drbroman › Блог › Механический нагнетатель. Устройство и принцип действия. Компрессорный наддув двигателя
Всё про наддув! — DRIVE2
Наддув — самый доступный и простой способ увеличить мощность двигателя внутреннего сгорания. Теория проста: чтобы выросла отдача, нужно сжечь как можно больше топлива. Но для его горения необходим ещё и воздух. И если «налить» в цилиндры сколько угодно топлива проще простого (качай себе и качай мощным насосом), то с воздухом дело обстоит сложнее — для него тоже нужен своеобразный насос. И роль такого агрегата в двигателях играют нагнетатели. Вне зависимости от его типа, оснащённый наддувом двигатель обладает большей мощностью и крутящим моментом, чем аналогичный атмосферник. Почему это возможно, какие существуют конструкции и какие побочные эффекты имеет наддув? Рассказываем в нашей справке по современным системам.

.
История наддуваВпервые техническая идея загнать в автомобильный двигатель больше воздуха с помощью энергии вращения коленвала пришла в голову Готтлибу Даймлеру в 1885 году, а в 1905 году швейцарец Альфред Бюхи получил патент на аналогичную систему, работающую уже от энергии выхлопных газов. Но до реализации этих решений в автомобилях прошло некоторое время — первый серийный легковой автомобиль «наддули» с помощью приводного нагнетателя в 1921 году — им стал Mercedes-Benz. Турбонагнетатели же стали получать распространение в авиационных двигателях 1920-х годов, так как там было особенно важно справляться с потерей мощности по мере набора высоты, где плотность воздуха становится меньше. Вскоре газовые нагнетатели нашли своё применение и в грузоперевозках — прибавка в крутящем моменте оказалась для дизелей судов и локомотивов очень кстати. Первой легковушкой с турбонагнетателем под капотом стало купе-хардтоп Oldsmobile Jetfire с 215-сильным V8.
Точно такой же мотор Oldsmobile без турбины выдавал в то время 155-195 сил в зависимости от степени форсировки. Но важнее другое: тяга даже 195-сильного атмосферника ограничивалась 300 Н·м, тогда как турбокупе выдавало все 410. Если у атмосферных моторов существует практически прямая зависимость между объёмом камеры сгорания и максимальным крутящим моментом, то наддувные агрегаты такого недостатка лишены — по-разному конфигурируя систему, инженеры могут добиваться очень впечатляющей прибавки тяги при неизменном объёме.
Вскоре турбина появилась и на Chevrolet Corvair Corsa (расположенный сзади 6-цилиндровый оппозитник воздушного охлаждения с наддувом был лишь одним из необычных технических решений этой экзотической машины), а после подоспели и европейцы в лице Porsche (911 Turbo в 1975 году) и Saab (99 Turbo 1978 года). А вот с наддувным дизельным седаном всех опередил производитель из Старого Света — в 1978 году появилась версия 300SD лимузина Mercedes-Benz W116. Вскоре дизельные автомобили приобрели в Европе огромную популярность, а турбонаддув стал неотъемлемой частью конструкции легкового дизеля. Существуют и грузовые дизели с приводными нагнетателями, но по ряду технологических причин эта схема не получила широкого распространения в автомобилестроении.
Какие существуют виды наддуваК механическим видам наддува (обычно под наддувом понимаются именно механические схемы) относят приводной компрессор и турбокомпрессор. Приводной нагнетатель, как правило, располагается вдоль блока рядного двигателя или в развале V-образного блока и приводится от коленвала с помощью ременной передачи, прессуя воздух парой винтовых роторов или крыльчаткой. Турбина же приводится в действие вылетающими из цилиндров в коллектор под большим давлением выхлопными газами и утрамбовывает воздух на впуске крыльчаткой. Обычно турбина находится сразу за выпускным коллектором или непосредственно интегрирована в него — как, например, в современных моторах группы Volkswagen.Отдельно можно выделить эксперименты производителей с электротурбинами. Они не отбирают мощность у двигателя и лишены газовой турбоямы, так как колесо компрессора вращает электромотор. Впрочем, к этой схеме у производителей до сих пор остаётся немало вопросов, и подробнее об этом можно прочитать в нашем материале Audi завтрашнего дня. Кроме механического, существует ещё безагрегатный наддув. Так называют повышение давления на впуске с помощью сочетания скорости движения и особой формы и размеров впускных патрубков. Избыточное давление такого типа является мерой дополнительного форсирования преимущественно спортивных атмосферных двигателей. Примером заводской реализации такой схемы может служить впускной тракт хэтчбека Porsche Panamera в особой версии GTS.Как устроен турбонагнетательКонструкция турбонагнетателя проста: на едином валу находятся две крыльчатки, каждая из которых вращается в своём корпусе, называемом в народе «улитка». Одну крыльчатку (в так называемой горячей улитке) вращает поток выхлопных газов, а связанная с ней единой осью вторая крыльчатка в холодной части крутится и трамбует во впускной тракт забираемый с улицы воздух. Таким образом, чем выше обороты работы двигателя, тем больше он вырабатывает газов и тем больше воздуха впоследствии получает. Идеальный замкнутый круг с бесконечным потенциалом повышения мощности?

Современные турбокомпрессоры имеют практически нелимитированный потенциал увеличения мощности двигателя. Ограничителем обычно выступает механическая прочность вращающихся и движущихся деталей силового агрегата, а также баланс итоговых характеристик мотора и здравый смысл. Ввиду меньшего КПД и ряда технических особенностей приводные нагнетатели позволяют увеличивать мощность не так эффективно.
Но всё не так просто. Во-первых, шатунно-поршневая группа каждого мотора рассчитана на определённые нагрузки, и превышение их приведёт к разрушению двигателя. Во избежание бесконтрольного роста давления наддува в горячей части нагнетателя предусмотрена специальная калитка-клапан под названием «вейстгейт» (в переводе — клапан для излишков), которая открывается с помощью пневматики или сервопривода при достижении пикового расчётного давления в системе. В результате «лишние» газы просто идут в обход турбинного колеса прямиком в выхлопной тракт и не раскручивают компрессор сверх меры. Как правило, в моторах есть и ещё одна страховка от «передува» — при превышении критического порога давления блок управления двигателем ограничивает увеличение подачи топлива на безопасной отметке, и мотор перестаёт производить слишком много выхлопных газов.
С понятием «турбоямы» не нужно путать понятие «турболаг». Если первое — это диапазон оборотов двигателя, где турбосистема не способна эффективно работать, то второе — время задержки системы в ответ на нажатие педали газа с целью получить генерируемую турбокомпрессором дополнительную мощность. Природа лага состоит в том, что дополнительный воздух необходимо всосать, сжать и прогнать по трубопроводу системы впуска до самой камеры сгорания. По конструктивным и компоновочным причинам весь впускной тракт иногда получается достаточно длинным, и на его прохождение воздуху требуется то самое время, которым измеряется задержка под названием «турболаг»
Ещё одна проблема уже эксплуатационного характера заключается в том, что на малых оборотах поток газов слишком мал, чтобы раскрутить вал турбокомпрессора для создания сколько-нибудь существенного давления и получения дополнительной мощности — в народе такая ситуация называется «турбоямой». Поэтому конструкторы систем наддува тщательно подбирают размеры «холодной» и «горячей» крыльчаток в зависимости от объёма двигателя и желаемого характера тяги. Например, в спортивной Audi Sport quattro турбина имеет огромную горячую часть и небольшую холодную, поэтому, чтобы раскрутить такой нагнетатель, нужно выйти на высокие обороты (3500-4000 об/мин и выше), но зато потом следует очень резкий бескомпромиссный подхват. А в современном гражданском Mini Countryman (мы совсем недавно ездили на обновлённой модели) с небольшим моторчиком объёмом 1,6 литра нагнетатель маленький, но зато легко раскручивается с минимальных оборотов, что удобно в городских условиях.

Избыточное давление. Благодаря универсальности и простоте твинскролльные турбокомпрессоры получают всё большее распространение в легковом автомобилестроении
Чтобы понизить порог наддува, когда турбина создаёт избыточное давление, и сократить зону турбоямы, создатели турбокомпрессоров используют различные конструктивные ухищрения. Самые распространённые из них — крыльчатка с изменяемой геометрией и твинскролльная горячая «улитка». TwinScroll предусматривает два параллельных, но разного размера и формы канала для выхлопных газов в едином корпусе улитки — газы в каждый из каналов попадают от своей группы цилиндров, но крутят единое турбинное колесо. Его лопатки выполнены таким образом, что одинаково эффективно воспринимают импульсы из обоих каналов.

Наибольшее распространение нагнетатели с изменяемой геометрией получили на дизельных моторах, в бензиновых агрегатах одними из первых массово подобную конструкцию применили создатели Porsche 911 Turbo предыдущего поколения 997
Из-за различной геометрии каналов и достигается хорошая тяга одновременно и на низких, и на средних и высоких оборотах, а отсутствие столкновения и завихрения потоков газов от разных групп цилиндров улучшает газодинамические свойства системы. Турбины же с изменяемой геометрией имеют специальные, приводимые актуатором, подвижные лопатки-заслонки, которые в разных положениях позволяют менять форму газового канала в горячей улитке (упрощённо — в разное время имитируют маленькую и большую турбину) и таким образом максимально эффективно в конкретный момент времени направлять на турбинное колесо поток выхлопных газов.
Как устроен механический нагнетательВ отличие от питающегося «бесплатными» выхлопными газами турбокомпрессора, механический нагнетатель приводится в движение энергией вращающегося коленвала. Соответственно, чтобы получить дополнительную мощность, двигатель сначала часть мощности отдаёт, поэтому КПД такого решения ниже. Но, тем не менее, производители не спешат отказываться от приводных нагнетателей, потому как они наделяют автомобиль моментальной тягой с самых низких оборотов — понятие турбоямы к приводным компрессорам практически неприменимо. Конструкция предусматривает ременную, цепную или реже передачу иного типа, которая вращает вал нагнетателя от коленвала мотора. Аналогично турбокомпрессору, нагнетатель прессует воздух и отправляет его под избыточным давлением во впускной коллектор. Наиболее похожий на турбокомпрессор вид приводного нагнетателя — центробежный. Он трамбует воздух аналогичным турбинным колесом, но приводится оно не выхлопными газами, а механически.

Механический нагнетатель типа Roots

Приводной винтовой компрессор типа Lysholm
Но самым первым компрессором, который применил в автомобилестроении Готлиб Даймлер, стал агрегат типа Roots, названный по имени своих создателей-братьев — изначально они разработали устройство для промышленных нужд. Такой нагнетатель представляет собой собранные в едином корпусе и находящиеся своими лопастями-кулачками в зацеплении два продолговатых ротора, которые своим вращением по направлению друг к другу захватывают и прокачивают воздух во впускной коллектор. Третья разновидность компрессоров — винтовые типа Lysholm — перекачивают и сжимают воздух с помощью сверлообразных несимметричных роторов, которые находятся в зацеплении. Благодаря уменьшающимся по направлению к выходу из компрессора воздушным камерам между шнеками осуществляется внутреннее сжатие воздуха, что обеспечивает большую в сравнении с Roots-нагнетателями эффективность системы. Аналогично газотурбинным схемам, развиваемое механическими компрессорами давление регулируется с помощью клапанов или муфт.
Турбонагнетатель? -Нет, это третья разновидность приводного компрессора, который в качестве нагнетающего элемента использует улитку с крыльчаткой внутри, как у классической газовой турбины
Комбинированные схемы агрегатного наддуваКак только системы наддува стали использоваться массово, инженеры стали думать над повышением их эффективности. Для борьбы с турбоямой, помимо вышеупомянутого твинскролльного наддува, используется схема с двумя последовательно дующими нагнетателями: это может быть маленькая турбина для низких оборотов в сочетании с большой для средних и высоких (так называемая архитектура твинтурбо; пример — Subaru Legacy в кузове BE/BH) или симбиоз приводного компрессора для низких оборотов и турбокомпрессора для средних и высоких. Последним прославилась компания Volkswagen со своим мотором 1.4 Twincharger, который обеспечивал плавный рост давления, но вместе с тем из-за сложности конструкции доставлял немало хлопот по части надёжности и обслуживания.

Это двигатель Volkswagen 1.4 TSI Twincharger. Разработчики умудрились скомпоновать в небольшой «четвёрке» механический нагнетатель (слева от блока цилиндров на изображении) и газовую турбину (справа от блока)
Однако две турбины одного мотора не обязательно отличаются размерами и работают последовательно: во многих современных наддувных моторах цилиндры условно делятся на две группы, и каждая из них обслуживается своим собственным нагнетателем. Однако инженерные изыскания порой порождают и более экзотические варианты: например, в новом трёхлитровом супердизеле BMW (381 л.с./740 Н•м) — три турбины! На низких оборотах работает первая маленькая турбина с изменяемой геометрией, на средних оборотах в дело включается большой нагнетатель, а на высоких прокачивать воздух в цилиндры помогает третий небольшой турбокомпрессор. Результат — водитель трёхлитровой машины ощущает под капотом литров так пять, да ещё и как будто с механическим нагнетателем, практически без турбоямы и лага. Ещё одна схема, пока не нашедшая серийного применения — электрическая турбина в качестве помощника обычному газовому компрессору, мы упоминали о ней выше.
Охлаждение воздухаТак как воздух в процессе прохождения через нагнетатель спрессовывается и соприкасается с горячими деталями агрегата, он нагревается и сам. Тёплый воздух имеет меньшую плотность, а порог разрушающей мотор детонации при использовании горячего воздуха становится ниже. Вот почему можно ощутить, что в жару автомобиль с наддувным двигателем «не едет» — в условиях недостатка воздуха (по сравнению с идеальными условиями) система управления двигателем готовит меньше горючей смеси, ограничивая до нужного соотношения и подачу топлива. Поэтому для охлаждения воздуха между нагнетателем и впускным коллектором в системах наддува предусмотрен промежуточный охладитель или, иными словами, интеркулер. Он представляет собой теплообменник (то есть радиатор), через который по пути в камеру сгорания проходит весь нагнетаемый воздух. По конструкции интеркулеры делятся на системы вида: «воздух-воздух» и «воздух-вода».

Двигатель Subaru с интеркулером верхнего расположения. Для большей эффективности на некоторых модификациях WRX STI для внутреннего рынка установлена система водяного орошения интеркулера. По нажатию кнопки в салоне кулер через установленные на нём форсунки омывается водой из находящегося в багажнике специального бака

Из-за заднемоторной компоновки интеркулеры Porsche 911 Turbo находятся по бокам в задних крыльях
Первые дешевле в производстве, легче и в целом компактнее, но менее эффективны и дают меньшую гибкость в компоновке моторного отсека. Охлаждение наддувного воздуха осуществляется в них посредством попадающего на рёбра интеркулера набегающего воздуха через воздухозаборники переднего бампера (фронтальное расположение, например, у Mitsubishi Lancer Evolution и вообще у большинства современных автомобилей) или капота (Subaru Impreza WRX, Toyota Caldina GT-T и прочие автомобили с «ноздрёй» над мотором). Интеркулер же типа «воздух-вода» остужает воздух с помощью циркулирующей по встроенному контуру жидкости, имеющей отдельно вынесенный радиатор охлаждения. Такая система обеспечивает меньшую длину впускного тракта, а значит, и меньший турболаг, а также позволяет более гибко выбирать месторасположение кулера. Среди её минусов — повышенная сложность и масса конструкции, а соответственно и цена такого решения.
Пять мифов о турбонаддувеМиф 1. Наддув снижает надёжность, турбины всё время ломаютсяПожалуй, это миф номер один, и доля правды в нём есть. Это связано с тем, что двигатель с наддувом имеет более сложную конструкцию, больше деталей и сложнее в проектировании, а значит — при прочих равных, — шанс, что в нём что-то сломается, выше, чем в случае с атмосферником. Однако конструктивные просчёты случаются и в безнаддувных моторах, поэтому удачная модель турбодвигателя не уступит в надёжности другому такому же удачному атмосфернику. Конечно, внутренние нагрузки в наддувных моторах выше, но каждый двигатель проектируется инженерами с учётом этих особенностей, поэтому все необходимые детали турбо- или компрессорного мотора изначально усилены. Сам по себе нагнетатель достаточно надёжен, но вследствие неправильной эксплуатации или конструктивных просчётов может выйти из строя, как и любая другая деталь. Даже если это случилось, то специализированные сервисы способны отремонтировать агрегат: для большинства современных моделей выпускаются запасные части и ремкомплекты, а точные измерения, необходимые для ремонта нагнетателя, вполне доступны квалифицированным мастерам. Резюме по мифу номер один: нагнетатель не является каким-либо особенно слабым звеном наддувного двигателя, а если его поломка и произошла, этот узел вполне поддаётся восстановлению или замене.Миф 2. Автомобиль с наддувом потребляет больше топливаОтчасти верно, но это касается, в основном, механических нагнетателей. Современные же турбированные двигатели создаются в основной своей массе именно с целью экономии топлива, так как в экономичном режиме вождения мотор с меньшим, чем у атмосферника сопоставимой мощности, рабочим объёмом потребляет меньше топлива, а в случае необходимости наддув даёт возможность распоряжаться существенной мощностью. Иными словами, много топлива расходуется только тогда, когда это действительно необходимо в соответствии с условиями движения. Повсеместный переход производителей на турбомоторы — лишнее тому подтверждение, ведь такое решение позволяет выпускать автомобили с более скромными показателями среднего расхода, а значит, и платить меньше обусловленных экологическим законодательством пошлин. Резюме по мифу номер два: современный автомобиль с турбонаддувом — это экономично.Миф 3. Чем больше турбина, тем лучшеРазмер нагнетателя — понятие, которое невозможно описать каким-то одним параметром. Это всегда совокупность размеров деталей компрессора, которые определяют его характеристики и совместимость системы с конкретным двигателем. В случае с турбокомпрессором основными и определяющими являются размеры и форма холодной и горячей частей, а производительность механического нагнетателя определяется габаритами винтовых элементов и соотношением диаметров приводных шкивов. Простой пример: если заменить турбину на автомобиле гольф-класса на узел от более объёмного мотора, то производимых компактным двигателем выхлопных газов может не хватить для эффективного раскручивания турбинного колеса, а значит, и компрессорная «холодная» крыльчатка не создаст нужного давления в системе. Некоторые турбокомпрессоры большего размера всё-таки помогут существенно увеличить мощность небольшого мотора, но доступна она будет только в узком диапазоне высоких оборотов, что удобно для трассы, но оборачивается чудовищной турбоямой в городе. Резюме по мифу номер три: размер нагнетателя требует инженерных расчётов и должен соответствовать параметрам двигателя и планируемым условиям эксплуатации автомобиля.Миф 4. Владеть автомобилем с наддувом хлопотнее, чем обычнымВ последние годы турбированные двигатели получили такое распространение, что далеко не все владельцы в курсе самого факта наличия нагнетателя под капотом. Разве владелице ярко-оранжевого Audi Q3 интересно, что шильдик TFSI на крышке багажника означает турбомотор? В эксплуатации современные автомобили с наддувом не требуют никаких особенных действий — нужно просто заливать соответствующее качественное топливо (не ниже 95 бензина в большинстве случаев и строго 98 для отдельных высокофорсированных моделей) и вовремя проходить регламентное обслуживание. Автомобили 10-20-летней давности с наддувными двигателями требовали более частого техобслуживания, однако сейчас у большинства производителей наддувные версии требуется загонять на сервис с той же регулярностью, что и атмосферные. Это стало возможным благодаря совершенствованию конструкции моторов, а также появлению новых видов масел.Старые автомобили с наддувными моторами также боялись резкого глушения после «отжига» — детали турбины продолжали в таком случае вращаться по инерции, а подача масла уже прекращалась, что вело к повышенному износу. Для защиты механизма либо применялось устройство под названием турбо-таймер, которое давало поработать двигателю минуту-другую и затем автоматически его глушило, либо водитель сам ждал пару минут, прежде чем остановить мотор после активной поездки. Современные двигатели ничего подобного не требуют, так как система смазки турбокомпрессора рассчитана на такие условия. К примеру, на турбомоторах Volkswagen предусмотрена отдельная помпа, которая прокачивает через нагнетатель холодный антифриз после выключения зажигания. Резюме по мифу номер четыре: следите за качеством топлива и вовремя посещайте сервис — и можете не вдаваться в детали конструкции. Впрочем, это справедливо для любого автомобиля.Миф 5. Наддув включается и отключается на определённых оборотахНагнетатель — это агрегат, который, как правило, всегда активен с самого момента запуска двигателя. Равно как с первым оборотом коленвала начинают вращаться приводящие механический компрессор шкивы, так даже на холостых оборотах мотор выделяет выхлопные газы, которые через горячую крыльчатку слегка вращают ось турбокомпрессора. Поэтому нагнетатель работает всегда, но вот быть эффективным начинает только с определённого момента. Порог, с которого нагнетатель создаёт избыточное давление, в каждой системе индивидуален, а рост давления может происходить быстро или медленно, но всегда относительно плавно. Резюме по мифу 5: нагнетатель не работает по принципу «вкл-выкл», а степень его участия в наполнении цилиндров воздухом зависит от оборотов двигателя. Исключение составляют системы, где присутствует более одного нагнетателя — в таких схемах обычно предусмотрено электронное управление потоками воздуха, и в зависимости от условий работы мотора специальные актуаторы и клапаны задействуют в нужный момент тот или иной компрессор.
PS: Не стесняемся, Жмем кнопочки с низу --> [Нравится] и [Поделиться], вам это никого-го труда не составит, а мне на душе приятно. И нажав [Поделиться] Ваш читатель, увидит данную статью, и м.б. его сия заинтересует и он узнает много нового)) Всем Бобра!
www.drive2.ru
Механический нагнетатель. Устройство и принцип действия. — DRIVE2
Лет семь назад я написал на ресурсе mcautotuner ряд статей для любителей "дунуть") Отзывы очень приятные, думаю что весьма актуально будет выложить статьи на нашем любимом Драйв2.
Механический нагнетатель. Устройство и принцип действия.
Перед тем как приступить к чтению этой статьи, советую вам ознакомиться с материалом Турбина. Устройство и принцип действия.
Механизм, о котором пойдет речь в этой статье, известен нам как Механический нагнетатель, Supercharger, Kompressor. За этими названиями скрывается устройство, повышающее мощность двигателя за счет нагнетания в цилиндры воздуха под давлением, превышающем атмосферное.
Основным отличием данной системы от турбонаддува является то, что для привода компрессора используется не бесплатная энергия выхлопных газов, а часть энергии, производимой двигателем.
Отсюда все плюсы и минусы механических нагнетателей, к которым с одной стороны можно отнести мгновенный отклик на нажатие педали газа (компрессор всегда готов к своей работе, нет необходимости ждать пока он раскрутится и выйдет на свои рабочие обороты), отличную тягу на низах, а с другой стороны — повышенный расход топлива и меньшая итоговая мощность при том-же давлении наддува, нежели у систем с турбонаддувом.
***
Виды механических нагнетателей
В отличие от турбокомпрессора, в простонародье прозванного "улиткой" и имеющего лишь такой форм-фактор, механические нагнетатели бывают нескольких типов.
Роторный нагнетатель Roots


Этот самый древний и самый простой тип нагнетателей, обязан своим появлением американцам — братьям Филандер и Фрэнсис Рутс, еще в 1860 (!) году запатентовавшим этот роторный вид нагнетателя. Примечательно, что первоначально этот механизм использовался исключительно для вентиляции промышленных помещений и шахт, и лишь в 1885 году всем известный Готтлиб Даймлер получил свой патент на нагнетатель, работающий по принципу нагнетателя братьев Рутс. В 1900 году увидел свет первый серийный автомобиль марки Daimler-Benz, оснащенный первым механическим нагнетателем типа Рутс.
В 1949 году другой американский изобретатель, Итон, улучшил конструкцию нагнетателя — прямозубые шестерни уступили место косозубым роторам и воздух начал перемещаться не поперек их осей вращения а вдоль. Но как и до модернизации, основным принципом работы нагнетателей типа Roots стала простая перекачка воздуха в другой объем, без сжатия воздуха внутри механизма, так что роторный нагнетатель Roots это объемный нагнетатель. а не компрессор.
У этого вида нагнетателей есть ощутимые недостатки. С ростом оборотов двигателя и соответственно, скорости вращения роторов, нагнетатель начинает накачивать воздух слишком интенсивно и воздух начинает проникать обратно в нагнетатель. Таким образом, с определенного уровня оборотов, нагнетатель Рутс начинает потреблять мощности двигателя больше чем способен дать в ответ. В добавок, из-за несовершенной формы роторов, воздух подается неравномерно, прерывистыми качками, тем самым понижая КПД нагнетателя.
Однако есть и неоспоримые достоинства. Нагнетатели данного типа, в отличие от центробежных, начинают свою работу уже при низких оборотах и продолжают, без потери эффективности, нагнетать воздух в цилиндры. Этим качеством обусловлена любовь спортсменов — дрэгстеров и роддеров по всему миру к этим, самым простым нагнетателям.
***
Винтовой (спиральный) компрессор Lysholm


Внешне компрессор типа Lysholm очень похож на нагнетатель Roots, однако существенно отличается от него конструктивно. Внутри те же два ротора, однако их формы заострены елочкой, а сами они похожи на сверла. Поэтому компрессор и называется винтовой (спиральный). При вращении роторов воздух проникающий в нагнетатель не просто перекачивается в другой объем, а сжимается, следовательно, в отличие от нагнетателей Roots, воздух с ростом оборотов вытесняться обратно в нагнетатель не будет. Отсюда — отличный стабильный КПД в широчайшем диапазоне оборотов.
Однако и у этого совершенного агрегата есть минусы. Самый главный из них — очень высокая себестоимость и цена, делающая этот агрегат труднодоступным. Ну и конечно чуда не произошло — компрессор типа Lysholm все так-же потребляет мощность двигателя, ведь он приводится так-же — ремнем от шкива коленвала.
Для более наглядного представления о компрессоре Лисхольм, давайте разберем один =)
компрессор Lysholm в сравнении с нагнетателем Eaton типа Roots



Центробежный нагнетатель

Один из старейших видов нагнетателей. Был запатентован в 1902 году Луи Рено.
По своей конструкции очень близки к турбокомпрессорам, основное отличие от которых — отсутствие т.н. "горячей части" (турбины). Вместо нее расположен приводной шкив с редуктором. Достоинства те-же что и у турбокомпрессора, плюс малый вес. Недостатки также аналогичны турбокомпрессорам. Центробежный нагнетатель вступает в работу не сразу, а лишь по достижении рабочих оборотов. В плюс к недостаткам турбины у этого вида нагнетателей — отбирание мощности у двигателя.
С уважением,
Dr.Broman
www.drive2.ru
Приводной нагнетатель (компрессор) — DRIVE2

Механический приводной нагнетатель (компрессор) позволяет увеличить мощность двигателя до 50 %. Основное преимущество механических нагнетателей перед турбокомпрессорами — равномерное увеличение мощности вне зависимости от оборотов.
Для увеличения мощности двигателя используют два основных вида нагнетателей — турбокомпрессор, работающий от энергии потока выхлопных газов, и механический компрессор с приводом от коленчатого вала.
История появления нагнетателей компрессорного типа
Идея установки нагнетателя для увеличения подачи мощности двигателя принадлежит немецкому инженеру Готтлибу Даймлеру. Впервые он установил компрессор на автомобиль собственной разработки в 1885 году. Первый патент на оригинальную конструкцию нагнетателя воздуха для двигателя внутреннего сгорания оформил в 1902 году Луи Рено.
Турбокомпрессоры применялись для повышения мощности двигателей внутреннего сгорания еще на этапе развития этого вида технологий. Запатентованный американцем Альфредом Бюхи в 1911 году турбокомпрессор на заре своего развития сыграл значительную роль в военной авиации – турбированные бензиновые двигатели ставились на истребители и бомбардировщики для повышения их высотности. vk.com/v_korche Свое применение в автомобильном дизелестироении технология нашла относительно недавно. Первым серийным автомобилем с турбированным дизелем был появившийся в 1978 г. Mercedes-Benz 300 SD, а в 1981 г. за ним последовал VW Turbodiesel. В дальнейшем применение механических нагнетателей пошло двумя параллельными путями. Первыми их ценность признали инженеры, занимавшиеся постройкой дизельных двигателей, для которых характерна высокая степень сжатия, и требуется принудительное нагнетание воздуха, то есть в двухтактных дизелях, или там, где требуется повышенная удельная мощность. Вторая ветвь развития — установка в гоночные автомобили для получения избыточной мощности.
История автомобилестроения насчитывает большое количество видов приводных нагнетателей, или компрессоров. Но в настоящее время чаще всего используются три типа: винтовые, роторные и центробежные. Наиболее традиционно использование приводного нагнетателя для американской и немецкой промышленности, тогда как японцы, к примеру, тяготеют к использованию турбокомпрессоров.
Отличие приводного нагнетателя от турбокомпрессора
Приводные нагнетатели и турбокомпрессоры выполняют одну и ту же функцию — нагнетают воздух под давлением в камеру сгорания. Однако при этом они имеют совершенно разную конструкцию привода, и по-разному влияют на характер работы двигателя.
Вращающей силой турбокомпрессора является поток отработанных газов двигателя, а нагнетателя — механическая сила вращения коленчатого вала, которая передается на вал коленчатого вала при помощи шкива и приводного ремня.
Принцип увеличения мощности при помощи приводного нагнетателя
Приводной нагнетатель или турбокомпрессор доставляет в цилиндры силовой установки дополнительный воздух. Система управления двигателем, запрограммированная на приготовление оптимального состава рабочей смеси, увеличивает при этом подачу топлива. Сгорая, такой состав выделяет значительно больше энергии, а значит мощность двигателя увеличивается.
Производительность компрессора зависит от частоты вращения двигателя, поэтому он позволяет обеспечивать необходимый наддув в каждый конкретный момент работы силовой установки.
Устройство и принцип работы роторного компрессора
Говоря об особенностях роторных компрессоров, следует отметить простоту их конструкции, долговечность и положительную зависимость между частотой вращения роторов и меняющимися режимами работы двигателя.
В рабочей полости нагнетателя не происходит сжатия воздуха, поэтому для такого типа компрессоров принято название «с внешним сжатием». vk.com/v_korche При равных отношениях давлений нагнетания и всасывания, роторный компрессор достаточно эффективен, его КПД начинает падать с увеличением давления на впуске.
Состоит роторный компрессор из корпуса с поперечно расположенными впускным и выпускным окнами, двух роторов, приводных и синхронизирующих шестерней и шкива.
Роторы имеют спиральную форму. Это несколько улучшает равномерность наддува и снижает шум работы компрессора. Клиновидная форма окон корпуса нагнетателя способствует уменьшению пульсации давления воздуха. С этой же целью используются, вместо двухзубчатых, трехзубчатые роторы.
К недостаткам роторных компрессоров относятся сильный нагрев при работе, повышенный шум, пульсирующее давление нагнетания и прямая взаимосвязь КПД устройства и степени его изношенности.
В зависимости от конструктивных особенностей, роторные компрессоры создают положительное давление 0,5-0,6 бара и широко используются на легковых автомобилях.
Устройство и принцип работы винтовых компрессоров
Приводные нагнетатели винтового типа компактны, особо надежны и высокопроизводительны.
В конструкцию винтового компрессора входят два ротора. Они имеют форму колеса, на котором с большим углом наклона расположены спиральные зубья. Синхронизирующие шестерни, находящиеся на валах ротора, не допускают соприкосновения зубьев роторов с корпусом и между собой.
Количество зубьев роторов зависит от количества зубьев шестерней, установленных на их валу. В винтовом компрессоре ротор с впадинами является распределительным, а профили этих выемок полностью соответствуют профилю зубьев роторов.
Компрессоры винтового типа обеспечивают диагональное движение нагнетаемого воздуха в проточной части. vk.com/v_korche Большая скорость вращения устройства позволяет значительно снизить его габариты, а высокое давление воздуха дает возможность устанавливать такой тип приводного нагнетателя на самые скоростные и мощные автомобили.
Главными достоинствами винтовых компрессоров считаются их сбалансированность, надежность и чистота нагнетаемого воздуха, в котором отсутствуют примеси масла.
Однако, сложная форма роторов и их массивность являются причиной высокой стоимости винтовых компрессоров. Помимо этого, при внутреннем сжатии воздуха, возникает высокочастотный шум, что является несомненным недостатком.
Винтовые компрессоры обладают высоким КПД — более 80% — и создают давление около 1-го бара.
Последствия поломки приводного нагнетателя
Поскольку приводной нагнетатель относится не к основным узлам автомобиля, а, скорее, к категории тюнинга, выход компрессора из строя не грозит двигателю серьезными поломками.
Из-за уменьшения объема поступаемого в цилиндры топлива, снижается мощность двигателя. В случае износа деталей компрессора его необходимо отремонтировать или заменить.

www.drive2.ru
Ремонт и Доработка» on DRIVE2
Всем привет!Кому тема компрессора интересна, тому эта запись может оказаться полезной. ))) Кто изначально против этого устройства, можно не читать)Сравнительно недавно мной был установлен компрессор ПК-23. Говорят и пишут много о нем, но лично мое мнение, в качестве гражданского тюнинга для машины на каждый день-- самое то. Приход есть. И хоть наддув появляется только с 2,5 тысяч оборотов, но машина тянет ощутимо лучше уже с 1500. То есть, компрессор облегчает наполнение двигателя воздухом почти с самого низа. За что ему большой плюс в городском режиме. Особенно это хорошо для 16V, которые на низах работают вяло…Дальше был лично для меня решен вопрос: нужен ли интеркуллер с компрессором и таким маленьким наддувом? Нужен однозначно! Обойдемся без теории, только практика: после активного катания по городу температура воздуха на впуске была около 60-65 градусов. А при наддуве в течении 15-20 секунд поднималась уже до 90! Думаю, понятно, что толку от такого наддува кипятком-- ноль! Еще и возрастает риск детонации! И это при температуре на улице около 15 градусов. ((Итак: был установлен компрессор ПК-23

Первоначальный вариант установки компрессора.
Проехавшись и понаблюдав за параметрами двигателя, принял решение об установке интеркуллера.После установки вид под капотом изменился на вот такой:
Zoom
Вид подкапотки с интеркуллером.
А вот так выглядит машинка снаружи:
Zoom
В процессе постройки перешел на связку ДАД+ДТВ взамен ДМРВ.Потом была сделана откатка он-лайн.А теперь самое интересное: какие итоги всего этого.Один из главных факторов, бюджет. Он составил, примерно, 450 у.е. Этот довод для сторонников установки турбо: там с таким бюджетом делать нечего.Потом расход топлива: машина у меня на LPG и по городу сейчас расход около 10.5 л против 10л без компрессора. По трассе 8.8 против 8.2 л.Динамика… Тут можно расписывать много. Скажу главное: машина тянет во всем диапазоне, уже с ХХ это ощущается. Ну и видео разгона:Напомню конфиг моего двигателя:на 0.3 мм фрезерована ГБЦ, установлена приоропрокладка, распилены каналы ГБЦ, установлен паук 4-2-1 и прямоток на 51 трубе, компрессор ПК-23 с интеркуллером. Все остальное: сток.И еще пару доводов, которые часто приводят противники ПК-23:1. Мало ходят подшипники.При установке новых подшипников в компрессор, как и при установке нового компрессора на авто, подшипники ОБЯЗАТЕЛЬНО надо вскрывать и набивать хорошей смазкой. Тогда они будут ходить.Не забывать, что производителем заложен диапазон оборотов двигателя для работы с компрессором до 6500 оборотов, как в штатной прошивке. Поэтому при частой работе на оборотах 7000 и выше подшипники гораздо быстрее выйдут со строя.И компрессор этот, все-таки, на мой взгляд, для тюнинга гражданской машины, а не для постройки корча.2. Часто отстреливают ремни мультипликатора.Мне кажется, что ремни часто летят у тех, у кого не установлен в системе Blow-off. Поэтому при резком закрытии дросселя возникает нагрузка на лопасти и, как следствие, на приводной вал. С таким усилием ремни уже не справляются и начинается пробуксовка, со всеми вытекающими…
Комментарии и обоснованная критика приветствуется!Всем удачного тюнинга!
www.drive2.com
Наддув — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 мая 2015; проверки требуют 9 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 мая 2015; проверки требуют 9 правок. Термин «Наддув» имеет и другие значения.Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности при текущем уровне атмосферного давления и есть основная цель наддува. Буквальным следствием этой технической особенности стало одно из ранних применений наддува для компенсации высотного падения мощности в авиационных маршевых ДВС.
Также, наддув есть любого рода создание повышенного давления в принципе. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.
Возможен агрегатный наддув и безагрегатный наддув.
ru.wikipedia.org
Обратная связь ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Является одним из эффективных способов повышения мощности.Данный вид наддува в основном используется на судовых и стационарных двигателях, но благодаря развитию современных технологий он всё чаще используется на бензиновых автомобильных двигателях. Приводной нагнетатель (ПН) – это агрегат, который обеспечивает быструю передачу воздуха, создавая при этом повышенное давление, необходимое для наддува. Отличительная особенность всех ПН в том, что они имеют жёсткую связь с коленчатым валом двигателя и приводится в работу через ременной привод или звёздную передачу. Имея жёсткую связь с коленчатым валом, приводной нагнетатель обеспечивает более высокое давление наддува на небольших частотах вращения двигателя, что улучшает динамические качества транспортных средств, при этом уменьшаются выбросы сажи в окружающую среду. Мощность компрессора при его механическом приводе непрерывно растёт с ростом давления наддува, что также является преимуществом таких агрегатов наддува. Наибольшее распространение среди приводных нагнетателей получили объёмные и центробежные компрессоры. Объёмные компрессоры. Компрессоры с вращающимися рабочими частями, называемые ещё роторными. Объёмные компрессоры делятся на несколько типов. Пластинчатые компрессоры. Агрегаты такого типа часто применяются для наддува бензиновых ДВС. Применение таких компрессоров для наддува дизельных двигателей ограничивается максимально достижимой частотой вращения, проблемой смазывания и охлаждения. Достоинствами таких компрессоров являются возможность подавать воздух мгновенно в начале вращения вала двигателя, пропорциональное увеличение производительности компрессора с ростом потребности в надувочном воздухе двигателя. Конструкция компрессора сравнительно проста и дёшева, а его габариты приемлемы для двигателей с наддувом. Пластинчатые компрессоры обеспечивают повышение давления наддува до 0,5…0,6 бар. Лопастные компрессоры. Наиболее широко, в сравнении с другими объёмными компрессорами, применяются в ДВС для наддува. Компрессор такого типа был предложен ещё в XIX веке англичанином Roots. Поэтому такие компрессоры получили название «Рутс». Достоинством компрессора типа «Рутс» является то, что его роторы в корпусе и друг относительно друга работают с зазорами. Благодаря этому в роторах отсутствуют силы трения, не требуется смазывание и охлаждение роторов. Следствие этого – высокая надёжность и долговечность таких машин. Материалы компрессоров «Рутс» более дёшевы, так как не должны иметь высокой термической и механической прочности.
При частоте вращения порядка 1 500 мин-1 роторы компрессора такого типа, переносят порядка 9 000 м3в час. Винтовые компрессоры. Конструктивно винтовые компрессоры близки к лопастным компрессорам. В сравнении с компрессорами типа «Рутс» винтовые компрессоры имеют более высокий КПД (включая механические потери на трение до 82%) и допускают более высокие степени повышения давления воздуха. К преимуществам винтовых компрессоров относится их компактность, достигаемая высокой быстроходностью, а также отсутствие систем охлаждения (имеется только воздушное охлаждение) и смазывания. Центробежные компрессоры. Центробежный компрессор является одной из частей турбокомпрессора (более подробное описание в главе «Газотурбинный наддув»). Ротор центробежного компрессора может вращаться со скоростью от 15 000…200 000 мин-1, в зависимости от размеров компрессора. Преимуществом центробежных компрессоров является их низкая масса и малые габариты. Механический привод компрессора обеспечивает приёмистость двигателя. В то же время размещение на двигателе механического привода является сложной и дорогостоящей проблемой. «Компрекс» «Компрекс» – наиболее совершенный волновой обменник среди существующих сегодня. «Компрекс» – это система, которая объединяет энергию отработавших газов и механический привод от коленчатого вала двигателя. Такая система позволяет использовать энергию отработавших газов двигателя для сжатия поступающего в цилиндры воздуха при их непосредственном контакте. КПД волновых обменников давления достигает 75%, а степень повышения давления – 2,1. «Компрекс» обеспечивает двигателю высокую приёмистость. С данной системой возможно повышение крутящего момента на величину до 70% (до 40% без промежуточного охладителя) в сравнении с моментом двигателя без наддува. При применении в легковых автомобилях, система «Компрекс» обеспечивает плавно изменяющееся давление наддува с изменением частоты вращения. Дополнительное достоинство – повышение экологичности дизельного двигателя. В то же время системе присущи и определённые недостатки, препятствующие её широкому распространению. Прежде всего, это большие габариты и высокая стоимость. В сравнении с объёмными компрессорами, размещение «Компрекс» на двигателе так же сложно из-за необходимости связи с валом двигателя. Газотурбинный наддув. Приводной нагнетатель в сравнении с турбокомпрессором имеет ряд недостатков, который не даёт возможность устанавливаться на двигателях чаще компрессоров с приводом от газовой турбины. Важнейшим недостатком является то, что для привода компрессора требуется затратить часть мощности самого двигателя. В этом случае энергия отработавших газов бесполезно выбрасывается в атмосферу, в отличие от случая использования турбокомпрессора. Двигатель с турбокомпрессором всегда будет иметь более высокий КПД, в частности благодаря использованию части энергии отработавших газов. Этот факт менее ощутим в бензиновых двигателях благодаря сравнительно низкому уровню применяемого в них наддува и особенностям дроссельного регулирования их мощности. Важным показателем нагнетателя является его габариты. Благодаря высокой частоте вращения, достигнутой у турбокомпрессоров, их габариты чрезвычайно уменьшились по сравнению с габаритами объёмных нагнетателей, как и к массам нагнетателей. Именно по этим причинам наибольшее распространение в практике современного двигателестроения получил турбокомпрессор. Турбокомпрессор (ТКР)– это отдельный агрегат, который состоит из компрессора и газовой турбины, которые механически связанные между собой (Рис.1.). Одна часть ТКР связана с выпускной системой двигателя и приводится в движение энергией отработавших газов (ОГ) двигателя – это турбина. Вторая часть связана с впускной системой, приводится энергией турбины и служит для подачи воздуха в цилиндры под давлением. Частота вращения турбокомпрессора достигает 150 000 мин-1.Главная задача турбокомпрессора – принудительная подача сжатого воздуха в цилиндры двигателя за счет использования энергии отработавших газов. Тем самым обеспечивается полнота сгорания увеличенной доли топлива, что позволяет при прежнем рабочем объеме и тех же оборотах двигателя получать большую мощность. Рис. 1. Турбокомпрессор: 1 – корпус турбины, 2 – рабочее колесо турбины, 3 – вал ротора, 4 – корпус подшипникового узла, 6 –– диффузор компрессора, 7 – рабочее колесо компрессора, 8 – корпус компрессора, 9 – подшипники. Принцип работы ТКР Отработавшие газы поступают из цилиндров двигателя в корпус турбины 1 через выпускной коллектор. Там ОГ воздействует на лопаточное колесо турбины 2, заставляя вращаться его с большой скоростью. Колесо турбины передаёт вращение колесу компрессора 7, с которым жёстко связано валом (ротором) 3. Воздух через впускной патрубок компрессора поступает на колесо компрессора, где под действием центробежных сил он отбрасывается на стенку корпуса компрессора (через диффузор 6). В корпусе скорость воздуха уменьшается, а давление растёт. Далее воздух направляется в двигатель. Вал ротора находится в подшипниковом корпусе 4, который соединяет корпус компрессора 8 и турбины 1. Чтобы работа компрессора была достаточно долгой, вал вращается на подшипниках 9, к которым подаётся масло. Между двигателем и турбокомпрессором не существует жёсткой связи, как в приводных нагнетателях. Частота вращения турбокомпрессора напрямую не зависит от числа оборотов двигателя и характеризуется некоторой инерционностью, т.е. сначала увеличивается подача топлива, увеличивается энергия потоков отработавших газов, а затем уже увеличиваются обороты турбины и нагнетаемое давление поступает в цилиндры двигателя. Корпус и материалы ТКР Корпус турбины и компрессора сделаны специальной формой в виде «улитки». В корпусе есть два отверстия, которые являются входом и выходом, причём у турбины и компрессора они разные. В турбине из выпускного коллектора ОГ попадают в турбокомпрессор через боковое отверстие. Газы проходят по внутреннему каналу турбины. Этот канал постепенно сужается, и газы, проходя через него, ускоряются и попадают к колесу турбины и приводят его во вращение. Сделано так, чтобы использовать максимальное количество энергии отработавших газов. Скорость вращения турбины зависит от формы и размера канала. Форма корпуса компрессора такая же, как и у турбины, но направление движения там обратное. Воздух через центральное отверстие поступает в колесо компрессора, где под действием центробежных сил его скорость резко увеличивается и выходит из колеса компрессора в диффузор. В диффузоре скорость воздуха уменьшается, а давление растёт. Благодаря этому воздух сжимается и через впускной коллектор попадает в двигатель. Размеры компрессора зависят от количества воздуха, необходимого для двигателя. Корпус ротора турбокомпрессора (картридж) образует его центральную часть, расположенную между турбиной и компрессором. Ротор вращается в подшипниках скольжения. Моторное масло по каналам проходит между корпусом и подшипниками, а также между подшипниками и ротором. Любая конструкция картриджа подразумевает также необходимость максимального снижения теплообмена между турбиной и компрессором. С этой целью со стороны турбины устанавливается термоизоляционная прокладка. Направляющий аппарат турбины может быть выполнен лопаточным или безлопаточным. Установка лопаток в направляющем аппарате повышает экономичность и КПД турбины. Корпус компрессора изготавливается из алюминия. Корпус подшипникового узла изготовляется из алюминиевого сплава или чугуна. Алюминиевый корпус легче, а чугунный прочнее. Кроме того, поскольку коэффициент теплопроводности чугуна значительно меньше, чем алюминия, при использовании чугунного корпуса уменьшается тепловой поток, передаваемый от турбины к компрессору. Это несколько снижает температуру и повышает плотность сжимаемого воздуха. Колеса компрессоров и турбины отливаются по выплавляемым моделям. Материалом для колёс компрессоров служит алюминиевый сплав, а турбин — жаропрочный сплав на никелевой основе. С уменьшением размеров турбины и компрессора общая величина современных турбокомпрессоров также уменьшается. При этом турбина располагается все ближе к компрессору. Колёса ТКР Лопатки компрессора могут быть загнуты назад по отношению к направлению вращения колеса. Это приводит к повышению КПД компрессора, однако снижает его «напор», что компенсируется увеличением частоты вращения ротора. Колесо турбины жестко соединяется с ротором методом сварки трением, а колесо компрессора крепится на роторе гайкой с левой резьбой. |
megapredmet.ru
Повышение мощности наддувом — приводной компрессор — DRIVE2

Что бы быстро ехать надо жечь больше топлива, влить его можно в огромном кол-ве, а вот окислить уже не так просто. Опустим системы закиси озота, будем использовать окружающий нас воздух). Соответственно воздух надо закачивать под давлением, для этого сейчас используются различные типы компрессоров, основное отличие в приводе — турбокомпрессоры, использующие энергию отработанных газов и приводные компрессоры, в частности типа Рутс! Именно такой компрессор предпочтителен для форсирования ДВС, т.к. обладает рядом достоинств — не требуется вмешательство в штатную систему смазки, простота конструкции обуславливает высокую надёжность агрегата, прамая связь с коленвалом двигателя в условиях неустановившихся режимов, например, интенсивных разгонов, позволяет валу компрессора ускоряется вместе с валом двигателя — пропорционально ускорению коленчатого вала, благодаря этому практически исключается отставание в воздухоснабжении двигателя при интенсивных разгонах, набросах нагрузки и т. д. (что происходит при применении турбокомпрессоров). Компрессор не имеет контакта с выпускными газами с высокой температурой, как это имеет место, например, у турбокомпрессоров. Т. е. такие компрессора не имеют повышенных температурных напряжений, не имеют проблем с охлаждением или со смазкой. Достоинством конструкции компрессора типа «Рут» является то, что Компрессоры этого типа нагнетают давление практически с оборотов холостого хода и Имеют ровный наддув без пиков и провалов и потому НЕ требует установки доп. электроники — бустконтроллера (и турботаймера).


8 лет Метки: компрессор, нагнетатель, supercharged, charger
Нравится 34 Поделиться: Подписаться на автора
www.drive2.ru