Купим металлолом в Воронеже т.+7(473)229-91-36. Металл авиационных двигателей
Авиационный алюминий: характеристики
Благодаря легкости, пластичности и стойкости к коррозии алюминий стал незаменимым материалом во многих производствах. Авиационный алюминий – группа сплавов, отличающихся повышенной прочностью с включением магния, кремния, меди и марганца. Дополнительную прочность сплаву придают при помощи т. н. «эффекта старения» - особого метода закалки под воздействием в течение длительного времени агрессивной атмосферной среды. Сплав был изобретен в начале 20 века, получив название дюралюминий, сейчас известен также под названием «авиаль».
Определение. Исторический экскурс
Началом истории авиационных алюминиевых сплавов считается 1909 год. Немецкий инженер-металлург Альфред Вильм опытным путем установил, если сплав алюминия с незначительным добавлением меди, марганца и магния после закалки при температуре 500 °C и резкого охлаждения выдержать при температуре 20-25 градусов в течение 4-5 суток, он поэтапно становится тверже и прочнее, не теряя при этом пластичности. Процедура получила название «старение» или «возмужание». В процессе такой закалки атомы меди заполняют множество мельчайших зон на границах зерен. Диаметр атома меди меньше, чем у алюминия, потому появляется напряжение сжатия, вследствие чего повышается прочность материала.
Впервые сплав был освоен на немецких заводах Dürener Metallwerken и получил торговую марку Dural, откуда и произошло название «дуралюмин». Впоследствии, американские металловеды Р. Арчер и В. Джафрис усовершенствовали состав, изменив процентное соотношение, в основном магния. Новый сплав получил название 2024, который в различных модификациях широко применяется и сейчас, а все семейство сплавов - «Авиаль». Название «авиационный алюминий» этот сплав получил практически сразу после открытия, поскольку полностью заменил дерево и метал в конструкциях летательных аппаратов.
Основные виды и характеристики
Выделяют три основных группы:
- Семейства алюминий-марганец (Al-Mn) и алюминий-магний (Al-Mg). Основная характеристика – высокая, едва уступающая чистому алюминию коррозийная стойкость. Такие сплавы хорошо поддаются пайке и сварке, но плохо режутся. Не упрочняются термической обработкой.
- Коррозионно-стойкие сплавы системы алюминий-магний-кремний (Al-Mg-Si). Упрочняются термической обработкой, а именно закалкой при температуре 520 °C с последующим резким охлаждением воде и естественным старением около 10 суток. Отличительная характеристика материалов этой группы – высокая коррозионная стойкость при эксплуатации в обычных условиях и под напряжением.
- Конструкционные сплавы алюминий-медь-магний (Al-Cu-Mg). Их основа – легированный медью, марганцем и магнием алюминий. Изменяя пропорции легирующих элементов, получают авиационный алюминий, характеристики которого могут отличаться.
Материалы последней группы обладают хорошими механическими свойствами, но при этом весьма подвержены коррозии, чем первое и второе семейство сплавов. Степень подверженности коррозии зависит от вида обработки поверхности, которую все равно необходимо защищать лакокрасочным покрытием или анодированием. Коррозионная стойкость частично увеличивается введением в состав сплава марганца.
Помимо трех основных видов сплавов различают также ковочные сплавы, жаропрочные, высокопрочные конструкционные и др. обладающие необходимыми для конкретной сферы применения свойствами.
Маркировка авиационных сплавов
В международных стандартах первая цифра маркировки авиационного алюминия обозначает основные легирующие элементы сплава:
- 1000 – чистый алюминий.
- 2000 – дюралюмины, сплавы легированные медью. В определенный период – самый распространенный аэрокосмический сплав. В связи с высокой чувствительностью к коррозийному растрескиванию все чаще заменяются сплавами серии 7000.
- 3000 – легирующий элемент – марганец.
- 4000 – легирующий элемент – кремний. Сплавы известны также как силумины.
- 5000 – легирующий элемент – магний.
- 6000 – самые пластичные сплавы. Легирующие элементы – магний и кремний. Могут подвергаться термозакалке для повышения прочности, но по этому параметру уступают сериям 2000 и 7000.
- 7000 – термически закаленные сплавы, самый прочный авиационный алюминий. Основные легирующие элементы – цинк и магний.
Вторая цифра маркировки - порядковый номер модификации алюминиевого сплава после исходного – цифра «0». Две заключительные цифры – номер самого сплава, информация о его чистоте по примесям. В случае если сплав опытный, к маркировке добавляется пятый знак «Х».
На сегодняшний день, самые распространенные марки авиационного алюминия: 1100, 2014, 2017, 3003, 2024, 2219, 2025, 5052, 5056. Отличительными особенностями этих сплавов являются: легкость, пластичность, хорошая прочность, стойкость к трению, коррозии и высоким нагрузкам. В авиастроении наиболее широко используемые сплавы - авиационный алюминий 6061 и 7075.
Состав
Основными легирующими элементами авиационного алюминия являются: медь, магний, кремний, марганец, цинк. Процентное содержание этих элементов по массе в сплаве определяют такие характеристики, как прочность, гибкость, стойкость к механическим воздействиям и др. Основа сплава – алюминий, основные легирующие элементы: медь (2,2-5,2% массы), магний (0,2-2,7%) и марганец (0,2-1%).
Семейство авиационных сплавов алюминия с кремнием (4-13% массы) с незначительным содержанием других легирующих элементов – медь, марганец, магний, цинк, титан, бериллий. Используется для изготовления сложных деталей, известный также как силумин или литейный алюминиевый сплав. Семейство сплавов алюминий-магний (1-13% массы) с другими элементами обладают высокой пластичностью и коррозионной стойкостью.
Роль меди в составе авиационного алюминия
Присутствие меди в составе авиационного сплава способствует его упрочнению, но в то же время плохо влияет на его коррозионную стойкость. Выпадая по границам зерен, в процессе закалки, медь делает сплав подверженным точечной коррозии, коррозии под напряжением и межзеренной коррозии. Зоны богатые медью более гальванически катодные, чем алюминиевая матрица вокруг, а потому более уязвимы для коррозии, происходящей по гальваническому механизму. Увеличение содержания меди в массе сплава до 12% повышает прочностные свойства за счет дисперсного упрочнения в процессе старения. При содержании меди в составе свыше 12% сплав делается хрупким.
Сферы применения
Алюминиевые сплавы являются наиболее востребованным металлом по продаже. Легкий вес авиационного алюминия, прочность делают этот сплав хорошим выбором для многих производств от самолетов до предметов быта (мобильные телефоны, наушники, фонарики). Алюминиевые сплавы применяются в судостроении, автомобилестроении, строительстве, производстве ж/д транспорта, в атомной промышленности.
Широко востребованы сплавы с умеренным содержанием меди (2014, 2024 др.). Профили из этих сплавов имеют высокую коррозийную стойкость, хорошую обрабатываемость, точечную свариваемость. Из них изготавливают ответственные конструкции самолетов, большегрузных автомобилей, военной техники.
Особенности соединения авиационного алюминия
Сварка авиационных сплавов осуществляется исключительно в защитной среде инертных газов. Преимущественными газами являются: гелий, аргон или их смесь. Более высокой теплопроводностью обладает гелий. Это определяет более благоприятные температурные показатели сварочной среды, что позволяет достаточно комфортно соединять толстостенные элементы конструкций. Использование смеси защитных газов способствует более полному газоотводу. При этом вероятность образования пор в сварном шве значительно уменьшается.
Применение в авиастроении
Авиационные алюминиевые сплавы изначально специально создавались для строительства авиационной техники. Из них изготавливают корпуса летательных аппаратов, детали двигателей, шасси, топливные баки, крепежные устройства и др. Детали из авиационного алюминия используются в интерьере салона.
Алюминиевые сплавы серии 2ххх используют для производства деталей, подвергающихся воздействию высоких температур. Детали малонагруженных узлов, топливных, гидро- и маслосистем изготавливают из сплавов 3ххх, 5ххх и 6ххх. Наиболее широкое применение в авиастроении получил сплав 7075. Из него изготавливаются элементы для работы при значительной нагрузке, низких температурах с высокой стойкостью к коррозии. Основой сплава является алюминий, а основными легирующими элементами: магний, цинк и медь. Из него изготавливают силовые профили конструкций самолетов, элементы обшивки.
fb.ru
Авиационные марки сталей - ndemidov
Постоянное совершенствование конструкций летательных аппаратов требовало непрерывного повышения прочности и удельной прочности (отношение прочности к плотности материала) при сохранении всех преимуществ сталей. Если в авиации до 1941 г. первый из этих параметров колебался от 800 до 1000 МПа, то сейчас - от 1300 до 2000. Впрочем, сложность проблемы заключается не столько в достижении таких показателей, сколько в обеспечении работоспособности выполненных из соответствующих материалов авиационных конструкций.Дело в том, что повышение прочности сталей ведет к снижению их пластичности, вязкости, трещиностойкости и т.д. В связи с этим разработчики новых их разновидностей ведут непрерывный поиск компромиссов между повышением прочности и обеспечением надежности. В настоящее время в авиационной технике чаще всего применяют три группы высокопрочных сталей: конструкционные среднелегированные; коррозионностойкие; используемые для изготовления деталей, работающих в тяжелых условиях с повышенным трением и подвергаемых химико-термической обработке.Но в любом случае появление таких материалов заставило пересмотреть принятые ранее подходы к конструированию и технологии изготовления деталей, так как все перечисленные стали обладают рядом специфических особенностей и существенно отличаются от созданных ранее и имевших среднюю прочность (до 1400 МПа). В частности, оказалось: нарушение технологического цикла их получения может приводить к преждевременному выходу из строя деталей, несмотря на полную доброкачественность металла. При этом очагами разрушения могут быть поверхностные или подповерхностные дефекты, полученные на различных стадиях изготовления полуфабриката, самой детали или конструкции целиком. Потому-то было очень важно разработать четкие организационно-технические мероприятия, включающие инструкции по термической и механической обработке деталей, защите от коррозии, сварке и т.д., что нами и было сделано в начале 60-х годов XX в. Кроме того, существенно изменился и подход к изделиям из высокопрочных сталей; основными требованиями к ним стали минимальная концентрация напряжений и высокая чистота поверхности.Итак, новые стали заняли свое место в авиастроении, причем в зависимости от предела прочности из них изготавливают разные детали. Скажем, если этот параметр находится в пределах 1600-1800 МПа, то такой металл пригоден для производства силового набора планера (лонжероны, различные балки, рамы, оси и т.д.). А стали ВКС-8 (1800-2000 МПа) и ВКС-9 (1950-2100 МПа) незаменимы при изготовлении крупногабаритных сварных деталей (возможна электроннолучевая и аргонно-дуговая сварка) планера и шасси в машинах Конструкторских бюро им. Сухого, Антонова, Микояна, Камова. Мало того. Стали с пределом прочности выше 1950 МПа с успехом заменяют титановые сплавы, что позволяет при их одинаковой удельной прочности существенно уменьшить затраты на производство.В последние десятилетия разработан новый класс высокопрочных, или так называемых мартенситностареющих сталей. Их прочность 1450-2500 МПа, они обладают уникальными физико-механическими и технологическими свойствами. Например, благодаря низкому содержанию углерода и азота имеют высокую пластичность, вязкость, сопротивление повторностатическим нагрузкам и коррозионному растрескиванию. Этот материал очень технологичен, т.е. заготовки, выполненные из него, после закалки можно подвергать различным видам холодной обработки давлением (раскатку обечаек, накатку резьбы и т.д.), без затруднений обрабатывать режущим инструментом, а затем повышать в два раза их прочность простой термической обработкой - старением (нагрев и охлаждение на воздухе) при относительно низких температурах.Перечисленные преимущества мартенситностареющих сталей наиболее полно реализуются при изготовлении деталей сложной формы с малыми допусками (в том числе и прецизионных), подвергаемых химико-термической обработке . Металл такого класса нашел применение в тяжелонагруженных узлах истребителей МиГ-31 и МиГ-29, деталей узла поворота и шасси орбитального космического корабля многоразового использования "Буран" и др.Дальнейшее развитие самолетостроения выдвинуло очередные требования к материалам. В первую очередь речь идет об истребителях, скорость которых опережает звук в 2,5-3 раза, так как для этого они должны преодолевать тепловой барьер - температуры в 280-300 о С, когда алюминиевые сплавы неприменимы. Мы сумели решить и эту задачу. Предложенные нами высокопрочные коррозионностойкие стали обладают всеми необходимыми качествами: высокой прочностью, пластичностью, вязкостью, высокими технологическими свойствами - их легко штамповать, сваривать. Последнее свойство позволяет обойтись без дальнейшей термообработки, и в результате можно создавать сложные, ажурные конструкции, скажем, несущие баки-кессоны, причем без помощи герметиков и клепки, ранее широко применяемых.Основным материалом в цельносварных самолетных отсеках сверхзвуковых самолетов серии Ми Г стала коррозионностойкая сталь ВНС-2 с пределом прочности 1250- 1400 МПа. В виде листа и ленты ее применяют для обшивки и внутреннего набора, а также при изготовлении силовых деталей (прутки, поковки и т.д.).Однако в процессе эксплуатации летательных аппаратов, в которых была использована сталь ВНС-2, выяснилось: она недостаточно пригодна в условиях влажного климата (скажем, Средиземноморья). Дальнейший поиск позволил нам получить новые стали ЭП817 (пруток) и ВНС-41 (лист). По своим механическим характеристикам и технологичности они соответствуют уже проверенной ВНС-2, а за счет новой системы легирования и оптимизации режима упрочняющего старения значительно превосходят ее по коррозионной стойкости, причем это касается как основных деталей, так и сварных соединений.Наибольшее распространение из материалов этого класса получила сталь ВНС-5 с пределом прочности 1380-1600 МПа. Из нее изготавливают силовые детали планеров МиГ и Су, а также шасси гидросамолета Конструкторского бюро им. Бериева. Применяют ее и в гражданской авиации (широкофюзеляжный самолет Ил-86 и аэробус Ил-96) - при производстве высоконагруженных болтов для крепления двигателя к фюзеляжуЕще один представитель этого класса металлов - сталь СН-2А с пределом прочности 1100-1300 МПа. Она прекрасно зарекомендовала себя как материал для силовых, в том числе крепежных деталей, а также воздушных и кислородных баллонов, которыми оснащены все виды самолетов, включая морскую авиацию. Важнейшая особенность таких баллонов - при пулевом поражении они не разлетаются на осколки.Сейчас в авиационной и ракетной технике все большее распространение находит новый вид топлива - водород и его окислитель - жидкий кислород, имеющий температуру - 253 градуса. Для работы в таких условиях в нашем институте разработали специальные высокопрочные коррозионностойкие стали (ВНС-25, ВНС-49, ВНС-59) с пределом прочности 1000-1400 МПа при комнатной температуре и 1700-2100 при 20 К (-253 градуса). Этот металл успешно применяют в различных жидкостно-ракетных двигателях, в частности, в самом мощном из них в мире марки PD-170 конструкции КБ "Энергомаш". Детали из этого материала - корпуса насосов и регуляторов подачи горючего - составляют 50-60% от их массы.В качестве конструкционных материалов, а также для изготовления деталей редукторов и агрегатов, подвергаемых химико-термической обработке, ныне широко применяют среднелегированные и коррозионно-стойкие стали. Объясняется это тем, что в результате долгих изысканий удалось предложить технологию, обеспечивающую сочетание необходимых свойств поверхностного слоя изделия (высокие твердость, износостойкость, сопротивление усталости) и его сердцевины (пластичность, вязкость, технологичность и др.). Так, для тяжелонагруженных, крупномодульных шестерен редукторов разработана сталь ВКС-7 с карбонитридным упрочнением, обеспечивающая после химико-термической обработки глубину упрочняющего слоя до 2,5 мм и твердость больше 60 HRC, что обеспечивает высокую контактную выносливость при рабочих температурах до 250С (пока таких аналогов нет).Отдельный разговор о вертолетах. Для них в нашем институте создана высокопрочная (до 1300 МПа), износостойкая, теплопрочная сталь ВКС-10. В отличие от серийных отечественных и зарубежных аналогов, работающих при температуре до 250 градусов, она выдерживает 450 градусов. Ее применение обеспечивает передачу больших крутящихся моментов, при которых в зоне контакта зубьев происходит локальное повышение температуры, и даже при нарушении подачи масла работа редуктора может продолжаться в течение 2 ч без аварии.Все вышесказанное свидетельствует: в авиастроении сталь традиционно остается основным материалом, хотя и она, как, впрочем, и другие творения рук человеческих, требует дальнейшего совершенствования.Сопротивление усталости характеризуется пределом выносливости - наибольшим напряжением, которое может выдержать материал без разрушения при заданном числе циклических воздействий.ndemidov.livejournal.com
КРЫЛАТЫЕ МЕТАЛЛЫ И СПЛАВЫ | Наука и жизнь
Наука и жизнь // Иллюстрации
Наука и жизнь // Иллюстрации
Восьмимоторный гигант АНТ-20 ("Максим Горький") был построен, как и многие металлические самолеты начала 30-х годов, из гофрированного алюминия.
При использовании традиционного сплава Д-16 пассажирский самолет Ту-154 получался слишком тяжелым.
Сварной корпус самолета МиГ-29 изготовлен из алюминиево-литиевого сплава 1420.
Массивные и очень ответственные детали шасси современных транспортных и пассажирских самолетов ОКБ им. С. В. Ильюшина изготовлены из титанового сплава ВТ-22. На снимке: Ил-76.
‹
›
- Сталь и алюминий, титан и пластмассы, клеи и дерево, стекло и резина - ни один самолет не полетит без этих материалов. Все они разработаны или испытаны в ВИАМе
- В каждой лопатке турбины реактивного двигателя воплощены самые совершенные металлургические технологии. Стоимость одной монокристаллической лопатки соизмерима с ценой дорогого легкового автомобиля
- Испытательный центр - "малая академия наук" ВИАМа. Грозит ли усталость металла разрушением самолета? Как найти скрытые дефекты в металле? Какими свойствами обладает новый материал? Во всем этом разбираются сотрудники Испытательного центра
- Армрестлинг как способ разрешения ученого спора, или Как Н. С. Хрущев летал в Америку
- "Состаренный" материал не значит "старый"
- Как кроили "шубу" для "Бурана"
- От воздействия высоких температур турбинные лопатки защищает плазма
- Чем совершеннее летательный аппарат, тем больше в нем неметаллических материалов . Уже спроектированы самолеты, на две трети состоящие из композитных материалов и пластмасс
- Утром лаборант, вечером студент. И все это - не выходя из родной лаборатории. Если государство не готовит специалистов, их приходится учить на месте
- Коррозия - враг любого металла. Ржавеет даже нержавеющая сталь. Как лечить язвы на теле "Рабочего и колхозницы"?
- Склеить можно все что угодно. Нужен только подходящий клей. В небе летают склеенные самолеты, и это не детские модели, а большие транспортные воздушные суда.
Первые шаги нашей авиации связаны с закупкой иностранных самолетов. Были они по большей части деревянными, фюзеляж и крылья обтягивались тканью. Конечно же такие "матерчатые" самолеты не могли выдерживать значительных скоростных и температурных нагрузок, нужны были иные материалы, прежде всего - металл.
Идея строить самолеты из алюминия возникла в Германии. Там же появились первые сплавы, разработанные специально для самолетов. Их назвали дуралюминами. Подобный сплав был создан и у нас в стране в середине 20-х годов. Он получил марку Д-1 - это сплав алюминия с медью и небольшим количеством магния.
В 1932 году академик А. А. Бочвар разработал теорию рекристаллизации алюминиевых сплавов, которая легла в основу создания легких сплавов. В стране к тому моменту существовала производственная база: первый алюминиевый завод "Кольчугалюминий" (расположенный в селе Кольчугино Владимирской области) выпускал гладкие и гофрированные листы технического алюминия - это алюминий с небольшими добавками марганца и магния. Такой алюминий обладал достаточной прочностью, был пластичен и потому использовался для обшивки фюзеляжей летательных аппаратов.
Однако материал для новых скоростных самолетов должен был иметь совершенно иные качества. И через некоторое время в лаборатории алюминиевых сплавов ВИАМа (созданной одновременно с открытием института в 1932 году) разработали сплав Д-16, который применялся в самолетостроении почти до середины 80-х годов. Это сплав на основе алюминия с содержанием 4-4,5% меди, около 1,5% магния и 0,6% марганца. Из него можно было делать практически любые детали самолета: обшивку, силовой набор, крыло.
Но скорости и высота полетов росли. Требовались высокопрочные сплавы. В середине 50-х годов возглавивший лабораторию алюминиевых сплавов академик И. Н. Фридляндер совместно со своими коллегами В. А. Ливановым и Е. И. Кутайцевой разрабатывает теорию легирования высокопрочных сплавов. Введение в систему алюминий - медь цинка и магния позволило резко увеличить прочность материала. Так возник сплав В-95, обладающий прочностью 550-580 Мпа (~ 5500- 5800 кгс/см2) и в то же время имеющий хорошую пластичность. У него был один изъян: недостаточная коррозионная стойкость, что, однако, устранялось путем двухступенчатого искусственного старения.
Новый сплав получил признание авиастроителей не сразу. В это время А. Н. Туполев создавал новый пассажирский лайнер Ту-154. Проект никак не укладывался в заданные весовые характеристи ки, и тогда генеральный конструктор сам позвонил Фридляндеру, обратившись за помощью, на что тот конечно же предложил использовать новый сплав. Проект новой машины переработали. Сплав В-95 нашел свое место для верхней поверхности крыла, из него изготовили прессованные панели и стрингеры, значительно снизив вес самолета. Такие же исследования параллельно шли в США. Там возникли сплавы серии 7000, в частности сплав 7075 - полный аналог нашего сплава.
Нагрузки, которые испытывает крыло самолета, неравноценны. Если верх крыла работает в основном на сжатие, то нижняя часть - на растяжение. Поэтому ее по-прежнему делали из дуралюмина Д-16, имеющего более высокие пластичность и порог усталости. Но и этот сплав претерпел серьезную модификацию за счет повышения чистоты по примесям при литье слитков. Технологические усовершенствования были столь значительны, что появился фактически новый материал - сплав 1163, который и в настоящее время успешно используется в нижних обшивках крыла и всего фюзеляжа.
Увеличение эксплуатационного ресурса самолетов всегда оставалось и остается задачей номер один. Добиться еще большей надежности и долговечности материалов можно, изменив структуру металла - "измельчив зерно". Для этого в сплавы начали вводить небольшие количества (до 0,1%) циркония. Величина зерна металла действительно резко уменьшилась, ресурс возрос. Одновременно создавались специальные ковочные сплавы, предназначенные для самых ответственных, силовых конструкций лайнеров. Так был разработан сплав 1933, превосходящий по своим параметрам зарубежные аналоги. Из него изготовляют детали силового набора и шпангоуты. Специалисты европейской авиастроительной фирмы "Эрбас" провели испытания нового материала и приняли решение использовать его в своих самолетах серий А-318 и А-319.
К сожалению, процесс весьма выгодного сотрудничества приостановлен. Причина в том, что акции двух основных российских производителей алюминиевой продукции - Самарского и Белокалитвенского металлургических комбинатов - выкуплены американской фирмой "ALKO". Значительная часть оборудования на предприятиях демонтирована, технологическая цепочка нарушена, квалифицированные кадры разошлись, и производство фактически прекратилось. Сейчас эти предприятия выпускают в основном фольгу, которая идет на изготовление пищевых банок и упаковок…
И хотя в настоящее время при посредстве российского правительства между компанией "АЛКОА-РУС" (она теперь называется так), ВИАМом и авиационными конструкторскими бюро достигнуты договоренности о возобновлении выпуска так необходимых нашей авиационной промышленности материалов, процесс восстановления идет крайне медленно и болезненно.
ВИАМ стал родоначальником серии сплавов пониженной плотности. Это совершенно новый класс материалов, содержащих литий. Первый такой сплав создал академик И. Н. Фридляндер со своими учениками еще в 60-х годах - на четверть века раньше, чем где-либо в мире. Его практическое использование, правда, поначалу было ограничено: такой активный элемент, как литий, требует особых условий выплавки. Первый промышленный алюминиево-литиевый сплав (его марка 1420) был создан на основе системы алюминий - магний с добавлением 2% лития. Его использовали в КБ А. С. Яковлева при строительстве самолетов вертикального взлета для палубной авиации - именно для таких конструкций экономия веса имеет особое значение. Як-38 эксплуатируется до сих пор, и никаких нареканий к сплаву нет. Более того. Оказалось, что детали из этого сплава обладают повышенной коррозионной стойкостью, хотя алюминиево-магниевые сплавы и сами по себе мало подвержены коррозии.
Сплав 1420 можно сваривать. Это его свойство использовали при создании самолета МиГ-29М. Выигрыш в весе при строительстве первых опытных образцов самолета за счет пониженной плотности сплава и исключения большого количества болтовых и клепочных соединений достигал 24%!
В настоящее время модификацией этого сплава - сплавом 1424 - весьма заинтересовались специалисты "Эрбаса". На заводе в городе Кобленце (ФРГ) из сплава откатали широкие листы длиной 8 м, из которых изготовили полноразмерные элементы конструкции фюзеляжа. Ребра жесткости из того же материала приварили лазерной сваркой, а элементы соединили между собой сваркой трением, после чего отправили на ресурсные испытания во Францию. Несмотря на то что некоторым деталям намеренно нанесли повреждения (для оценки работоспособности в экстремальной ситуации), после 70 тысяч циклов нагрузки конструкция полностью сохранила эксплуатационные свойства.
Еще один сплав с литием, созданный в ВИАМе, - 1441. Его главная особенность в том, что из него можно делать листы рулонной прокатки толщиной 0,3 мм с сохранением высоких прочностных качеств. Конструкторское бюро имени Бериева использовало сплав для изготовления обшивки своего гидросамолета Бе-103. Эту небольшую - всего на четыре человека - машину, толщина обшивки которой 0,5-0,7 мм, выпускает завод в Комсомольске-на-Амуре. Ее вес на 10% меньше, чем аналогичных моделей из традиционных материалов. Партию таких самолетов уже купили американцы.
Тонкий, но прочный прокат необходим для создания недавно появившегося нового класса материалов - слоистых алюмостеклопластиков, которые в России называются "сиал", а за границей - "глэр". Материал представляет собой многослойную конструкцию: чередование слоев алюминия и стеклопластика. У него немало преимуществ перед монолитными. Во-первых, стеклопластик можно армировать искусственными волокнами, на треть увеличивая прочность. Но главный выигрыш в том, что, если в конструкции появляется трещина, она растет на порядок медленней, чем в монолитных материалах. Именно этим сиалы, или глэры, в первую очередь заинтересовали авиастроителей. Из такого материала впервые изготовлена верхняя часть обшивки фюзеляжа аэробуса А-380 в наиболее ответственных местах - перед крылом и после крыла. Ресурсные испытания показали, что трещина в таком материале при рабочих нагрузках практически не растет. Поэтому глэры можно использовать как преграды-стопперы для предотвращения роста трещин в виде вставок в верхние обшивки фюзеляжа, где требуются особо высокая надежность и долгий ресурс службы.
Титан, как и алюминий, тоже имеет право называться небесным или крылатым. Лаборатория титановых сплавов была создана в институте в 1951 году. Ее основатель профессор С. Г. Глазунов изобрел установку для литья титана и, собственно, создал первый титановый сплав. Вторая подобная установка была с помощью ВИАМа построена во Всесоюзном институте легких сплавов (ВИЛС), а потом мы вместе внедряли разработанные технологические процессы на металлургическом комбинате в Верхней Салде, который сейчас является основным производителем титановой продукции в стране. В советское время комбинат выпускал более 100 тыс. тонн такой продукции. После распада СССР производство сократилось в несколько раз. Новому директору завода В. В. Тютюхину пришлось приложить огромные усилия, чтобы исправить положение. После резкого спада производства завод начал подниматься. Сейчас выпуск титановой продукции составляет 25 тыс. тонн в год. Большая ее часть (около 80%) поставляется за границу по заказам ведущих самолетостроительных концернов. В связи с оживлением авиастроительной промышленности в России возникла насущная необходимость создания альтернативного производства. Гиганту, каким является комбинат, невыгодно выпускать небольшие партии продукции. Заказы же российских авиапроизводителей пока невелики - 3-5 тонн, а цикл изготовления очень длительный и доходит до года. Такое производство может быть создано на базе ВИАМа, ВИЛСа и Ступинского металлургического комбината, где, собственно, и перерабатываются слитки, получаемые из Верхней Салды.
В ВИАМе создано более полусотни титановых сплавов различного назначения, из которых сегодня серийно используется около тридцати. Сейчас доля титановых сплавов в самолете в зависимости от его типа и назначения колеблется от 4 до 10-12%. Высокопрочные сплавы из титана, например ВТ-22, более четверти века используются для изготовления сварных шасси Ил-76 и Ил-86. Это сложные, массивные детали на Западе начинают делать из титана только сейчас. В ракетной технике доля титана намного выше - до 30%.
Созданные в ВИАМе высокотехнологичные сплавы ВТ-32 и ВТ-35 в отожженном состоянии очень пластичны. Из них можно формовать сложные детали, которые после искусственного старения приобретают чрезвычайно высокую прочность. Когда в начале 1970-х годов в КБ Туполева создавался стратегический бомбардировщик Ту-160, на московском заводе "Опыт" был построен специальный цех для изготовления титановых деталей центроплана. Эти самолеты летают до сих пор, правда, в России их осталось только одна эскадрилья.
Сегодня перед ВИАМом стоит задача создания титановых сплавов, надежно работающих при температурах 700-750оС. К сожалению, все металловедческие возможности, использовавшиеся при создании традиционных сплавов, уже реализованы. Требуются новые подходы. В этом направлении в лаборатории идут исследования по созданию так называемых интерметаллидных соединений на базе титан - алюминий.
Алюминиево-бериллиевые сплавы (их называют АБМ) исследуются и создаются на нашем предприятии уже 27 лет. Первый самолет с использованием такого сплава построил конструктор П. В. Цыбин.
Сплавы АБМ выгодно отличаются от других алюминиевых сплавов более высокой усталостной прочностью и уникальной акустической выносливостью. Сейчас они нашли применение в сварных конструкциях космических аппаратов, в том числе в серии хорошо известных межпланетных станций "ВЕНЕРА".
Интересен и сам бериллий, у которого модуль упругости на 30-40% выше, чем у высокопрочных сталей, а коэффициенты термического расширения близки, что позволило применять его в гироскопах.
В ВИАМе разработана технология изготовления тонкой вакуумно-плотной фольги и дисков и пластин из нее. Разработана технология пайки такой фольги с другими конструкционными материалами, и налажено серийное производство узлов рентгеновских аппаратов как для российских предприятий, так и для зарубежных фирм.
Еще один наш филиал организован в Поволжье в начале 1980-х годов, во время создания самого большого авиационного завода в Ульяновске, который выпускал гиганты авиации - "Русланы" и "Мрии". Для технологического сопровождения этих самолетов и была создана специальная лаборатория.
Одна из ее задач - внедрение в авиастроение композиционных материалов. Это - ближайшее будущее самолетостроения. Например, "Боинг-787", который готовится к выпуску через два года, на 55-60% будет состоять из композиционных материалов. Весь планер: фюзеляж, крыло, оперение - строится из композиционных материалов - углепластиков. Доля алюминия сократится до 15%. Углепластики - чрезвычайно заманчивый материал для самолетостроителей. Они обладают высокой удельной прочностью, малым весом, довольно приличными ресурсными характеристиками. Угроза разрушения из-за образования трещин снижается на порядки. Хотя, конечно, в отношении этих материалов остается ряд вопросов, которые до сих пор не решены. Было установлено, например, что в месте контакта углепластика с алюминием из-за возникновения гальванической пары развивается коррозия. Поэтому в таких местах алюминий пришлось менять на титан.
Когда создавался Ульяновский филиал, доля композитных материалов в конструкции отечественных летательных аппаратов была не очень велика. Тем не менее мы потихоньку начали обучать работе технологов, рабочих… Потом настали трудные времена, весь завод находился на грани закрытия, но филиал выжил. Постепенно производство восстанавливалось, и, хотя до сих пор оно наполовину законсервировано, есть несколько заказов на Ту-204, есть заказы из Германии на изготовление "Русланов". А значит, есть поле деятельности для нашей лаборатории.
Второе направление работы Ульяновского филиала - специальные, эрозионно- и коррозиестойкие покрытия.
При разложении металлоорганических жидкостей в вакууме на поверхностях образуются покрытия из хрома и карбидов хрома. Регулируя процесс, можно получать покрытия, содержащие любые соотношения этих компонентов - от чистого хрома до чистых карбидов. Твердость хромированного покрытия - 900-1000 Мпа, карбидного - вдвое выше - около 2000 Мпа. Но, чем выше твердость, тем больше хрупкость. Между этими крайностями и находят искомое в каждом отдельном случае.
Другой путь достижения нужных результатов обеспечивают нанотехнологии. В гальванические хромосодержащие ванны вводят наночастицы карбидов и оксидов металлов размером от 50 до 200 нм. Изюминка процесса в том, что сами эти частицы в состав покрытия не входят. Они лишь усиливают активность осаждаемого компонента, создают дополнительные центры кристаллизации, благодаря чему покрытие получается более плотным, более коррозиестойким, обладает лучшими противоэрозионными свойствами.
И в заключение еще об одном уникальном качестве института: в СССР существовала неплохая система, надежно гарантирующая качество конечного продукта предприятия. В ВИАМе эта система сохранилась и поныне. Если конструкторское бюро или частная компания закупают какой-то продукт, перед использованием они предпочитают передать его в ВИАМ на испытание. Нам по-прежнему доверяют.
См. в номере на ту же тему
Е. КАБЛОВ - ВИАМ - национальное достояние.
И. ДЕМОНИС - Во все лопатки.
М. БРОНФИН - Испытатели - исследователи и контролеры.
Академики дают разрешение на беспосадочный перелет Н. С. Хрущева в Нью-Йорк на сверхдальнем самолете ТУ-114 .
И. ФРИДЛЯНДЕР - Старение - не всегда плохо.
Б. ЩЕТАНОВ - Тепловая защита "Бурана" началась с листа кальки.
С. МУБОЯДЖЯН - Плазма против пара: победа за явным преимуществом .
БЮРО НАУЧНО-ТЕХНИЧЕСКОЙ ИНФОРМАЦИИ.
Э. КОНДРАШОВ - Без неметаллических деталей самолеты не летают.
И. КОВАЛЕВ - В науку - со школьной скамьи .
С. КАРИМОВА - Коррозия - главный враг авиацииc.
А. ПЕТРОВА - Посадить на клей.
www.nkj.ru
Авиационные марки сталей - Let's glock them all
Постоянное совершенствование конструкций летательных аппаратов требовало непрерывного повышения прочности и удельной прочности (отношение прочности к плотности материала) при сохранении всех преимуществ сталей. Если в авиации до 1941 г. первый из этих параметров колебался от 800 до 1000 МПа, то сейчас - от 1300 до 2000. Впрочем, сложность проблемы заключается не столько в достижении таких показателей, сколько в обеспечении работоспособности выполненных из соответствующих материалов авиационных конструкций.Дело в том, что повышение прочности сталей ведет к снижению их пластичности, вязкости, трещиностойкости и т.д. В связи с этим разработчики новых их разновидностей ведут непрерывный поиск компромиссов между повышением прочности и обеспечением надежности. В настоящее время в авиационной технике чаще всего применяют три группы высокопрочных сталей: конструкционные среднелегированные; коррозионностойкие; используемые для изготовления деталей, работающих в тяжелых условиях с повышенным трением и подвергаемых химико-термической обработке.Но в любом случае появление таких материалов заставило пересмотреть принятые ранее подходы к конструированию и технологии изготовления деталей, так как все перечисленные стали обладают рядом специфических особенностей и существенно отличаются от созданных ранее и имевших среднюю прочность (до 1400 МПа). В частности, оказалось: нарушение технологического цикла их получения может приводить к преждевременному выходу из строя деталей, несмотря на полную доброкачественность металла. При этом очагами разрушения могут быть поверхностные или подповерхностные дефекты, полученные на различных стадиях изготовления полуфабриката, самой детали или конструкции целиком. Потому-то было очень важно разработать четкие организационно-технические мероприятия, включающие инструкции по термической и механической обработке деталей, защите от коррозии, сварке и т.д., что нами и было сделано в начале 60-х годов XX в. Кроме того, существенно изменился и подход к изделиям из высокопрочных сталей; основными требованиями к ним стали минимальная концентрация напряжений и высокая чистота поверхности.Итак, новые стали заняли свое место в авиастроении, причем в зависимости от предела прочности из них изготавливают разные детали. Скажем, если этот параметр находится в пределах 1600-1800 МПа, то такой металл пригоден для производства силового набора планера (лонжероны, различные балки, рамы, оси и т.д.). А стали ВКС-8 (1800-2000 МПа) и ВКС-9 (1950-2100 МПа) незаменимы при изготовлении крупногабаритных сварных деталей (возможна электроннолучевая и аргонно-дуговая сварка) планера и шасси в машинах Конструкторских бюро им. Сухого, Антонова, Микояна, Камова. Мало того. Стали с пределом прочности выше 1950 МПа с успехом заменяют титановые сплавы, что позволяет при их одинаковой удельной прочности существенно уменьшить затраты на производство.В последние десятилетия разработан новый класс высокопрочных, или так называемых мартенситностареющих сталей. Их прочность 1450-2500 МПа, они обладают уникальными физико-механическими и технологическими свойствами. Например, благодаря низкому содержанию углерода и азота имеют высокую пластичность, вязкость, сопротивление повторностатическим нагрузкам и коррозионному растрескиванию. Этот материал очень технологичен, т.е. заготовки, выполненные из него, после закалки можно подвергать различным видам холодной обработки давлением (раскатку обечаек, накатку резьбы и т.д.), без затруднений обрабатывать режущим инструментом, а затем повышать в два раза их прочность простой термической обработкой - старением (нагрев и охлаждение на воздухе) при относительно низких температурах.Перечисленные преимущества мартенситностареющих сталей наиболее полно реализуются при изготовлении деталей сложной формы с малыми допусками (в том числе и прецизионных), подвергаемых химико-термической обработке . Металл такого класса нашел применение в тяжелонагруженных узлах истребителей МиГ-31 и МиГ-29, деталей узла поворота и шасси орбитального космического корабля многоразового использования "Буран" и др.Дальнейшее развитие самолетостроения выдвинуло очередные требования к материалам. В первую очередь речь идет об истребителях, скорость которых опережает звук в 2,5-3 раза, так как для этого они должны преодолевать тепловой барьер - температуры в 280-300 о С, когда алюминиевые сплавы неприменимы. Мы сумели решить и эту задачу. Предложенные нами высокопрочные коррозионностойкие стали обладают всеми необходимыми качествами: высокой прочностью, пластичностью, вязкостью, высокими технологическими свойствами - их легко штамповать, сваривать. Последнее свойство позволяет обойтись без дальнейшей термообработки, и в результате можно создавать сложные, ажурные конструкции, скажем, несущие баки-кессоны, причем без помощи герметиков и клепки, ранее широко применяемых.Основным материалом в цельносварных самолетных отсеках сверхзвуковых самолетов серии Ми Г стала коррозионностойкая сталь ВНС-2 с пределом прочности 1250- 1400 МПа. В виде листа и ленты ее применяют для обшивки и внутреннего набора, а также при изготовлении силовых деталей (прутки, поковки и т.д.).Однако в процессе эксплуатации летательных аппаратов, в которых была использована сталь ВНС-2, выяснилось: она недостаточно пригодна в условиях влажного климата (скажем, Средиземноморья). Дальнейший поиск позволил нам получить новые стали ЭП817 (пруток) и ВНС-41 (лист). По своим механическим характеристикам и технологичности они соответствуют уже проверенной ВНС-2, а за счет новой системы легирования и оптимизации режима упрочняющего старения значительно превосходят ее по коррозионной стойкости, причем это касается как основных деталей, так и сварных соединений.Наибольшее распространение из материалов этого класса получила сталь ВНС-5 с пределом прочности 1380-1600 МПа. Из нее изготавливают силовые детали планеров МиГ и Су, а также шасси гидросамолета Конструкторского бюро им. Бериева. Применяют ее и в гражданской авиации (широкофюзеляжный самолет Ил-86 и аэробус Ил-96) - при производстве высоконагруженных болтов для крепления двигателя к фюзеляжуЕще один представитель этого класса металлов - сталь СН-2А с пределом прочности 1100-1300 МПа. Она прекрасно зарекомендовала себя как материал для силовых, в том числе крепежных деталей, а также воздушных и кислородных баллонов, которыми оснащены все виды самолетов, включая морскую авиацию. Важнейшая особенность таких баллонов - при пулевом поражении они не разлетаются на осколки.Сейчас в авиационной и ракетной технике все большее распространение находит новый вид топлива - водород и его окислитель - жидкий кислород, имеющий температуру - 253 градуса. Для работы в таких условиях в нашем институте разработали специальные высокопрочные коррозионностойкие стали (ВНС-25, ВНС-49, ВНС-59) с пределом прочности 1000-1400 МПа при комнатной температуре и 1700-2100 при 20 К (-253 градуса). Этот металл успешно применяют в различных жидкостно-ракетных двигателях, в частности, в самом мощном из них в мире марки PD-170 конструкции КБ "Энергомаш". Детали из этого материала - корпуса насосов и регуляторов подачи горючего - составляют 50-60% от их массы.В качестве конструкционных материалов, а также для изготовления деталей редукторов и агрегатов, подвергаемых химико-термической обработке, ныне широко применяют среднелегированные и коррозионно-стойкие стали. Объясняется это тем, что в результате долгих изысканий удалось предложить технологию, обеспечивающую сочетание необходимых свойств поверхностного слоя изделия (высокие твердость, износостойкость, сопротивление усталости) и его сердцевины (пластичность, вязкость, технологичность и др.). Так, для тяжелонагруженных, крупномодульных шестерен редукторов разработана сталь ВКС-7 с карбонитридным упрочнением, обеспечивающая после химико-термической обработки глубину упрочняющего слоя до 2,5 мм и твердость больше 60 HRC, что обеспечивает высокую контактную выносливость при рабочих температурах до 250С (пока таких аналогов нет).Отдельный разговор о вертолетах. Для них в нашем институте создана высокопрочная (до 1300 МПа), износостойкая, теплопрочная сталь ВКС-10. В отличие от серийных отечественных и зарубежных аналогов, работающих при температуре до 250 градусов, она выдерживает 450 градусов. Ее применение обеспечивает передачу больших крутящихся моментов, при которых в зоне контакта зубьев происходит локальное повышение температуры, и даже при нарушении подачи масла работа редуктора может продолжаться в течение 2 ч без аварии.Все вышесказанное свидетельствует: в авиастроении сталь традиционно остается основным материалом, хотя и она, как, впрочем, и другие творения рук человеческих, требует дальнейшего совершенствования.Сопротивление усталости характеризуется пределом выносливости - наибольшим напряжением, которое может выдержать материал без разрушения при заданном числе циклических воздействий.Член-корреспондент РАН Е. М. КАБЛОВ, генеральный директор ГНЦ РФ Государственного предприятия "ВИАМ", доктор технических наук А. Ф. ПЕТРАКОВ, главный научный сотрудник того же центраhttp://kocmi.ru/letatelnym-apparatam-vysokoprochnye-stali.html------------------Себе в копилку на память.В оружейном разрезе, прямым аналогом часто используемой за рубежом 4130,является наша 30ХМА.Но ассортимент проката невелик, поэтому можно использовать близкие по хар-кам 38ХМА или 40ХН.Из авиационных интересно было бы посмотреть на ВНС-2, но она скорее всего дорогая и сверлится плохо.Вообще, нельзя не отметить,что со сталями,которые "сверлятся хорошо", у нас беда.Ребята с Орсиса намучились,пока нашли подходящую марку стали на стволы винтовок для армии.
glockmeister.livejournal.com
Самолетный и военный лом купим дорого
К самолетному и военному лому относятся — авиадвигатели неразделанные, турбореактивные с центробежным компрессором, с осевым компрессором, с V-образным расположением цилиндров, авиадвигатели поршневые с звездообразным расположением цилиндров, авиадвигатели турбовинтовые, детали двигателей (нагнетатели, цилиндры, поршни с маслом и нагаром), планеры со стальными фермами, планеры самолетов, фюзеляжи, обшивка, крылья, колодки тормозные авиационные, лопасти самолетные, баки самолетные, корпуса ракет разделанные, корпуса ракет с термоизоляцией и оборудованием, корпуса торпед другой ракетный лом.
Если Вы хотите продать турбину от самолета или другой авиационный лом. Мы закупаем самолетный лом, ненужный металлолом с военных частей, отслуживающие свой срок турбины самолетов, двухконтурные турбореактивные двигатели, а также купим танки на металлолом, лом отслужившей военной техники и другой лом цветных и черных металлов.
Список закупаемых на лом авиационных двигателей
Турбореактивные | АЛ-7, АЛ-21, АМ-3(РД-3), АМ-9, ВД-7(РД-7), ВК-1(РД-45), РД-9, РД-36, РД-41, РД-60, РД-500, Р-11-300, Р-13, Р-15, Р-25-300, Р27В-300, Р28В-300, Р-29-300, Р-35, Р-195, ТР-1 |
Турбовентиляторные (турбореактивные двухконтурные) | АИ-22, АИ-25, АИ-222, АИ-222-25, АЛ-31Ф, АЛ-31ФП, АЛ-41Ф, АЛ-55, ДВ-2, Д-18Т, Д-20, Д-30 (Д-30КУ, Д-30КУ-154, Д-30Ф6), Д-36, Д-436, АЛ-41Ф1, АЛ-41Ф1С, НК-6, НК-8, НК-22, НК-25, НК-32, НК-56, НК-86, НК-88, НК-93, НК-144, НК-301, ПС-9, ПС-90А, РД-33, РД-35, РД-36-51, РД-93, РД-133, РД-1700, Р79В-300, ТРДД-50, Р95-300 |
Турбовинтовые и турбовальные | АИ-20, АИ-20М, АИ-24, ВК-2, ВК-1300, ГТД-350, Д-25, Д-27, Д-136, Д-236, НК-12, РД-600, ТВа-3000, ТВ2-117, ТВ3-117, ТВ7-117, ТВД-10, ТВД-20, ТВД-150, ТВ-0-100, ГТД-3, ТВД-1500, ТВ-Д, ТВ-О, ТВ-128 |
Вспомогательные ГТД | АИ-8, АИ-9, ВГТД-2, ВГТД-43, ВСУ-10, ГТД-1, ГТД-5, ГТДЭ-117, РУ-19А-300, ТА-4ФЕ, ТА-6, ТА-8, ТА-12, ТА-14, ТА-18-100 |
Полный список двигателей самолетов, которые мы можем утилизировать, можно посмотреть здесь
Цены на авиалом договорные, звоните.
www.lom36.ru
Основные свойства и применение авиационного алюминия
Авиационный алюминий появился в начале 20 века. Его первыми производителем стал промышленный комплекс Германии. После этого металл стал набирать популярность, его научились производить в промышленных условиях. Единственным недостатком производства стал лишь небольшой объем выплавляемой продукции. Добиться большей плотности алюминия пытались многие ученые в самых разных странах. Выделился среди них физик из Германии Альфред Вильгельм. Перебирая во время опытом массу разнообразных элементов для присадки к алюминию в целях укрепления его прочности, неожиданно Альфред открыл «эффект старения» сплавов.
Данный «эффект старения» заключался в том, что металл становился намного прочнее, если воздействовать на него в течение длительного времени методом закалки. Новое открытие сразу же запатентовалось и внедрилось в производство. Так появился дюралюминиевый сплав, получивший широчайшее распространение в сфере авиации. Сплав состоял непосредственно из алюминия, к которому было добавлено 2,8% магния, 1,3% меди и 1% марганца.
Авиационный алюминий получил более краткое и популярное в кругах частого его использования название – авиаль. Авиаль относится к группе сплавов, принадлежащей системе алюминий-магний-кремний. Также в сплав включено небольшое количество других элементов. Открытие окончательной, усовершенствованной формы авиаля принадлежит ученым М. Гейлеру и Д. Хансону.
Состав авиационного алюминия
Позже авиационный алюминий стал обладателем еще одного названия – дюралюминий. К тому моменту его формула стала несколько отличаться. Здесь легирующими элементами выступили: медь, занимающая 4,5% от общей массы, магний (1,6%) и марганец (0,7%). Для данного сплава вывели типовое значения предела текучести, которое составляет 450 МПа. Но показатель может меняться зависимо от различия в составе и способа, применяемого для термообработки. Фирменным названием дюралюминия стал термин «дюраль». В русском языке этот термин употребляется не как фирменное название, а преимущественно в разговорном жанре или же в профессионально-жаргонном.
Авиационный алюминий марка - это понятие, представляющее собой определенную аббревиатуру, выражающую суть состава алюминиевого сплава. Алюминий типа «авиаль», в состав которого, как уже говорилось выше, входят магний и кремний, маркируются аббревиатурами АД, АМц, АЛ и АВ, если сплав с добавлением меди, тогда А8. Дюралюминиевые сплавы обозначаются Д, В. Авиационный алюминий, маркируемый аббревиатурой АВ отлично противостоит коррозийному воздействию, к тому же обладает повышенной пластичностью.
Сплавы АД также обладают повышенной коррозийной стойкостью, удовлетворительно свариваются, их можно обрабатывать с помощью резки. Резка осуществляется в состаренном или же закаленном состоянии. Кроме того, сплавы с аббревиатурой АД пригодны для использования во влажной среде, включая морскую воду. Интервал возможной эксплуатационной температуры составляет диапазон от –70 до +50 градусов Цельсия. Наиболее трудно поддаются пайке авиали с аббревиатурой АМц, а также сплавы АЛ2 (4), В95. Зато у этих сплавов более низкая температура плавления.
Свойства материала
Свойства авиационного алюминия обширны и разнообразны. На них оказывают немалое влияние другие металлические компоненты, которые входят в состав сплавов. Если авиаль содержит менее 0,3% железа, то на механические свойства сплава влияния оно не оказывает. Если же доля железа увеличивается до 0,5 – 0,7%, то свойства прочности и пластичности значительно снижаются. Но, вместе с тем, примесь из железа оберегает сплав от образования трещин при литье. Аналогичный эффект защиты от трещин вызывает добавка титана, только с ней пластичность и прочность увеличиваются.
Добавка цинка никак не влияет на общие свойства авиаля. Здесь следует отметить, что примесь цинка в сплаве совсем не значительна. Примесь меди, допустимая в размере до 0,1% от общей массы, также не влияет на свойства. Большее количество меди добавлять не рекомендуется, так как переизбыток этого материала может вызвать межкристаллитную коррозию. В целом, можно отметить, что основными свойствами авиационного алюминия являются высокая пластичность и неплохая антикоррозийная устойчивость.
Сферы применения
Применение авиационного алюминия, благодаря удачному сочетанию свойств, охватывает практически все отрасли техники. Сплавы АД33, АД31 и АВ широко используются в сфере строительства для изготовления самых разнообразнейших конструкций. Широко применяется авиаль, соответственно, в авиации. Из него изготовляются детали и конструкции для самолетов, лопасти вертолетов. Авиаль участвует даже в конструкциях оформления интерьера самолета.
Автомобильная промышленность использует авиационный алюминий для деталей кузовов и шасси автомобилей. В электротехнической сфере промышленности авиаль применяется в качестве материала для изготовления проводников – труб, профилей, шин. Не обошла вниманием такой материал и отрасль атомной промышленности. Здесь авиационный алюминий выступает в роли защитных оболочек твэл, которые располагаются в некоторых видах водоохлаждающих реакторов. Дополнительно стоит заметить, что дюралюминий достаточно часто применяется в криогенной технике, судостроительстве, при изготовлении железнодорожного транспорта и предметов бытового назначения.
Авиационный алюминий, цена которого достаточно высока, тем не менее, получил широкое распространение. Во многом этому обстоятельству благоприятствовал легкий вес металлического сплава, его пластичность и выведенные экспериментальным путем, показатели прочности. Авиационный алюминий обладает прекрасными механическими свойствами, он чрезвычайно устойчив к образованию коррозии, имеет высокие показатели усталостной прочности и ударной вязкости. Из авиаля легко получаются даже детали с достаточно сложной конструкцией, к примеру, лонжероны лопастей винтов вертолетов.
promplace.ru
Металлы в военной промышленности » Военное обозрение

topwar.ru