Содержание
Трехфазный асинхронный электродвигатель
Конструкция асинхронного электродвигателя
Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Статор асинхронного двигателя
Ротор асинхронного двигателя
Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.
Корпус и сердечник статора асинхронного электродвигателя
Конструкция шихтованного сердечника асинхронного двигателя
Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.
Принцип работы. Вращающееся магнитное поле
Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.
Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.
Вращающееся магнитное поле асинхронного электродвигателя
Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.
- где n1 – частота вращения магнитного поля статора, об/мин,
- f1 – частота переменного тока, Гц,
- p – число пар полюсов
Концепция вращающегося магнитного поля
Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени
Магнитное поле прямого проводника с постоянным током
Магнитное поле создаваемое обмоткой
Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.
Магнитное поле создаваемое трехфазным током в разный момент времени
Ток протекающий в витках электродвигателя (сдвиг 60°)
Вращающееся магнитное поле
Действие вращающегося магнитного поля на замкнутый виток
Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.
Влияние вращающегося магнитного поля на замкнутый проводник с током
Короткозамкнутый ротор асинхронного двигателя
По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.
Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)
Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.
Вращающееся магнитное поле пронизывающее короткозамкнутый ротор
Магнитный момент действующий на ротор
Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Скольжение асинхронного двигателя. Скорость вращения ротора
Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.
Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1-n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:
- где s – скольжение асинхронного электродвигателя,
- n1 – частота вращения магнитного поля статора, об/мин,
- n2 – частота вращения ротора, об/мин,
Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.
Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.
Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.
Преобразование энергии
Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.
Асинхронный трёхфазный двигатель
Рис.1 Внешний вид трёхфазного асинхронного двигателя
|
Содержание:
1. Применение трёхфазных двигателей в стиральных машинах |
1.
Применение трёхфазных двигателей в стиральных машинах
Асинхронный трёхфазный электродвигатель был изобретён в 1889 году русским электротехником Доливо-Добровольским. Трёхфазные двигатели получили широкое применение в различной промышленной технике, в том числе и в промышленных стиральных машинах. С развитием современных технологий и электронных систем управления, подобные двигатели стали распространены и в бытовой технике. В бытовых стиральных машинах трёхфазные двигатели стали применяться примерно с 2005 года. Сегодня можно встретить такие двигатели только в некоторых моделях стиральных машин торговых марок: AEG, Electrolux, Ariston, Indesit, Whirpoll, Candy, Bosch, Siemens, Miele, Haier. Трёхфазные двигатели из-за низкого уровня шума, очень часто применяются в так называемых бесшумных стиральных машинах.
2. Общие сведения о трёхфазном токе и трёхфазном двигателе
Как известно из курса электротехники, в промышленности трёхфазный ток создаётся трёхфазным генератором, который имеет три обмотки сдвинутые относительно своей геометрической оси на угол 120°, поэтому на выходе каждой из обмоток генератора образуются переменные токи, фазы которых соответственно сдвинуты друг относительно друга также на 120°. График трёхфазного тока представлен на (Рис.2). Конструкция и принцип работы трёхфазного и однофазного асинхронных двигателей почти одинаковы. Разница лишь в обмотках статора. Трехфазные электродвигатели имеют на статоре трёхфазную обмотку, каждая секция обмоток которых сдвинута на 120°. Ротор (подвижная часть) трёхфазного двигателя имеет такую же конструкцию, что и однофазные асинхронные двигатели, т.е. состоит из короткозамкнутой обмотки в виде «беличьего колеса». Статор (неподвижная часть) состоит из сердечника в пазы которого уложены секции обмоток и подключены к контактной колодке двигателя. В отличие от однофазного асинхронного конденсаторного двигателя, трёхфазный двигатель подключённый к трёхфазной сети, не нуждается в пусковом конденсаторе, поскольку сдвиг фаз токов необходимый для образования пускового момента и вращающегося кругового магнитного поля обусловлен самой системой питания. Трёхфазные асинхронные двигатели могут работать так же от однофазной сети, но с потерей мощности примерно на 50% и естественно уже с применением пусковой схемы построенной на конденсаторах. |
Рис.2 График трёхфазного тока
|
Рис.3 Соединение обмоток статора по схеме
|
Существуют две классические схемы подключения трёхфазных двигателей — это соединение обмоток статора по схеме «звезда» и «треугольник» (Рис.3) В стиральных машинах применяются трёхфазные асинхронные двигатели обмотки статора которых соединены по схеме «треугольник», т.е.конец первой обмотки соединен с началом второй, конец второй с началом третьей, а конец третьей с началом первой, образуя замкнутый контур. При таком соединении в замкнутый контур нет никакой опасности, так как благодаря сдвигу по фазе между электродвижущими силами на 120° их геометрическая сумма равна нулю и, следовательно тока в контуре быть не может. Все обмотки в трёхфазном двигателе имеют одинаковое электрическое сопротивление, что обеспечивает равномерную нагрузку на каждую фазу. |
Если не вдаваться в подробности основ теории электротехники, отметим главное — электродвигатели с обмотками, соединёнными звездой работают намного мягче, чем электродвигатели с соединением обмоток в треугольник, но нельзя не отметить, что при соединении обмоток звездой двигатель не способен выдать максимальную мощность. Если соединить обмотки треугольником, двигатель выдаст полную паспортную мощность (приблизительно в 1,5 раза выше, чем при соединении звездой), но значения пусковых токов будут высокими.
3. Система управления трёхфазным двигателем (инвертор)
Выше, мы провели очень краткий обобщающий обзор по трёхфазному току и трёхфазному асинхронному двигателю. На самом деле, в электротехнике этот материал занимает очень большой раздел, с описанием всех физических процессов трёхфазной системы.
Как же работает асинхронный трёхфазный двигатель в бытовой стиральной машине, которая подключена к однофазной сети с переменным напряжением 220 вольт?
Для того, чтобы трёхфазный двигатель максимально эффективно работал в однофазной сети, применяют относительно сложный электронный преобразователь, который называют — инвертор. Структурная схема инвертора представлена ниже на (Рис.4).
Рис.4 Структурная схема инверторного преобразователя
Данный преобразователь имеет ярко выраженное звено постоянного тока. Переменное напряжение сети преобразуется при помощи диодного моста в постоянное, сглаживается индуктивностью (L) и ёмкостью (C), термистор (NTC) служит для защиты схемы от токовых перегрузок. Индуктивность и ёмкость в выпрямителе служат также фильтром, который защищает сеть от пульсаций при коммутации двигателя.
От переменной сети так же работает импульсный блок питания, который формирует пониженное постоянное напряжение различных значений для питания системы управления. С выхода выпрямителя постоянное напряжение поступает на силовую часть инвертора построенную на IGBT ( Insulated Gate Bipolar Transistor — биполярный транзистор с изолированным затвором ). На структурной схеме IGBT позиционированы как Q1, Q2, Q3, Q4, Q5, Q6. В корпус данных транзисторов интегрирован диод включённый между цепью эмиттера и коллектора, который защищает транзистор от излишних токовых перегрузок возникающих при коммутации обмоток электродвигателя.
В инверторе осуществляется преобрaзовaние постоянного нaпряжения в трехфaзное (или однофaзное) импульсное нaпряжение изменяемой aмплитуды и чaстоты. По сигнaлaм системы упрaвления, кaждaя обмоткa электрического двигaтеля подсоединяется через соответствующие силовые трaнзисторы инверторa к положительному и отрицaтельному полюсaм звенa постоянного токa. Сигналы управления поступают на затворы транзисторов с драйверов (микросхем управления) IR1, IR2, IR3.
Сигнал на драйверы приходит с цифрового сигнального процессора ( DSP-Digital signal processor ) системы управления. Такие процессоры специально разработаны для управления двигателями. Длительность подключения кaждой обмотки в пределaх периодa следовaния импульсов модулируется по синусоидaльному зaкону. Чем выше частота преключения транзисторов, тем выше скорость вращения ротора трёхфазного двигателя, поэтому этот метод управления двигателя называют частотным.
Реверсивное вращение двигателя осуществляется за счёт изменения порядка включения транзисторов инвертора.
Алгоритм системы управления двигателем заложен в цифровом сигнальном процессоре.
Тахогенератор (Т) (Рис.4) расположенный на валу двигателя является звеном обратной связи между двигателем и блоком управления, благодаря чему, поддерживается необходимая стабильная скорость вращения двигателя на различных этапах работы стиральной машины. По сигналу с тахогенератора определятся дисбаланс барабана на стадии отжима, а в некоторых моделях стиральных машин происходит даже примерное взвешивание белья, за счёт сравнения характера сигналов тахогенератора при пустом и заполненным бельём барабане.
Подобные критерии сигналов тахогенератора, записаны в программе процессора системы управления двигателем или в микросхеме памяти блока управления.
В качестве дополнения, ко всему описанному в этом пункте, представим внешний вид и расположение некоторых компонентов инверторных блоков управления для стиральных машин.
Существует три основных вида:
1.Единый блок управления (инвертор и управление остальными элементами стиральной машины совмещены в общий модуль) (Фото 1)
2.Отдельный блок для управления 3-х фазным двигателем (Фото 2)
3.Блок управления (инвертор) расположен на самом двигателе
Фото 1. Единый блок управления стиральной машины Ariston
|
Фото 2. Отдельный блок для управления 3-х фазным двигателем |
4.Диагностика трёхфазных асинхронных двигателей.
Рис.6 Схема соединения частей трёхфазного двигателя с контактной колодкой
|
Сразу хочется отметить, что трёхфазные асинхронные двигатели стиральных машин довольно надёжные. В практике ремонта стиральных машин, известно крайне мало случаев выхода из строя подобных двигателей. Большая часть неисправностей связанная с некорректной работой двигателей, заключается в неисправности самой системы управления. При неисправности системы управления, двигатель может вращаться рывками или наблюдается нестабильная частота вращения ротора, а иногда он вовсе не вращается. Блок управления трёхфазным двигателем может быть выполнен в виде отдельного модуля или совмещён с общим модулем управления стиральной машины. |
На (рис.4) приведена лишь структурная схема инверторного преобразователя, на самом деле принципиальная схема инвертора намного сложнее и содержит в себе микропроцессорную систему, операционные усилители, оптические развязки и т.п.
Невозможно полноценно проверить работоспособность или напрямую включить трёхфазной двигатель стиральной машины без подключения к электронной схеме.
При помощи мультиметра представляется возможным проверить лишь целостность цепи обмоток статора двигателя, пробой обмоток на корпус, электрическое сопротивление катушки тахогенератора и тепловое защитное устройство.
5. Преимущество и недостатки трёхфазных двигателей в стиральных машинах
К преимуществу трёхфазных двигателей перед коллекторными и однофазными асинхронными двигателями можно отнести низкий уровень шума и высокий КПД двигателя, а также простоту конструкции и большой эксплуатационный ресурс. Благодаря импульсно-частотной электронной схеме управления достигается широкий диапазон и точность регулирования частоты вращения ротора двигателя. При сравнительно небольших габаритах обладает большой мощностью.
К недостаткам стоит отнести лишь сложную электронную систему управления двигателем.
Пуск трехфазных асинхронных двигателей | Медиацентр СИРИУС
Трехфазные асинхронные двигатели в настоящее время являются наиболее широко используемыми электродвигателями в промышленности. Для их пуска и управления доступен широкий спектр продуктов и опций, от простых комбинаций контактора/автоматического выключателя до устройств плавного пуска и преобразователя частоты.
Как найти лучшее решение для каждого случая запуска двигателя?
Трехфазные асинхронные двигатели являются одними из ведущих потребителей энергии в промышленности по всему миру. Более 80% из них используются в насосных, вентиляционных, компрессорных, транспортировочных и технологических процессах. Поскольку отдельные области применения представляют собой самые разные задачи, существует целый ряд возможных решений, из которых можно выбирать, когда дело доходит до запуска этих двигателей.
В то время как менее сложные задачи можно выполнять с помощью более простых и менее дорогих стартеров, более сложные задачи, такие как управление пусковым моментом, скоростью или просто временем пуска, требуют более качественных продуктов. При правильном и предупредительном использовании они могут предотвратить дорогостоящие простои, например, из-за блокировки или медленной перегрузки, и привести к повышению производительности.
В зависимости от конструкции фидера двигателя различают следующие типы пусков:
- прямой и реверсивный пуск
- пуск звезда-треугольник
- плавный пуск
- регулятор скорости
Существует множество вариантов запуска двигателя, но какой из них выбрать?
Узнайте больше об основах запуска двигателей в нашем бесплатном информационном документе «Пуск двигателей». Он дает вам всю информацию, необходимую для поиска подходящей технологии для каждого отдельного приложения.
Технический документ содержит обзор наиболее важных областей применения электродвигателей и указывает решающие критерии для выбора правильного типа пуска, такие как мощность двигателя, пусковой ток и время пуска. В нем также рассматриваются современные тенденции в отрасли, такие как энергоэффективность и цифровизация.
В качестве альтернативы официальному документу «Руководство по принятию решений по запуску двигателя» поможет вам найти правильное решение, задавая простые вопросы. Следует также отметить новую редакцию Директивы ЕС по экодизайну для электродвигателей, которая направлена на достижение значительной экономии CO2.
Не знаете, какое решение привода подходит для вашего приложения?
Наше руководство по пуску двигателя поможет вам найти правильный подход к пуску вашего двигателя, ответив всего на несколько простых вопросов.
- Простота использования без глубоких технических знаний
- Все варианты запуска двигателя в выборе
- Включая выбор продукта с помощью правильного конфигуратора продукта в инструменте выбора TIA
Начните свое решение
Узнайте больше о нашей технологии, которая помогает двигателям работать еще эффективнее.
Подходящее устройство для любого применения! Узнайте об особых свойствах и функциях каждой стартовой группы здесь.
Асинхронные двигатели | Стандартные двигатели | Двигатели с переключаемыми полюсами | Корпорация Норд Гир
Приводные системы NORD
-
Товары
- задняя часть
- Продукты
-
- Панель управления myNORD
- Поиск продукта
- Идентификация устройства
- Конфигуратор продукта
-
Мотор-редукторы
НОВЫЙ -
Промышленные редукторы MAXXDRIVE®
НОВЫЙ -
Моторы
НОВЫЙ -
Приводная электроника
НОВЫЙ - Энергоэффективные приводы
- Решения
-
Документация
- задняя часть
- Документация
-
- Панель управления myNORD
- Поиск продукта
- Идентификация устройства
- Конфигуратор продукта
- Руководства
- Каталоги
- Листовки/брошюры
- Запасные части
- Программного обеспечения
- Чертежи
- Сертификаты
- Формы
-
Карьера
- задняя часть
- Карьера
-
- Панель управления myNORD
- Поиск продукта
- Идентификация устройства
- Конфигуратор продукта
- Комбинированные исследования
- Ученичество
- Опыт работы / Стажировка
- Бакалаврская и магистерская диссертация
- Стажеры
- Доступные позиции
- Наши преимущества
- Ярмарка вакансий
- Контакт
-
Группа НОРД
- задняя часть
- НОРД Группа
-
- Панель управления myNORD
- Поиск продукта
- Идентификация устройства
- Конфигуратор продукта
- Архив новостей
- Ярмарки
- О нас
- Продажи
- Покупка
- Нажимать
- обслуживание
- Новостная рассылка
- мойНОРД
-
Поиск
Наши трехфазные асинхронные двигатели мощностью от 0,12 до 55 кВт обладают исключительной устойчивостью к электрическим и механическим перегрузкам.
Двигатели с переключаемыми полюсами
Асинхронные двигатели
- Производительность:
0,12 кВт — 17 кВт - Класс эффективности IE1
- Глобальные одобрения и приемки
Информация о продукте
НОРД УНИВЕРСАЛ мотор
УНИВЕРСАЛЬНЫЕ двигатели
- Производительность:
0,12 кВт — 45 кВт - Класс защиты:
IP66 - Глобальные одобрения и приемки
- Класс эффективности IE3
- Международные сертификаты
Информация о продукте
Стандартные двигатели
Асинхронные двигатели
- Производительность:
0,12 кВт — 55 кВт - Глобальные одобрения и приемки
- Классы эффективности: IE1, IE2, IE3
Информация о продукте
Однофазные двигатели
Асинхронные двигатели
- Производительность:
0,12 кВт — 1,5 кВт - Класс эффективности IE1
- Глобальные одобрения и приемки
Информация о продукте
Гладкие двигатели
Асинхронные двигатели
- Производительность:
0,12 кВт — 2,2 кВт - Глобальные одобрения и приемки
Информация о продукте
Трехфазные асинхронные двигатели
NORD – надежные и универсальные
NORD производит четыре различных серии трехфазных асинхронных двигателей для использования в самых разных областях. В то время как гладкие двигатели идеально подходят в качестве приводов в пищевой промышленности, двигатели с переключением полюсов и однофазные двигатели обеспечивают необходимую мощность для станков, насосов, конвейерных лент или вентиляторов.
Наши трехфазные асинхронные двигатели мощностью от 0,12 до 55 кВт отличаются высокой производительностью, надежностью изготовления и длительным сроком службы. Их можно комбинировать со всеми типами редукторов NORD.
Преимущества наших трехфазных асинхронных двигателей:
- Долговечность
Наши стандартные двигатели очень устойчивы к электрическим и механическим перегрузкам. - Удобен в обслуживании
Благодаря высокому качеству изготовления и простоте конструкции затраты на обслуживание сведены к минимуму. - Универсальность
Трехфазные асинхронные двигатели NORD подходят для бесчисленного множества применений в различных отраслях промышленности.
Наши однофазные двигатели: Просто хорошо
Наши однофазные двигатели доступны в трех версиях: Для простых применений мы рекомендуем экономичный однофазный двигатель со схемой Штейнмеца; для более требовательных приложений наилучшим выбором являются варианты с рабочим конденсатором или рабочим и пусковым конденсатором.
Доступны однофазные двигатели мощностью от 0,12 до 1,5 кВт. Они могут работать от сети 50 Гц или 60 Гц при напряжении 115 В или 230 В и поддерживают широкий диапазон напряжений (от 220 В до 240 В).
Двигатели с переключением полюсов: один привод – множество скоростей
Ассортимент NORD включает двигатели с переключением полюсов для всех областей применения, требующих гибкости. Эти приводы позволяют работать с двумя или более фиксированными скоростями. Мы поставляем этот тип двигателя в 4/2-полюсном, 8/4-полюсном, 8/2-полюсном и 6/4-полюсном исполнении и, при необходимости, с обмоткой Даландера.