Содержание
Инжекторный бензиновый двигатель
Инжекторным называют двигатель, оснащенный системой распределенного впрыска с электронным управлением
Двигатель
Инжекторный двигатель – это основной тип двигателя внутреннего сгорания, который используется в современных автомобилях.
По способу подачи топливной смеси все бензиновые двигатели делятся на карбюраторные и инжекторные. В карбюраторных моторах для подачи топлива и образования смеси происходит в механическом приспособлении под названием карбюратор, а в инжекторных двигателях смесь образуется непосредственно в приемном коллекторе, куда топливо впрыскивается при помощи электронно-управляемых форсунок.
История применения инжектора на бензиновых двигателях
Первую механическую систему впрыска, прообраз современного инжекторного двигателя, разработала фирма BOSCH. Система была установлена на серийном автомобиле Mercedes Benz 300SL в 1954 году. Изменения в системе подачи топлива не были кардинальными — вместо карбюратора использовался механизм дозирования с одной форсункой, который имел электронное управление. Позже такую конструкцию назовут «моновпрыск». Дозировка подачи происходила более точно по объему, но не в каждый цилиндр отдельно, а централизованно, как в карбюраторе.
Одну из первых систем электронного распределенного впрыска под названием Electrojector разработала американская фирма Bendix Corporation в 1957 году
После изобретения распределенного впрыска подача топлива к каждому цилиндру стала производится индивидуально. В этой системе впрыска образование топливной смеси происходит в непосредственной близости от впускных клапанов каждого цилиндра. Топливо поступает к форсункам по трубопроводу и распыляется ими в коллектор. Работа каждой форсунки регулируется. За счет этого контроль дозировки топлива и впрыска в каждый цилиндр удалось поднять на новый уровень.
Но конструкторы не остановились на этом и разработали систему с непосредственным впрыском топлива. Первый подобный серийный двигатель впервые продемонстрировал концерн Mitsubishi в 1996 году. В нем воздух подводится к границе камеры сгорания и впускного клапана, и только в самом цилиндре он встречается со струей бензина.
Устройство и принцип работы инжекторных двигателей
Мощность двигателя зависит от объема смеси воздуха и бензина, в единицу времени поступающего в камеру сгорания. Необходимость замены карбюратора на более совершенное устройство возникла из-за того, что в механическом устройстве (в данном случае, в карбюраторе) не удается реализовать достаточно быстрый отклик на изменение нагрузки на двигатель.
В Японии электронно-управляемый распределенный впрыск для серийного автомобиля предложила компания Toyota. Это была опция для модели Celica 1974 года
В инжекторной системе подача топлива производится впрыском во впускной коллектор с помощью форсунок. Эта система подачи топливо-воздушной смеси сложнее, но гибче и оперативнее карбюратора.
Схема работы системы впрыска инжекторного бензинового двигателя включает в себя сбор информации, ее обработку и подачу электронного сигнала на исполнительные устройства, в данном случае, на форсунки.
Механическая составляющая этой системы состоит из бензонасоса, перепускного клапана топливной магистрали (регулятора давления), устройства для поддержки холостого хода двигателя, и форсунок.
Форсунки бывают механическими и с электрическим приводом. В качестве привода используется электромагнит или пьезоэлемент.
Форсунка
Бензин распыляется форсункой под давлением через очень маленькое отверстие. С одной стороны, это позволяет добиться высокой точности дозировки и отличного распыла, с другой, качество топлива для инжекторных двигателей имеет огромное значение. Забитое отверстие не сможет хорошо распылять топливо, а значит, и оптимальной горючей смеси не получится.
Ассоциация NASCAR запретила использование карбюраторов на гоночных автомобилях одноименной лиги только в 2012 году
Электронно-управляемая форсунка выполняет команды компьютера и подает необходимое количество топлива в изменяемые в соответствии с текущей нагрузкой, точно рассчитанные промежутки времени. В бензиновых двигателях с распределенным впрыском с форсунками взаимодействуют свечи, играющие роль исполнительного устройства. Получив электрический импульс, форсунка под давлением впрыскивает топливо в цилиндр или впускной коллектор и перекрывает подачу после срабатывания свечи.
Блок управления двигателем
Роль компьютерного управления в работе системы впрыска
Самой сложной составляющей инжекторных бензиновых двигателей является электронный блок управления. В его схему входят ПЗУ — постоянное запоминающее устройство, ОЗУ — оперативное запоминающее устройство и микропроцессор. Он обрабатывает поступающие от датчиков электронные сигналы, анализирует информацию и сравнивает с данными, хранящимися в памяти компьютера. Встроенная программа учитывает особенности разнообразных режимов работы двигателя и внешние условия, в которых ему приходится работать. Если в информации обнаруживаются расхождения, компьютер выдает команды исполнительным механизмам для коррекции.
Применение распределенного впрыска сделало возможным появление системы отключения части цилиндров двигателей большого объема
Датчики, собирающие информацию о работе двигателя, действуют совместно с ЭБУ. Они расположены на разных узлах, входящих в конструкцию двигателя. Среди стандартных приборов сбора информации: датчик массового расхода воздуха; датчик положения дроссельной заслонки; датчик детонации; датчик температуры охлаждающей жидкости; датчик положения коленчатого вала и другие. На 16-клапанных двигателях дополнительно устанавливается датчик фаз.
Процесс работы инжекторной системы впрыска выглядит следующим образом: датчик расхода воздуха измеряет поступающую в двигатель массу газа и передает данные компьютеру. На основе этой информации и с учетом других текущих параметров — температуры воздуха и самого двигателя, скорости вращения коленчатого вала, степени и скорости открытия дроссельной заслонки — компьютер рассчитывает оптимальное количество топлива на данный объем воздуха и подает электрический импульс необходимой продолжительности на форсунки. Принимая этот импульс, они открываются и под давлением впрыскивают топливо во впускной коллектор.
Достоинства и недостатки инжекторных двигателей
Главное преимущество инжекторных бензиновых двигателей — экономичность. Она составляет 10-20% в сравнении с карбюраторными двигателями. Кроме того, в случае применения инжектора удается получить с того же рабочего объема двигателя большую мощность. Также, бесспорным преимуществом таких двигателей является меньшее содержание вредных веществ в выхлопных газах.
Минусом можно считать то, что в случае появления неисправности в системе инжекторного впрыска, диагностику и ремонт могут производить лишь квалифицированные специалисты. Сложность подобного профессионального обслуживания и является основным недостатком инжекторных бензиновых силовых установок.
Принцип работы инжекторного двигателя
Принцип работы двигателя внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.
Содержание
- Как работает ДВС
- О карбюраторе, его достоинствах и недостатках
- Про инжекторные моторы
- Устройство впрыска
- Виды впрысковых систем
- Одноточечный впрыск
- Многоточечный впрыск
- Непосредственный впрыск
Как работает ДВС
Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:
- бензиновые;
- дизельные;
- газодизельные;
- газовые;
- роторные.
Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:
- впуск – заполнение цилиндров топливом:
- сжатие – подготовка топлива к сгоранию;
- рабочий ход – преобразование энергии сгорания в механическую;
- выпуск – удаление продуктов сгорания топлива.
Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью. Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.
При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.
Все описанное выше можно увидеть на видео
Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.
Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:
- топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
- экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
- недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.
Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.
Про инжекторные моторы
У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.
Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.
Как это происходит, можно в деталях увидеть на видео
Подобное устройство мотора позволяет решить те проблемы, которые возникают при работе карбюратора. Использование инжектора обеспечивает по сравнению с карбюраторным вариантом следующие преимущества мотору:
- повышение мощности на 7-10%;
- улучшение показателей топливной экономичности;
- снижение уровня токсичных веществ в составе выхлопных газов;
- обеспечение оптимального количества топлива, зависящее от режима движения автомашины.
Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.
Устройство впрыска
Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:
- контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
- форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
- датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
- датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
- датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
- датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
- датчик кислорода, определяющий его содержание в выхлопных газах;
- датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.
Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.
Виды впрысковых систем
Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.
Одноточечный впрыск
Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.
Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.
Многоточечный впрыск
Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.
Непосредственный впрыск
Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.
Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.
GDI — прямой впрыск бензина
Toggle Nav
Поиск
Будьте в курсе последних достижений в области технологий двигателей и узнайте больше о новейшей платформе двигателей — системе прямого впрыска.
Предварительное фото. Вот головка блока цилиндров LT1, конструкция чаши которой похожа на LS. Большая разница в топливной форсунке, которая находится напротив свечи зажигания.
Впервые опубликовано в журнале Hot Rod.
Появилась новая аббревиатура, которая сейчас витает в индустрии производительности — GDI — она означает непосредственный впрыск бензина. Среди двигателей отечественного производства, которые сильно прыгнули в сегмент GDI, есть новые двигатели LT1 и LT4, но Ford был первым, кто взял на вооружение бензиновый двигатель с искровым зажиганием и непосредственным впрыском в своей серии двигателей EcoBoost, дебютировавших на внутреннем рынке в 2010 году.
Chevy LT4 был их первым форсированным серийным вариантом двигателя V8. Конструкция поршня на этом двигателе практически плоская.
Так что же такое GDI и почему он может стать будущим для всех серийных бензиновых двигателей? Все дело в эффективности сгорания. На протяжении десятилетий большая часть внимания производителей двигателей была сосредоточена на настройке впускных и выпускных трубопроводов и повышении объемной эффективности. Но в конечном итоге все эти усилия сводятся к физическому акту горения. Важнейшая часть этого процесса требует максимально эффективной подачи правильного количества топлива в камеру сгорания. В то время, когда динозавры перестали бродить по земле, карбюраторы были предпочтительным устройством для смешивания топлива. Затем появился многоточечный электронный впрыск топлива (MEFI), но даже это сейчас считается рудиментарным по сравнению с впрыском топлива непосредственно в камеру сгорания.
Преимущества GDI многочисленны. Во-первых, даже при многоточечном впрыске топлива определенное количество топлива оседает на стенках впускного канала перед впускным клапаном. Это топливо в конечном итоге способствует сгоранию, но не обязательно в нужное время или в лучшем состоянии. Состояние топлива так же важно, как и его соотношение с окисляющим воздухом. Жидкое топливо плохо горит. Вместо этого только испаренное топливо способствует процессу сгорания.
Чаша DI оказывает большое влияние на смешивание топлива и воздуха в камере и необходима для эффективности, а также для чистого сгорания. OEM потратил огромное количество исследований и разработок на чашу DI, чтобы двигатель работал чисто и при этом сохранял хорошую мощность. При разработке индивидуального поршня форма чаши остается неизменной.
Крайний пример этого можно найти в гонках Top Fuel. Нитрометан очень горюч, но скорость воспламенения нитрометана не сильно отличается от бензина. Однако в двигателях Top Fuel угол опережения зажигания обычно превышает 50 градусов до ВМТ. Причина такого невероятно раннего воспламенения заключается в том, что испаряется только 10 процентов топлива в камере сгорания. Остальное остается жидкостью. Это потому, что эти двигатели работают при соотношении воздух-топливо очень близком к 1:1! Цилиндру требуется искра на 50 с лишним градусов до ВМТ, чтобы инициировать процесс горения достаточно рано, чтобы произвести достаточно раннего тепла, чтобы в конечном итоге испарить и сжечь большое количество топлива в камере.
Бензиновые двигатели работают на значительно более обедненных топливно-воздушных смесях, но принцип тот же — полностью сгорает только испаренное топливо. При непосредственном впрыске топливо может подаваться в цилиндр под давлением, превышающим 2200 фунтов на квадратный дюйм, так что, по крайней мере, большая часть топлива быстро испаряется. Даже в этом случае непосредственный впрыск при очень высоком давлении требует изменения пространства сгорания.
(слева) 2,3-литровый двигатель Ford Ecoboost был основан на 2,0-литровом Focus ST. Немного более мощная версия 2,3-литрового двигателя теперь используется в Focus RS. (Справа) Ford использует второе поколение 3,5-литрового двигателя Ecoboost, который был их первой основной платформой двигателя Ecoboost.
Вы, наверное, заметили, что в двигателях GDI обычно используется совершенно другая конструкция днища поршня, чем в сопоставимых двигателях без GDI. Идея заключается в использовании желоба или углубления в днище поршня, которое будет направлять топливо после его впрыска. Целью этого желоба является нацеливание послойного или направленного заряда относительно богатой топливной смеси на свечу зажигания для инициирования процесса сгорания. Как только происходит воспламенение, оставшееся топливо может быть сожжено для получения в целом эффективной смеси.
Даже при добавлении наддува к LT1 с высокой степенью сжатия соотношение воздух-топливо при полностью открытом дросселе будет находиться в диапазоне 11,8-12:1. Двигатели могут безопасно работать на обедненной смеси благодаря повышенной эффективности двигателя с непосредственным впрыском топлива.
Как правило, топливная форсунка высокого давления расположена ближе к центру цилиндра. Исследования показывают, что поздний впрыск топлива в цилиндр полезен для выбросов и эффективности использования топлива, когда поршень находится вблизи ВМТ. Центральный желоб в днище поршня имеет тенденцию перенаправлять брызги топлива вверх к выпускной стороне камеры возле свечи зажигания. Это генерирует то, что инженеры-исследователи горения называют турбулентной кинетической энергией (ТКЭ). Более высокий TKE, как правило, поддерживает улучшенный тепловой КПД, когда при сгорании используется больше топлива.
Этот подход имеет несколько преимуществ. Во-первых, это снижает вероятность детонации, поскольку топливо больше концентрируется ближе к центру камеры сгорания возле свечи зажигания. Детонация обычно возникает из-за отходящих газов с достаточным количеством топлива, которые самовоспламеняются ближе к концу процесса сгорания. Благодаря концентрации топлива вокруг свечи зажигания это значительно снижает потребность в увеличении времени опережения зажигания. За счет подачи топлива за микросекунды до требуемого момента зажигания преждевременное зажигание практически исключается, а двигатель получает меньше отрицательной работы. Это важно, поскольку опережающее зажигание требует, чтобы двигатель затрачивал отрицательную работу, чтобы сжать начальное начало сгорания из-за опережающего опережения зажигания.
Топливная система двигателя GDI намного совершеннее. Механический насос высокого давления питает форсунки высокого давления, которые способны обеспечить давление топлива более 2000 фунтов на квадратный дюйм.
Подход послепродажного обслуживания
По словам инженера JE Pistons Клейтона Стотерса, кроме конструкции днища поршня, нет существенной разницы в конфигурации поршня между кованым поршнем GDI и поршнем, разработанным для карбюраторных двигателей или двигателей EFI. Очевидно, что прочность является серьезной проблемой для того, чтобы приспособиться к более высокому давлению в цилиндре, которое будет генерировать большую мощность. Конструкция JE Pistons Forged Side Relief FSR) сочетает в себе дополнительную прочность и снижение веса для превосходной конструкции поршня.
Еще одним преимуществом надлежащей конструкции верхней части поршня является то, что большая часть топлива концентрируется в центре камеры сгорания, что обеспечивает меньшее количество топлива, потенциально остающегося вблизи внешней окружности цилиндра. Топливо, которое имеет тенденцию собираться вокруг внешнего края камеры сгорания, часто не сгорает и, следовательно, не способствует выработке мощности. Эти несгоревшие углеводороды также просто выходят с выхлопными газами и способствуют снижению теплового КПД.
(слева) 3,5-литровый поршень Ecoboost компании JE Pistons слева и 2,3-литровый Ecoboost справа. (Справа) Гнезда выпускных клапанов на 2,3-литровом Ecoboost больше, чем впускные клапаны из-за углов расположения клапанов головки цилиндров 2,3-литрового двигателя.
Двигатели GDI постоянно уменьшают количество топлива, которое задерживается по окружности поршня, что означает, особенно при частичной нагрузке, что улучшенная эффективность сгорания позволяет двигателю работать на гораздо более бедных топливовоздушных смесях, что повышает эффективность использования топлива. Конечным результатом этого являются примеры современных двигателей GDI, работающих с соотношением воздух-топливо более 30:1!
Опять же, из-за этой улучшенной эффективности сгорания, двигатели GDI также могут работать с более высокой степенью статического сжатия. Например, GM LT1 использует преимущества конструкции GDI для увеличения статического сжатия до 11,5:1. Поршни JE EcoBoost V6 с турбонаддувом имеют впечатляющее соотношение 10,0:1. Обычные многоточечные двигатели EFI не могли бы работать с турбонаддувом с такой высокой статической компрессией на насосном бензине. Конечно, преимуществом этой более высокой степени сжатия является дополнительная мощность, поскольку считается, что одна полная точка сжатия обеспечивает дополнительную мощность примерно на три-четыре процента для двигателя без наддува.
«Эта конструкция с кованым боковым рельефом (FSR) уже достаточно прочна для применения, — говорит ведущий инженер JE Pistons Клейтон Стотерс. — Обычно поршень GDI выдерживает более высокое давление в цилиндре в целом, но эта конкретная поковка была разработана для приложений с большим наддувом. поэтому мы выбрали его для поршня Ecoboost. Этот FEA помогает нам обосновать это решение и убедиться, что поковка и конструкция головки хорошо сочетаются друг с другом». вес поршня с диаметром отверстия 3,661 дюйма по-прежнему составляет всего лишь 400 г, сохраняя при этом превосходную долговечность поршня. Конструкция смещенного штифта снижает шум поршня, а входящий в комплект комплект колец 1,0/1,2/2,8 мм также способствует снижению паразитных потерь на трение.
Известный производитель двигателей с турбонаддувом Кенни Даттвейлер в настоящее время экспериментирует с 2,3-литровым двигателем Ecoboost и, как он сказал журналу Hot Rod, ожидает, что с более крупным турбокомпрессором двигатель потенциально может развивать мощность до 1100 л.с.
Таким образом, мы можем с уверенностью предположить, что двигатели GDI будут по-прежнему оставаться в тренде среди высокопроизводительных двигателей в ближайшем будущем. Bosch прогнозирует, что к 2020 году 20 процентов всех производимых двигателей легковых автомобилей будут использовать систему прямого впрыска бензина. С учетом этого JE Pistons продолжит предлагать поршни с высокими эксплуатационными характеристиками для решения новых задач будущего высокой производительности.
Вот поршень JE Piston со степенью сжатия 10,0:1 рядом с поршнем 12,3:1. Вы можете видеть, как область вокруг чаши деионизированного инъектора изменяется по высоте. Это создает уникальную форму кармана клапана.
АВТОРСКИЕ ПРАВА © 2022 JEPISTONS ВСЕ ПРАВА ЗАЩИЩЕНЫ. JE PISTONS ЯВЛЯЕТСЯ ЧАСТЬЮ СЕМЕЙСТВА БРЕНДОВ-ПОБЕДИТЕЛЕЙ ГОНОК
Почему некоторые двигатели имеют как порт, так и непосредственный впрыск
Половина парка новых автомобилей и грузовиков в США теперь оснащена бензиновым непосредственным впрыском (также известным как GDI), что означает, что топливо впрыскивается прямо в камеру сгорания. Возникает вопрос: какая следующая инновация в области двигателей вот-вот покинет лабораторию?
Ответ заключается в том, чтобы подливать масла в огонь двумя разными путями, и некоторые производители уже оснащают свои двигатели как портовым, так и непосредственным впрыском. Toyota представила эту технологию, которую она назвала впрыском D-4S, на V-6 более десяти лет назад, а теперь использует порт и непосредственный впрыск на своих 2,0-литровых оппозитных четырехцилиндровых двигателях (производимых Subaru), 3,5-литровых V-образных двигателях. -6 и 5,0-литровый V-8. Audi имеет его на своих 3,0-литровых двигателях V-6 и 5,2-литровых двигателях V-10.
Система Toyota D-4S была представлена на 3,5-литровом V-6 Lexus IS350 2006 года выпуска.
Самый интересный двигатель года
- Ford Voodoo V-8
Ford в настоящее время является доминирующим игроком с тем, что он называет двухтопливным двигателем с непосредственным впрыском под высоким давлением (DI) и впрыском через порт низкого давления (PI). . Применяются бензиновые двигатели V-6 и V-8 с турбонаддувом и без наддува (всего четыре двигателя) объемом от 2,7 до 5,0 литров. Летающий пикап F-150 Raptor 2017 года и суперкар GT оснащены новыми 3,5-литровыми двигателями EcoBoost V-6. Наземные F-150 также в значительной степени полагаются на эту технологию с двухтопливным базовым 3,3-литровым двигателем V-6 и дополнительными 2,7- и 3,5-литровыми двигателями EcoBoost V-6. На данный момент самым последним анонсированным приложением Ford является новый 5,0-литровый двигатель V-8, который будет установлен на Mustang GT 2018 года.
Основы
Прежде чем углубляться в тонкости объединения PI с DI, необходимо краткое введение. Вопреки голливудским изображениям автомобилей, падающих со скал, не существует такого понятия, как самовозгорание. Поскольку жидкий бензин не горит, подготовка топлива, извлеченного из бака, для сжигания внутри двигателя представляет собой двухэтапный процесс.
Шаг первый – распыление жидкости до мелких капель, что достигается за счет подачи бензина под давлением с помощью насоса через крошечные отверстия инжектора. Исследование, проведенное инженерами Hitachi, показало, что топливо, находящееся под давлением до 1000 фунтов на квадратный дюйм и впрыскиваемое через отверстия диаметром от 0,006 до 0,011 дюйма, дает аэрозоль капель диаметром всего 0,000003 дюйма со скоростью 135 миль в час. Это нормально.
Испарение следует за распылением. Здесь мелкие капли топлива претерпевают фазовый переход из жидкости в газ, превращаясь в пар, который можно смешать с воздухом и воспламенить от свечи зажигания.
Поскольку при этом фазовом переходе поглощается тепло, возникает охлаждающий эффект, который можно использовать для повышения эффективности работы двигателя. С PI воздух, проходящий через впускной коллектор, охлаждается до того, как он достигнет камеры сгорания. При DI преимущество охлаждения происходит внутри самой камеры.
Ford оснащает несколько двигателей EcoBoost V-6 с двойным впрыском, в том числе свой суперкар GT.
У каждой стратегии есть плюсы и минусы. PI удобен для безнаддувных двигателей, поскольку охлаждение поступающего воздуха увеличивает его плотность и мощность. Значительно проще расположить форсунки во впускных каналах, подальше от клапанов и свечей зажигания. Это расположение выше по течению обеспечивает достаточно времени для полного испарения. Одним из недостатков является то, что капли топлива иногда оседают на стенках впускного отверстия, нарушая предполагаемое соотношение топлива и воздуха.
Физика двигателей
- Физика: углы между рядами цилиндров
- Физика: Redline
- Физика инъекций: подкожная мощность в лошадиных силах
При DI вероятность детонации – преждевременное воспламенение топливно-воздушной смеси — уменьшается, потому что эффект охлаждения с изменением фаз имеет место во время такта сжатия непосредственно перед зажиганием. Снижение температуры поверхности камеры сгорания обеспечивает более высокую степень сжатия и повышенную эффективность независимо от того, является ли двигатель безнаддувным или наддувным. Ford увеличил максимальный крутящий момент на 30 фунт-футов в своем новом 3,5-литровом V-6, объединив новую стратегию двойного впрыска с более высоким давлением наддува.
У DI есть недостатки. Система DI дороже, потому что давление, необходимое для впрыска топлива в камеру сгорания, в 50–100 раз выше, чем в системе PI, а насос более высокого давления вызывает паразитные потери. Прямые форсунки имеют тенденцию быть шумными. Угарные отложения — как на задней стороне впускных клапанов, так и на выхлопных трубах — являются проблемой обслуживания для некоторых пользователей DI. Поскольку для испарения требуется меньше времени, часть топлива выходит из камеры сгорания и каталитического нейтрализатора в виде твердых частиц или сажи. Эти частицы углерода похожи на те, что выбрасываются дизельными двигателями, но меньше по размеру.
Комбинация
Конечная стратегия заключается в объединении преимуществ PI и DI, используя каждое из них для уменьшения недостатков другого. Toyota, например, запускает обе форсунки при низких и средних нагрузках и оборотах, другими словами, при нормальном вождении. Это повышает плотность поступающего заряда без наддува и смывает нагар с впускных клапанов. При высоких нагрузках и оборотах, когда требуется максимальное охлаждение камеры сгорания из-за высокой вероятности детонации, система прямого впрыска берет на себя всю подачу топлива.
Каждый производитель использует свою стратегию в отношении того, когда использовать порт, прямой или оба инжектора. Здесь показана одна из карт Toyota по отношению крутящего момента к оборотам в зависимости от использования форсунок.
Питер Даудинг, главный инженер Ford по бензиновым системам трансмиссии, раскрыл другую стратегию. Ford использует только PI на холостом ходу и на низких оборотах для плавной, тихой и эффективной работы двигателя. По мере увеличения оборотов и нагрузки подача топлива становится запрограммированной смесью PI и DI. В отличие от методологии Toyota, PI Ford всегда работает, отвечая за подачу топлива не менее чем на 5–10 %.
Даудинг и его коллега по инженерам Ford Стивен Расс подчеркивают, что нагар на выхлопных трубах и впускных клапанах никогда не был проблемой в их двигателях с прямым впрыском. Даудинг добавляет: «Теперь, когда электродвигателям отводится все больше роли в движении, наша задача — повысить эффективность двигателя, когда это возможно.