магнитному полю статора. И, таким образом, производя вращательное движение.
Работа этого двигателя будет продолжена, когда мы обсудим конструкцию и дизайн.

Конструкция асинхронного двигателя/Конструкция асинхронного двигателя

Доступен трехфазный асинхронный двигатель двух типов

  • Тип с контактным кольцом или фазным ротором
  • С короткозамкнутым ротором или короткозамкнутым ротором

Конструкция с асинхронным двигателем

Первый тип, т.е. контактно-кольцевой, состоит из реальной обмотки в пазах ротора, которая соединена с контактными кольцами. В этом двигателе мы можем ввести сопротивление ротора через контактные кольца и щетки. Это позволяет нам изменять пусковые характеристики двигателя.

Тип с короткозамкнутым ротором имеет роторные стержни на роторе, которые закорочены через кольца с обеих сторон. Этот тип двигателя имеет фиксированные пусковые характеристики, которые нельзя изменить путем добавления дополнительного сопротивления.

Тип с контактными кольцами требует технического обслуживания, так как дополнительно имеет контактные кольца и щетки, которые подвержены износу. Остальные основные части соответствуют

  • Статор
  • Ротор
  • Обмотки статора
  • Обмотки ротора (для фазного ротора) и каркасные стержни с замыканием (для двигателя с короткозамкнутым ротором)
  • Кроме того, этот двигатель также имеет:
  • Подшипники
  • Торцевые щиты
  • Вентилятор двигателя с крышкой.
  • Клеммная коробка

Статор и ротор изготовлены из штамповки из кремнистой стали это сделано для уменьшения потерь на вихревые токи и гистерезиса статор может подключаться к трехфазной сети как треугольником, так и звездой.

Когда мы подаем питание к статору, потребляемый ток делится на две составляющие, одна из которых является составляющей возбуждения, а другая — составляющей нагрузки. Создаваемое таким образом циркулирующее магнитное поле вызывает циркуляционное движение в роторе. Все перечисленные выше детали облегчают вращательное движение ротора.

Разница между асинхронным двигателем и синхронным двигателем

Основное различие между ними заключается в скорости, синхронный двигатель вращается со скоростью, которая является скоростью вращающегося магнитного поля и определяется как 120 f/p, где ‘f’ частота питания, а p означает количество полюсов.

В то время как асинхронный двигатель имеет скорость, которая всегда меньше синхронной скорости из-за скольжения. Можно сказать, что Nas = 120f/p-slip. Где Nas означает асинхронную скорость, или мы также можем сказать, что Nas

Различия можно увидеть в различных аспектах:

Технические характеристики Синхронный двигатель

Асинхронный двигатель

Тип

 

Бесщеточные двигатели, двигатели с автоматическим запуском и двигатели со статическим возбудителем — это тип двигателей, доступных в синхронном диапазоне. Асинхронный двигатель переменного тока с короткозамкнутым ротором или ротором с фазным ротором является асинхронным двигателем.

 

Слип

 

В синхронном двигателе скольжение равно нулю В этом двигателе контактное кольцо не равно нулю

Требование дополнительного источника питания

 

В синхронном двигателе требуется дополнительный источник питания для возбуждения двигателя В случае асинхронного двигателя дополнительный источник питания не требуется

Контактное кольцо и щетки

 

В синхронных двигателях обычно требуются контактные кольца и щетки В этом двигателе контактное кольцо и щетки не требуются.

 

Стоимость

 

Стоимость синхронного двигателя выше

 

Стоимость асинхронного двигателя ниже.

Эффективность

 

КПД синхронного двигателя выше КПД этого двигателя ниже.

Коэффициент мощности

 

В этом двигателе коэффициент мощности можно изменить, изменив ток возбуждения Этот двигатель всегда работает с запаздывающими коэффициентами мощности, которые нельзя изменить.

 

Скорость

 

В этом двигателе скорость не зависит от нагрузки В этом двигателе скорость уменьшается с нагрузкой.

 

Начиная с

 

Синхронный двигатель не запускается самостоятельно, однако его можно запустить как трехфазный асинхронный двигатель, а после достижения скорости, близкой к синхронной, он может работать как синхронный двигатель.

 

Этот двигатель запускается самостоятельно и может быть легко запущен с помощью подходящего распределительного устройства.

Техническое обслуживание

 

Синхронный двигатель требует интенсивного обслуживания Асинхронный двигатель не требует обслуживания

Крутящий момент

 

Изменение напряжения не влияет на крутящий момент синхронного двигателя Крутящий момент этого двигателя пропорционален квадрату напряжения.

 

Приложения

 

Синхронный двигатель используется там, где требуется высокая мощность, например, на сталелитейных заводах/электростанциях и т. д. Эти двигатели очень широко используются во всех небольших приложениях. Этот двигатель также используется в качестве синхронного конденсатора для улучшения коэффициента мощности.

 

Области применения

  • Этот двигатель находит самое широкое применение в промышленности, поскольку он очень надежен, не требует технического обслуживания и экономически эффективен. Эти двигатели потребляют почти 70% энергии в отрасли.
  • Вряд ли можно представить себе какую-либо отрасль, в которой не использовались бы эти двигатели,
  • А именно, бумажная, металлургическая, пищевая, перерабатывающая промышленность, такая как цемент, удобрения, насосная, транспортная и т. д.

Часто задаваемые вопросы

1) В чем основная разница между синхронным и асинхронным двигателем?

Основное отличие заключается в том, что асинхронный двигатель имеет фиксированную скорость (синхронный), тогда как скорость асинхронного двигателя всегда меньше скорости синхронного.

2) Почему асинхронный двигатель находит очень широкое применение в промышленности, а синхронный — нет?

Этот двигатель практически не требует обслуживания и экономичен.

3) Можно ли изменить коэффициент мощности асинхронного двигателя?

Нет, коэффициент мощности этого двигателя изменить нельзя, он несколько изменится только под нагрузкой.

4) Может ли асинхронный двигатель работать с опережающим коэффициентом мощности, как у синхронного двигателя?

Нет, этот двигатель никогда не может работать с опережающим коэффициентом мощности.

5). Что произойдет с моментом двигателя в асинхронном двигателе, если напряжение питания изменится?

В этом двигателе крутящий момент прямо пропорционален квадрату напряжения

6). как повлияет изменение частоты на асинхронный двигатель?

Изменение частоты в некоторой степени повлияет на число оборотов двигателя.

7). Можем ли мы каким-либо образом изменить число оборотов асинхронного двигателя?

Да, мы можем изменить скорость вращения этого двигателя, если мы одновременно изменим частоту и напряжение, сохраняя соотношение постоянным.

8). Что произойдет, если асинхронный двигатель будет работать в условиях перегрузки?

Если этот двигатель работает в условиях перегрузки, он потребляет чрезмерный ток и может привести к перегоранию двигателя.

Таким образом, из вышеизложенного можно сделать вывод, что асинхронные двигатели широко используются в промышленности и имеют много преимуществ по сравнению с другими типами двигателей, а с появлением технологии переменного напряжения и переменной частоты их роль еще больше возросла. Эти двигатели эволюционировали от низкого КПД до очень высокого КПД. Вот вопрос к вам, что такое асинхронный двигатель?

Однофазная асинхронная машина
— MATLAB и Simulink

Основное содержание

Открытая модель

В этом примере показана работа однофазного асинхронного двигателя в режимах «Конденсатор-Пуск» и «Конденсатор-Пуск-Работа».

H. Ouquelle и Louis-A.Dessaint (Ecole de technologie superieure, Монреаль)

Описание

В этой модели используются два однофазных асинхронных двигателя соответственно в режимах «Конденсатор-Пуск» и «Конденсатор-Пуск-Работа» для сравнения их рабочих характеристик, таких как крутящий момент, пульсация крутящего момента, КПД и коэффициент мощности. Два двигателя мощностью 1/4 л.с., 110 В, 60 Гц, 1800 об/мин. питаются от однофазного источника питания 110 В. У них одинаковые обмотки статора (основная и вспомогательная) и короткозамкнутые роторы.

Двигатель 1 Двигатель работает в режиме пуска от конденсатора. Его вспомогательная обмотка, последовательно соединенная с пусковым конденсатором 255 мкФ, отключается при достижении скорости 75% от номинальной. Пусковой конденсатор используется для обеспечения высокого пускового момента.

Двигатель 2 работает в режиме пуск-работа конденсатора. В этом режиме работы используются два конденсатора: рабочий и пусковой конденсаторы. В пусковой период вспомогательная обмотка также подключается последовательно с конденсатором 255 мкФ, но после достижения скорости отключения вспомогательная обмотка остается последовательно соединенной с рабочим конденсатором 21,1 мкФ. Это значение конденсатора оптимизировано для смягчения пульсаций крутящего момента. Двигатель работает эффективно с высоким коэффициентом мощности.

Два двигателя сначала запускаются без нагрузки, при t=0. Затем в момент времени t=2 с, как только двигатели достигли стационарного режима, на вал внезапно прикладывается крутящий момент 1 Н·м (номинальный крутящий момент).

Симуляция

Запустить симуляцию. В блоке Scope отображаются следующие сигналы для двигателя с конденсаторным пуском (желтые линии) и двигателя с конденсаторным пуском (пурпурные линии): общий ток (основная + вспомогательная обмотка), ток основной обмотки, ток вспомогательной обмотки, напряжение конденсатора, скорость вращения ротора и электромагнитный момент. Механическая мощность, коэффициент мощности и КПД двигателя 1 и двигателя 2 вычисляются внутри подсистемы обработки сигналов и отображаются в 3 блоках дисплея.

Во время пускового периода, пока разъединитель остается замкнутым (от t=0 до t=0,48 с), все сигналы идентичны. После размыкания переключателя наблюдаются различия, как описано ниже.

1. Конденсатор-пуск:

Обратите внимание на пульсации крутящего момента с частотой 120 Гц, которые вызывают механические вибрации ротора с частотой 120 Гц и снижают эффективность двигателя. Пульсация крутящего момента от пика до пика составляет около 3 Н, или 300 % от номинальной нагрузки, когда двигатель работает на холостом ходу. Обратите внимание, что пусковой конденсатор остается заряженным при пиковом напряжении, когда вспомогательная обмотка отключена.

2. Конденсатор-Пуск-Работа:

Обратите внимание, что пульсации крутящего момента значительно уменьшились. Значение рабочего конденсатора оптимизировано для минимизации пульсаций крутящего момента при полной нагрузке. Величина пульсаций крутящего момента составляет 2 Н·м от пика до пика (200 % номинального момента) на холостом ходу и всего 0,04 Н·м от пика до пика (4 % от номинального момента) при полной нагрузке. Коэффициент мощности и КПД при полной нагрузке (соответственно 90 % и 75 %) выше, чем у двигателя с конденсаторным пуском (соответственно 61 % и 74 %).

У вас есть модифицированная версия этого примера. Хотите открыть этот пример со своими правками?

Вы щелкнули ссылку, соответствующую этой команде MATLAB:

Запустите команду, введя ее в командном окне MATLAB.