Мощностные характеристики двигателя: Mercedes-Benz Грифон Аксайский район, хутор Маяковского

Содержание

Двигатели и их разновидности / Автобегиннер.ру

Как известно, движущей силой большинства автомобилей является двигатель внутреннего сгорания (ДВС). Устройство его достаточно сложно даже для профессионала, не говоря уже о новичках. Но, покупая машину, всегда приходится обращать внимание на характеристики двигателя. Зачастую люди попросту теряются, не зная, какой автомобиль или какую его версию выбрать. Данная статья поможет вам освоиться в такой сложной технической сфере, как двигатели внутреннего сгорания.

Прежде всего, поговорим о технических характеристиках двигателей.

Основными внешними характеристиками являются:

Количество цилиндров

В современных автомобилях варьируется от 2 до 16. Этот показатель является достаточно серьезным. Так, два двигателя с одинаковым объемом и мощностью, могут сильно различаться по другим параметрам.

Расположение цилиндров

Различают два типа расположения: рядное, когда все цилиндры расположены последовательно друг за другом, и V-образное, когда на одном коленвале цилиндры расположены с обоих сторон. В этом случае большую роль играет угол развала цилиндров.

Так, большой угол развала понижает центр тяжести, облегчает охлаждение и маслоподачу, но в то же время снижает динамические характеристики и увеличивает инерционность, малый угол позволяет достичь уменьшения веса и инерционности, но способствует более быстрому перегреву.

Радикальной разновидностью такого двигателя является оппозитный двигатель с углом развала в 180°. В этом случае все его преимущества и недостатки выражаются в своем максимальном проявлении. Еще одна разновидность V-образного двигателя – W-образный. Он представляет из себя два V-образных двигателя, синхронизированных и включенных в общую систему привода. V-образные двигатели также называют двурядными, а W-образные – четырехрядными.

Существует также уникальный тип двигателя – рядно-V-образный, являющийся синтезом этих двух разновидностей. В этом случае цилиндры расположены последовательно, но с отклонением по обе стороны, что способствует лучшему охлаждению.

В целом же можно заметить, что различие между двумя основными типами двигателей заключается в их массе и габаритах. Но наиболее важным является то, что наименьший уровень шума и вибраций достигается только тогда, когда в нем в одном ряду расположено четное количество цилиндров.

Объем камер сгорания

Зачастую в литературе встречается выражение «объем двигателя», аналогичное данному. Объем напрямую влияет абсолютно на все остальные характеристики ДВС. Следует заметить, что в большинстве случаев увеличение объема ведет к увеличению как расхода топлива, так и мощностных характеристик. Уменьшение же объема – наоборот.

Материал двигателя

Современные двигатели в основном изготовлены из трех типов материаловчугун или другие ферросплавы дает наибольшую прочность, но является наиболее тяжелым. Алюминий и его сплавы – малый вес и средняя прочность. Магниевые сплавы – наименьший вес и высокая прочность, однако цена просто огромна.

Однако, эти характеристики, по сути, отражают лишь ресурсные и шумовибрационные качества двигателей.

Для владельцев авто обычно более важными являются выходные характеристики:

Мощность

Максимальный уровень отдачи. Измеряется в лошадиных силах (л.с.) или киловаттах (кВт). Определяет скорость автомобиля и время его разгона до определенной скорости.

Крутящий момент

Максимальное тяговое усилие, создаваемое двигателем. Измеряется в Ньютон-метрах (Н·м). Косвенно влияет на скорость и разгон и прямо – на эластичность двигателя – способность ускоряться на низких оборотах.

Максимально допустимое число оборотов коленвала в минуту (об/мин)

Показывает, сколько оборотов коленвала в минуту сможет выдержать двигатель без потери в ресурсной прочности. Обычно большое число оборотов указывает на более резкий и динамичный характер авто.

Эти характеристики имеют наибольшее значение при покупке автомобиля.

Но, кроме того, не менее важны расходные характеристики:

Расход топлива

В большинстве стран измеряется в литрах на 100 километров. Обычно разделяется на расход в городском, загородном и смешанном циклах.

Тип топлива

Марка потребляемого бензина или дизельного топлива (ДТ). В современных автомобилях возможно использование любых марок топлива, но при снижении октанового числа падают как ресурсная прочность, так и мощность, а при повышении сверх нормы – повышается мощность, но снижается ресурс. Также при повышении октанового числа увеличивается теплоотдача, что может привести к раннему перегреву. Пример марок топлива: А-76, А-92, АИ-98, А-95Евро, ДТ, ДТ Евро, ДТ Супер.

Расход масла

Как и для топлива, измеряется в литрах, но на 1000 км. Максимальный показатель для исправной машины – 1л/1000км.

Марка потребляемого масла

Обычно используется цифровое обозначение вида ххWхх. Первое число – густота масла, второе – его вязкость. Например – 0W40 и 5W40 – синтетические масла, 10W40 – полусинтетическое масло, 15W40 и 20W40 – минеральные масла. Второе число также может изменяться. Более густые и вязкие масла улучшают прочность и надежность двигателя, менее густые – улучшают динамические выходные характеристики.

Внимание! Масла с обозначением типа 70W90 или 95W100 являются трансмиссионными и ни в коем случае не подлежат использованию в двигателе. Использование таких масел гарантированно приведет к неисправности двигателя!

Ресурсная прочность – как часто двигатель нуждается в техническом обслуживании

Обычно изменяется в пределах 5000-30000 километров пробега. Также к ресурсной прочности относится предельный пробег двигателя, который примерно позволяет определить срок его службы и гарантийный пробег, после которого прекращаются гарантийные обязательства.

Вот, пожалуй и все характеристики, которые интересуют среднестатистического владельца.

Однако, для двигателя также выделяется широкий ряд сложных технических спецификаций:

Тип топливной системы

Существуют две основные разновидности – бензиновые и дизельные двигатели. Бензиновые двигатели обычно имеют большую мощность, в то время как дизельные отличаются более низким расходом и большим крутящим моментом.

Тип бензиновой системы впуска

Современные автомобили оснащаются исключительно электронной системой впрыска (инжекции) топлива. Такая система позволяет добиться большего коэффициента полезного действия (КПД). Однако ранее автомобили в большинстве оснащались карбюраторной системой впуска топлива. В отличии от инжектора, карбюратор не распыляет топливо в камере сгорания, а вбрасывает в нее струю, что негативно влияет на КПД, расход топлива и удобство управления.

Обычно карбюратор устанавливается на двигатель в одном экземпляре, многокарбюраторные двигатели – прерогатива тюнинговых и спортивных моделей.

Тип бензиновой системы впрыска

Если говорить о впрыске бензина, то тут выделяют две большие группы двигателей – с одноточечным и многоточечным впрыском. В современных двигателях одноточечная система практически не используется, так как падение мощности намного больше, чем снижение расхода топлива.

Многоточечный впрыск, в свою очередь, также делится на распределенный впрыск и прямой впрыск. При распределенном впрыске в камере сгорания создается равномерная смесь. Эта система обеспечивает стабильность работы в любых режимах и неприхотливость. Прямой, или непосредственный впрыск, как это ни парадоксально, повышает одновременно мощность и ресурсную прочность, а также снижает расход топлива. Но недостатки этой системы – большая стоимость, требовательность к качеству топлива и нестабильная работа на малых оборотах и при холодном старте.

Обе системы имеют достоинства и недостатки, поэтому одно из последних новшеств – комбинированный или двойной впрыск. Устройство этой системы просто – в двигателе применены обе эти системы раздельно и при изменении режимов работы электроника переключается между ними.

Тип дизельной системы впрыска

Несмотря на простоту дизельного двигателя, система его впрыска сложнее, чем у бензинового. В общем, применяются те же системы впрыска, но они построены по другому принципу.

Существуют следующие разновидности этих систем: система с топливным насосом высокого давления (ТНВД), насос-форсунками, общей топливной рампой Common Rail и аккумуляторной рампой Common Rail.

ТНВД – наиболее примитивная система дизельного впрыска. Она обеспечивает достаточно скромные характеристики, поэтому сама по себе эта система почти не используется.

Система с насос-форсунками – также малоиспользуемый вариант. В этом случае каждая форсунка впрыска является еще и насосом, подающим топливо в камеру сгорания. Характеристики в этом случае получше, но стабильной работы двигателя все равно добиться сложно.

Общая топливная рампа высокого давления Common Rail является синтезом этих двух систем. В ней используется ТНВД, подающий топливо в рампу, где оно сжимается и под высоким давлением впрыскивается в камеру сгорания. Данная система является лучшей на сегодняшний день, так как она обеспечивает высокие мощностные характеристики и низкий расход топлива.

Аккумуляторно-возвратная рампа Common Rail второго поколения является продолжением данной идеи. В ней сжатие в рампе происходит за счет накопления топлива, а излишки возвращаются обратно в ТНВД, что уменьшает насосные потери мощности и расход топлива.

Тип форсунок впрыска – механические или пьезотронные

Различий в характеристиках двигателя они не создают, но пьезотронные форсунки создают более плавный рабочий цикл и, кроме того, их легче настраивать.

Количество клапанов на впуске/выпуске

Варьируется от 2 до 5 на цилиндр. Большее число клапанов обеспечивает более плавную работу и большую мощность, при этом незначительно увеличивая расход топлива.

Наличие компрессора

По этому параметру двигатели делятся на атмосферные, компрессорные и турбонаддувные.

Атмосферные двигатели – не имеющие компрессора. Все компрессоры работают по одному и тому же принципу – сжатия впускной смеси.

Различие между механическими компрессорами и турбонаддувом заключается в типе их привода. Если механический компрессор приводится непосредственно от коленвала двигателя, что создает определенные потери в мощности и увеличивает расход топлива, то турбонаддув включает в себя крыльчатку турбины, которая раскручивается от давления выхлопных газов. Такая схема надежнее и не дает потерь, но обеспечивает меньший прирост крутящего момента, особенно на малых оборотах.

Встречаются отдельные двигатели, на которых установлены несколько компрессоров – либо последовательно, что улучшает стабильность работы, либо параллельно, что повышает характеристики в пиковых режимах работы.

Система газораспределения

Состоит из механизма газораспределения, распределительных валов и привода. Количество распределительных валов может изменяться, но наиболее распространенная схема – по 1 распредвалу на каждые 8 клапанов.

Привод газораспределительного механизма (ГРМ) бывает двух типов – цепь и ремень. Ремень более прост, однако требует регулярной замены. Цепь же по определению более надежна, но более шумна (издает характерный металлический лязг) и дорога.

Механизм газораспределения

Кроме простейшего статического механизма выделяют динамические – с изменяемой высотой подъема клапанов или изменяемыми фазами газораспределения.

Первая система позволяет переключаться между двумя режимами движения – например, между экономичным и скоростным. Система изменения фаз газораспределения обеспечивает более ровную работу во всем диапазоне рабочих оборотов коленвала двигателя.

Существует также большое множество других особенностей и спецификаций двигателей, но они оказывают меньшее влияние на их характеристики.
Надеемся, что данная статья поможет вам лучше ориентироваться в сложном мире техники….

Исследование мощностных и топливно-экологических параметров двигателя при работе на спиртосодержащем топливе

Автор:

Корпань Маргарита Сергеевна

Рубрика: Технические науки

Опубликовано
в

Молодой учёный

№26 (368) июнь 2021 г.

Дата публикации: 20.06.2021
2021-06-20

Статья просмотрена:

25 раз

Скачать электронную версию

Скачать Часть 1 (pdf)

Библиографическое описание:


Корпань, М. С. Исследование мощностных и топливно-экологических параметров двигателя при работе на спиртосодержащем топливе / М. С. Корпань. — Текст : непосредственный // Молодой ученый. — 2021. — № 26 (368). — С. 50-52. — URL: https://moluch.ru/archive/368/82677/ (дата обращения: 15.01.2023).




В данной статье было проведено исследование влияния спиртосодержащих добавок к топливу на мощностные и топливно-экономические параметры работы автомобильного двигателя. Была проведена оценка снижения эмиссии токсичных компонентов в отработавших газах.



Ключевые слова:



этиловый спирт, биотопливо, экология, бензоспиртовые смеси, этанол, автомобильное топливо, альтернативное топливо, биоэтанол.

Ограниченность традиционных источников энергии, базирующихся на нефти, природном газе и угле, делает ещё более актуальными вопросы применения альтернативных топлив. Поиск новых источников энергии — актуальная проблема, как для современной России, так и для всего мира. Существенную и всё возрастающую роль в мировой энергетике начинают играть альтернативные источники энергии, основанные на использовании биоэнергии сырья различной природы.

По данным исследования [1] на долю возобновляемых источников энергии (включая биотопливо) будет приходиться 18 % роста предложения энергоносителей до 2030 года. Темпы, которыми возобновляемые источники энергии проникают на мировой энергетический рынок, можно сравнить с темпами, наблюдавшимися при зарождении ядерной энергетики в 1970-х и 1980-х годах.

В связи с этим был проведён эксперимент с целью исследования влияния спиртосодержащих добавок к топливу на мощностные и топливно-экономические параметры работы автомобильного двигателя.

На кафедре «Теплотехника и гидравлика» ВолгГТУ имеется стенд, позволяющий эмулировать различные режимы работы ДВС, при этом замеряя выходные характеристики. Для того, чтобы наиболее полно отобразить мощностные параметры ДВС, существуют такие методики, как снятие скоростной и мощностной характеристик двигателя. По сути, это экспериментальное определение функциональных зависимостей мощности от оборотов коленчатого вала и степени открытия дроссельной заслонки соответственно.

Оценка токсичности. Здесь требовалось выяснить значительность снижения содержания токсичных компонентов. В качестве измерителя имеется возможность использовать газоанализатор ГИАМ 27–01.

Испытание двигателя проводится на стенде научно-исследовательской лаборатории кафедры «Теплотехника и гидравлика». Двигатель установлен на стенде в комплектности, предусмотренной ГОСТ 14846–86. Измерение показателей двигателя проводились по методике определения скоростной характеристики, указанной в ГОСТ 14846–86 «Двигатели автомобильные, методы стендовых испытаний» [2], параллельно производились замеры токсичности отработавших газов. В процессе эксперимента была снята частичная скоростная характеристика.

В выхлопной тракт подведен газозаборник от газоанализатора ГИАМ 27. Топливо готовилось и заливалось заблаговременно. Для опыта со спиртовой добавкой приготовление смеси происходило в отдельной канистре, в которую заливался бензин и спирт; для эксперимента сделана смесь с 10 %-ным соотношением (по объёму).

При зафиксированном положении дроссельных заслонок тормозным устройством он загружается до минимально устойчивой частоты вращения коленчатого вала. После установления устойчивой частоты вращения производятся необходимые замеры.

На основе запротоколированных показаний датчиков были составлены таблицы первичных данных эксперимента. Затем проводился анализ для каждой частоты

: вычислялись технические характеристики величины, необходимые для построения скоростной характеристики, отображающие режим работы ДВС.

Таблица 1


Токсические параметры двигателя


n


Me


τ


hcT


Θ


Δpk


tож


tвоз


CO


CH


CO


CH


мин-1


кгс*м


с


мм Н2О


град




С


С


%


ppm


%


ppm

1

820

21

80

20

3,7

330

4,6

620

2

1640

5,6

44

93

21

24

80

20

1,23

185

2,13

475

3

2040

5,1

40,6

120

21

28

80

21

1,14

175

2,04

465

4

2540

4,2

36,5

148

21

39

80

22

1,28

184

2,18

474

5

3050

3,1

34,2

167

21

46,5

80

23

1,27

177

2,17

467

6

3560

2,3

33,4

176

21

48

80

24

1,42

177

2,32

467

7

4080

1,6

32,5

179

21

50

80

25

Таблица 2


Мощностная характеристика двигателя


n


Mkо


Neо


peo


GT


GB


α


ge


мин-1


Н*м


кВт


кПа


г/с


кг/с




г/(квт*ч)

1

820,0

2

1640,0

54,9

9,4

460,0

1,2

0,0

0,9

465,0

3

2040,0

50,0

10,7

418,9

1,3

0,0

0,9

444,9

4

2540,0

41,2

11,0

345,0

1,5

0,0

0,9

482,6

5

3050,0

30,4

9,7

254,6

1,6

0,0

0,8

581,1

6

3560,0

22,6

8,4

188,9

1,6

0,0

0,8

687,1

7

4080,0

15,7

6,7

131,4

1,6

0,0

0,8

885,7

Все вышеперечисленные величины посчитаны с помощью ПЭВМ, их значения сведены в таблицы. В отдельные таблицы были сведены данные по токсичности. Дальнейший анализ заключался в составлении графиков зависимости основных технических показателей от оборотов двигателя. Самые наглядные параметры представлены ниже.

Рис. 1. Мощностные показатели при использовании АИ-92 и Е10 (частичная скоростная характеристика)

Рис. 2. Концентрация СО в ОГ на скоростной характеристике

Рис. 3. Концентрация СН в ОГ

Основные выводы, которые можно сделать по результатам работы: применение этилового спирта в небольших концентрациях действительно возможно уже сейчас. Никаких специальных приспособлений на установке не применялось, двигатель был в штатной комплектации.

При использовании бензоэтанольной смеси снизилась мощность. Однако скоростная характеристика имеет примерно такой же вид, как и бензиновая, без существенных провалов. Очевидно, что можно обеспечить такие же мощность и крутящий момент на бензоэтаноле, необходимо только задать несколько большую цикловую подачу.

Токсичность действительно снизилась. Функции СО от n для АИ 92 и бензоэтаноле имеют похожий внешний вид, что говорит о том, что эффект снижения токсичности добавкой спирта не зависит от оборотов или выбранных режимов.

Литература:

  1. Прогноз развития мировой энергетики до 2030: // British Petroleum, 2011. — C.19.
  2. ГОСТ 14846–86 «Двигатели автомобильные, методы стендовых испытаний» // База ГОСТов «Allgosts».

Основные термины (генерируются автоматически): скоростная характеристика, автомобильный двигатель, возобновляемый источник энергии, коленчатый вал, топливно-экономический параметр работы, устойчивая частота вращения, характеристика двигателя, частичная скоростная характеристика, этиловый спирт.

Ключевые слова

Экология,

альтернативное топливо,

биотопливо,

этиловый спирт,

биоэтанол,

этанол,

бензоспиртовые смеси,

автомобильное топливо

этиловый спирт, биотопливо, экология, бензоспиртовые смеси, этанол, автомобильное топливо, альтернативное топливо, биоэтанол

Похожие статьи

Анализ тягово-

скоростных характеристик двигателя автомобилей

 Статья посвящена анализу и повышению тягово-скоростных характеристик двигателя и автомобиля в целом.

Тягово-скоростные качества автомобиля характеризуют его способность доставлять грузы или пассажиров с максимально возможной средней скоростью в данных…

Испытание и практическое применение

вала-обогатителя для…

Напомним, что актуальность данной работы заключается в увеличении подачи топлива, поступающего в блоки цилиндров

Итог — увеличение подачи топлива на 18 % при одинаковых количествах циклов и на всех основных частотах вращения коленчатого вала двигателя.

К формированию закона подачи топлива на корректорной ветви…

На корректорной ветви внешней скоростной характеристики двигателя (режимы перегрузок) мощность двигателя

При уменьшении частоты вращения коленчатого вала, что связано с повышением нагрузки двигателя, крутящий момент двигателя, соответственно, увеличивается.

Особенности методики стендовых исследований

работы дизеля…

Учитывая специфику работы автомобильного двигателя с ПОНВ, основными режимами исследований выбирались: номинальный скоростной режим с частотой вращения коленчатого вала n = 2400 мин -1 и режим максимального крутящего момента при частоте

Мощностные

характеристики дизеля при работе на метаноле

Библиографическое описание: Лиханов, В. А. Мощностные характеристики дизеля при работе на

31. Скрябин М. Л. Влияние отработавших газов автомобильного транспорта на

работа дизеля, метанол, изменение частоты вращения, экономический показатель дизеля, расход. ..

Влияние применения природного газа на эффективные показатели…

Скоростные характеристики изменения эффективных показателей дизеля с турбонаддувом

скоростном диапазоне работы при работе дизеля на ПГ меньше часового расхода топлива при работе

23. Анфилатов А. А. Изменение экономических показателей дизеля при работе на…

Снижение токсичности выбросов

двигателя внутреннего сгорания…

Предложен способ электростатической обработки топливно-воздушной смеси. Приведены результаты экспериментального исследования влияния электростатической обработки на внешнюю скоростную характеристику двигателя внутреннего сгорания и токсичность…

Краткий обзор опытно-конструкторских

работ по использованию. ..

Термохимические характеристики бензоводородных топливных композиций (БВТК).

На рис. 1 приведены кривые изменения продолжительности первой фазы сгорания τI при угле открытия дроссельной заслонки φдр = 15 % и разной частоты вращения вала двигателя.

Похожие статьи

Анализ тягово-

скоростных характеристик двигателя автомобилей

 Статья посвящена анализу и повышению тягово-скоростных характеристик двигателя и автомобиля в целом.

Тягово-скоростные качества автомобиля характеризуют его способность доставлять грузы или пассажиров с максимально возможной средней скоростью в данных…

Испытание и практическое применение

вала-обогатителя для. ..

Напомним, что актуальность данной работы заключается в увеличении подачи топлива, поступающего в блоки цилиндров

Итог — увеличение подачи топлива на 18 % при одинаковых количествах циклов и на всех основных частотах вращения коленчатого вала двигателя.

К формированию закона подачи топлива на корректорной ветви…

На корректорной ветви внешней скоростной характеристики двигателя (режимы перегрузок) мощность двигателя

При уменьшении частоты вращения коленчатого вала, что связано с повышением нагрузки двигателя, крутящий момент двигателя, соответственно, увеличивается.

Особенности методики стендовых исследований

работы дизеля. ..

Учитывая специфику работы автомобильного двигателя с ПОНВ, основными режимами исследований выбирались: номинальный скоростной режим с частотой вращения коленчатого вала n = 2400 мин -1 и режим максимального крутящего момента при частоте

Мощностные

характеристики дизеля при работе на метаноле

Библиографическое описание: Лиханов, В. А. Мощностные характеристики дизеля при работе на

31. Скрябин М. Л. Влияние отработавших газов автомобильного транспорта на

работа дизеля, метанол, изменение частоты вращения, экономический показатель дизеля, расход…

Влияние применения природного газа на эффективные показатели.

..

Скоростные характеристики изменения эффективных показателей дизеля с турбонаддувом

скоростном диапазоне работы при работе дизеля на ПГ меньше часового расхода топлива при работе

23. Анфилатов А. А. Изменение экономических показателей дизеля при работе на…

Снижение токсичности выбросов

двигателя внутреннего сгорания…

Предложен способ электростатической обработки топливно-воздушной смеси. Приведены результаты экспериментального исследования влияния электростатической обработки на внешнюю скоростную характеристику двигателя внутреннего сгорания и токсичность…

Краткий обзор опытно-конструкторских

работ по использованию…

Термохимические характеристики бензоводородных топливных композиций (БВТК).

На рис. 1 приведены кривые изменения продолжительности первой фазы сгорания τI при угле открытия дроссельной заслонки φдр = 15 % и разной частоты вращения вала двигателя.

Что такое крутящий момент двигателя? Его характеристики и формула

Что такое крутящий момент двигателя?

Крутящий момент, говоря простым языком, равен Сила скручивания или вращения ’. По определению, сила стремится повернуть объект вокруг оси. Говоря автомобильным языком, он измеряет вращательное усилие, прилагаемое поршнем к коленчатому валу двигателя.

Крутящий момент = сила x расстояние. В системе СИ для измерения крутящего момента используется ньютон-метра (Нм). Остальные единицы равны 9.0003 килограмм-метр (кг-м) в метрических единицах и фут-фунт-сила ’ (фут-фунт) в имперских/британских единицах измерения.

Диаграмма определения крутящего момента

Каждый двигатель разработан и изготовлен для определенной цели. Следовательно, его выход варьируется в зависимости от его применения. Выходной крутящий момент автомобильного двигателя в основном зависит от его отношения длины хода к диаметру цилиндра и степени сжатия. Кроме того, это также зависит от давления сгорания и скорости в об/мин. Большинство «подквадратных» двигателей с большей длиной хода, чем их диаметр цилиндра, имеют тенденцию развивать большой «крутящий момент на низких оборотах». Крутящий момент, который может развить двигатель, зависит от скорости вращения двигателя или оборотов.

Различные конструкции/конфигурации двигателей имеют различные характеристики крутящего момента, такие как пиковая кривая /плоская кривая . Большинство автомобильных двигателей создают хороший выходной крутящий момент в узком диапазоне всего диапазона оборотов двигателя. В бензиновых двигателях он характерно начинается при 1000-1200 об/мин и достигает пика в диапазоне 2500-4000 об/мин. Напротив, дизельный двигатель запускается примерно при 1500-1700 об/мин и достигает максимума при 2000-3000 об/мин. Bugatti Veyron — один из автомобилей в мире с самыми высокими показателями крутящего момента.

График

Как рассчитать крутящий момент двигателя?

Если вам известна мощность двигателя, то вы можете использовать следующую формулу –

Крутящий момент = 5252 x л.с./об/мин

Почему это так важно?

Крутящий момент и мощность в лошадиных силах — две характеристики двигателя. Они связаны и пропорциональны друг другу по скорости. диапазон крутящего момента ’ на кривой двигателя представляет его тяговое усилие . Он определяет транспортное средство управляемость ‘ & ускорение .’ Крутящий момент больше всего необходим при движении автомобиля с места и/или подъеме по склону.

Аналогичным образом, чем тяжелее транспортное средство, либо транспортное средство с полной номинальной нагрузкой требует более высокого крутящего момента, чтобы тянуть его и приводить в движение. В обычном двигателе мощность определяет максимальную скорость автомобиля (через передаточные числа). Тем не менее, крутящий момент управляет его ускорением/подхватом. Скорость ускорения также зависит от веса транспортного средства и «нагрузки», которую несет транспортное средство.

Flat-Curve vs Peak-Curve:

Большинство бензиновых двигателей обычно развивают значительно высокий «крутящий момент на низких оборотах». . В схеме «пик-кривая» пик крутящего момента приходится на середину диапазона оборотов двигателя (около 2500–3000 об/мин). После этого он начинает быстро исчезать, в то время как мощность продолжает расти. В результате мощность достигает своего максимального значения позже при более высоких оборотах двигателя и исчезает у красной линии.

Пиковый крутящий момент по сравнению с крутящим моментом на плоской кривой

Большинство современных дизельных двигателей развивают крутящий момент на плоской кривой ’ крутящего момента. В конструкции с «плоской кривой» двигатель развивает максимальный крутящий момент на от нижнего до среднего ‘ его скорости, т. е. прибл. от 1500 об/мин. Его значение остается практически одинаковым или «ровным» в большинстве диапазонов оборотов двигателя (2500-4000 об/мин). Таким образом, это способствует лучшему ускорению и меньшему количеству переключений передач во время вождения.

Что такое низкий крутящий момент?

Часто производители используют этот термин для описания характеристики крутящего момента двигателя. Low-End-Torque ’ — крутящий момент двигателя в нижнем диапазоне оборотов двигателя, т. е. между 1000-2000 об/мин. Этот диапазон оборотов очень важен при трогании автомобиля с места или движении на низкой скорости, например, в пробке.

Если двигатель создает более значительный крутящий момент в нижней части диапазона оборотов, это означает, что двигатель имеет более высокий «крутящий момент на низких оборотах» или лучшую тяговую способность на малых скоростях. Это также означает, что двигатель может быстро трогать автомобиль с места, тянуть более тяжелые грузы или относительно легко подниматься по склону, в зависимости от обстоятельств, без резкого увеличения оборотов.

Крутящий момент и КПД двигателя:

Затем крутящий момент достигает своего пикового значения на скорости, при которой он наиболее эффективен. Другими словами, эффективность двигателя максимальна на скорости, при которой он развивает свой пиковый крутящий момент. Если поднять двигатель выше этой скорости, его крутящий момент начнет уменьшаться из-за повышенного трения движущихся частей. Таким образом, даже если вы увеличиваете скорость двигателя до скорости пикового крутящего момента, крутящий момент больше не увеличивается.

Коробка передач автомобиля увеличивает крутящий момент двигателя. Следовательно, чем ниже выбрана передача (т. е. 1-я передача с высоким передаточным числом), тем выше тяговая способность двигателя. Таким образом, тяговитость автомобиля наибольшая на первой передаче. Однако, если вы увеличиваете обороты двигателя на 1-й передаче, через некоторое время он достигает своего предела, побуждая водителя переключиться на следующую передачу. Напротив, автомобиль может потерять ускорение, если вы переключите передачу до того, как крутящий момент двигателя достигнет своего «пикового» значения. В результате колеса не получали достаточной силы для вращения. Таким образом, он заставляет водителя переключиться на предыдущую/пониженную передачу.

Вождение:

Вы можете добиться максимальной эффективности использования топлива, переключая передачи в «диапазоне мощности» автомобиля и как можно ближе к значению пикового крутящего момента . Кроме того, для повышения эффективности выберите правильную передачу/передачи, соответствующие скорости автомобиля/об/мин двигателя в соответствии с рекомендациями производителя автомобиля.

1. Сценарий «Шоссе»:

Самая высокая доступная передача (т. е. 5-я, 6-я и т. д.) + Самая низкая частота вращения двигателя = Лучшая топливная экономичность

2. При подъеме по склону/уклону:

Пониженная передача (т.е. 1-я) + Высокая скорость двигателя = Наименьшая топливная экономичность, но большая тяговая способность.

Когда скорость вашего автомобиля превышает 60 км/ч, например, на шоссе, вам не нужны высокие обороты двигателя, чтобы продолжать движение. Таким образом, во время движения по шоссе/автобанам используйте самую верхнюю передачу и держите обороты двигателя ниже 2500, чтобы получить максимальную эффективность. Точно так же при подъеме по склону вам нужно использовать более низкую передачу (т. е. 1-ю передачу) и более высокие обороты двигателя, чтобы тянуть автомобиль (и груз, если он есть) против силы тяжести. Однако, опять же, это повлияет на эффективность использования топлива.

Мощность и крутящий момент Расход топлива

Эти значения упоминаются в каждом руководстве по эксплуатации. Сказав это, всегда запускать двигатель на «максимальной мощности/скорости» или увеличивать обороты двигателя до зоны «Красная линия» нет необходимости, если только вы не участвуете в гонке. И это приведет только к сжиганию дополнительного топлива и потере пробега.

Помните, что такое дополнительное топливо, сожженное или сэкономленное, будет иметь большое значение в конце пути, будь он коротким или длинным.!!!

Подробнее: Что такое лошадиная сила?

сообщите об этом объявлении

О команде CarBikeTech

CarBikeTech — это технический блог. Члены команды CarBikeTech имеют более чем 20-летний опыт работы в автомобильной сфере. Команда CarBikeTech регулярно публикует специальные технические статьи об автомобильных технологиях.

Характеристики двигателя и характеристики сгорания двигателя с воспламенением от сжатия с непосредственным впрыском топлива, работающего на отработанном растительном масле, синтетическом дизельном топливе

Введение

Дизельные двигатели используются на транспорте, электростанциях, в строительстве, сельском хозяйстве и промышленности; следовательно, это привело к увеличению спроса на дизельное топливо на нефтяной основе (Boggavarapu and Ravikrishna 2013), в то время как запасы ископаемого топлива в мире ограничены. Кроме того, проблемы загрязнения воздуха и глобального потепления становятся еще более острыми, чем когда-либо. Ученые всего мира усердно работают над поиском возобновляемых, углеродно-нейтральных и экологически чистых видов топлива для замены дизельного топлива на нефтяной основе. Как показано в предыдущих отчетах (Раджасекар и др., 2010 г.; Алтин и др., 2001 г.; Фукуда и др., 2001 г.; Саин и Чанакчи, 2009 г.).; Хан и др. 2010 г.; Каннан и др. 2011 г.; Макор и др. 2011), биодизельное топливо, обогащенное кислородом, биоразлагаемое, нетоксичное и экологически чистое топливо, рассматривается как многообещающая альтернатива традиционному дизельному топливу.

Биодизель, полученный из различных ресурсов, таких как рапс, соя, хлопковое масло, пальмовое масло, масло жожоба, подсолнечник, использовался в двигателях внутреннего сгорания без существенных модификаций, как сообщают Muralidharan and Vasudevan (2011). Сараванан и др. (2010) также исследовали характеристики сгорания в двигателе с воспламенением от сжатия для тяжелого коммерческого автомобиля, работающего на сыром метиловом эфире масла рисовых отрубей (CRBME). Следовательно, при сравнении КРБМЭ с дизельным топливом установлено, что период задержки был короче примерно на 15 %, пиковое давление несколько ниже, максимальная скорость тепловыделения и термотормозная эффективность ниже на 34 % и 8 % соответственно; при этом удельное энергопотребление тормозов (BSEC) было примерно на 18% выше. Ци и др. (2009 г.) проверенное биодизельное топливо, произведенное из сырого соевого масла на одноцилиндровом дизельном двигателе без наддува и прямого впрыска. Они заметили, что пиковое давление в цилиндре биодизеля было выше при более низких нагрузках двигателя и одинаково при более высоких нагрузках двигателя, а сгорание начиналось раньше при всех нагрузках двигателя. Они также показали, что выходная мощность биодизельного двигателя была почти такой же, как у дизельного двигателя на малой скорости при полной нагрузке. Почти во всех диапазонах частоты вращения двигателя ОЧЭС биодизеля была ближе, чем у дизельного топлива. В другом исследовании Huang et al. (2010) исследовали два различных биодизеля, произведенных из фисташки и ятрофы, чтобы сравнить характеристики производительности и выбросов при использовании их в дизельном двигателе. Они обнаружили, что выбросы выхлопных газов можно уменьшить за счет использования биодизеля. Действительно, выбросы окиси углерода (CO) и углеводородов (HC) были снижены при высоких нагрузках двигателя. Кроме того, оксиды азота (NO x ), а выбросы дыма также значительно сократились при различных нагрузках двигателя. Кроме того, производительность двигателя и выбросы при использовании фисташки были очень похожи на показатели при использовании биодизеля из ятрофы.

По сравнению с дизельным топливом на нефтяной основе, высокая стоимость и большая часть биодизельного топлива, производимого из пищевых масел, таких как рапсовое масло, подсолнечное масло и пальмовое масло, являются основными препятствиями для коммерциализации. Приблизительно 70–80 % общей стоимости производства биодизеля приходится на стоимость сырья (Meng et al. 2008). Более того, использование этих масел вызовет конкуренцию сельскохозяйственных угодий за продукты питания и топливо, что приведет к инфляции цен на нефть и продукты питания (Huang et al. 2010). Поэтому ожидается, что использование дешевого несъедобного сырья, такого как отработанное кулинарное масло, будет конкурентоспособным по цене с нефтяным дизельным топливом и обеспечит продовольственную безопасность во всем мире. Кроме того, использование отработанного растительного масла в качестве моторного топлива также способствует уменьшению экологических проблем, связанных с процессом утилизации отработанного масла.

В своем эксперименте с отходами пальмового масла (WPOME) и метиловыми эфирами масла канолы (COME) Necati et al. (2009) заметили, что максимальный крутящий момент двигателя немного снизился. В то же время BSFC увеличился по сравнению с дизельным топливом на нефтяной основе (PBDF). Максимальные тормозные моменты для PBDF, WPOME и COME при 1500 об/мин, соответствующие условиям полной нагрузки, составляли 328,69, 320,24 и 319,80 Н·м соответственно. BSFC WPOME и COME увеличились на 7,48% и 6,18%, а эффективность термоторможения снизилась на 1,42% и 0,12% соответственно. В другом исследовании Муралидхаран и Васудеван (2011) изучали влияние степени сжатия на характеристики двигателя с переменной степенью сжатия, использующего метиловые эфиры отработанного кулинарного масла и дизельных смесей. В результате эффективность термического торможения для B40 значительно улучшилась при степени сжатия 21 по сравнению со стандартным дизельным двигателем. Удельный расход топлива смеси В40 при степени сжатия 21 составил 0,259.кг/кВтч, тогда как для стандартного дизельного топлива она составляла 0,314 кг/кВтч.

Несмотря на то, что было проведено много исследований, как указано выше, в отношении возможности использования отработанного масла для жарки в двигателях с воспламенением от сжатия, в этих исследованиях использовалось биодизельное топливо, полученное из отработанного масла для жарки во время реакции переэтерификации, которое непосредственно отработанное масло для жарки использовалось в качестве топлива для двигателя. Кроме того, эти исследования сосредоточены только на испытаниях в некоторых точках работы двигателя, таких как скоростные характеристики при полной нагрузке или нагрузочные характеристики при номинальной частоте вращения двигателя. По этим причинам целью настоящего исследования является получение биодизеля из отработанного растительного масла и исследование характеристик двигателя с воспламенением от сжатия и характеристик его сгорания, работающих на синтетическом дизельном топливе из отработанного растительного масла (WCOSD), соответствующих всем основным рабочим параметрам двигателя.

Процесс каталитического крекинга отработанного кулинарного масла

Отработанное кулинарное масло (WCO) было собрано в местных ресторанах города Ханой во Вьетнаме. Каталитический крекинг проводили при 450 °C в однолитровом реакторе периодического действия с закругленным дном в присутствии 5 % масс. катализатора MgO, как показано на рис. 1. Для каждого эксперимента 500 г образца и 25 г MgO помещают в реактор. Температуру реактора постепенно повышали до 450 °C с помощью электропечи при скорости нагрева 10 °C/мин и поддерживали в изотермических условиях до прекращения образования паров. Мы используем источник переменного тока (220 В и 4 А) для питания электропечи. Потребовалось 40 мин, чтобы достичь рабочей температуры 450 °C, а затем эту температуру постоянно контролируют, включая и выключая источник электропитания. Мы получили первый литр биодизеля через 40 мин, а затем потребовалось 40 мин, чтобы получить еще один литр биодизеля. Средняя стоимость электроэнергии для производства 1 л биодизеля составляет примерно четверть цены дизельного топлива на рынке. Кроме того, использование отработанного масла для жарки в качестве сырья снизит затраты на утилизацию отработанного масла для жарки. Пару давали пройти через конденсатор для сбора WCOSD в жидкой фазе.

Рис. 1

Принципиальная схема системы крекинга WCO

Изображение полного размера

В нашем производственном процессе катализатор добавлялся в реактор только после того, как температура реактора достигла рабочей температуры 450 °C. Клапан, соединяющий реактор и конденсатор, открывают через 20 мин после добавления катализатора в реактор. Поэтому температуру каталитического крекинга всегда контролируют на уровне примерно 450 °С. Продукты крекинга состоят из лигроина (примерно 2,9%), керосин (около 8,7 %), дизельное топливо (67 % в том числе) и остаток (21,4 %). Для производства 1 л биодизеля требовалось примерно 1,5 л отработанного растительного масла. Мы повторили производственный процесс пять раз и заметили, что выход и состав продукта крекинга были достаточно стабильными, поскольку исходные материалы были одинаковыми. Одним из недостатков использования неподвижного слоя катализатора является то, что может потребоваться довольно частая замена катализатора, поскольку побочные продукты могут загрязнять поверхность неподвижного слоя, что приводит к уменьшению площади контакта между парами и катализатором и влияет на качество продукта. биодизель. Кроме того, замена катализатора, закрепленного в нагретом слое, может оказаться более сложной задачей, а цены на продукцию могут возрасти из-за затрат на подготовку слоев катализатора. Катализатор смешивали с сырьем в реакторе таким образом, чтобы влияние катализатора на реакции крекинга оставалось стабильным. Более того, замена катализатора была чистой, так как катализатор выводился вместе с побочными продуктами. В нашем эксперименте мы подготовили 20 л биодизеля для всех испытаний, испытаний производительности и испытаний свойств топлива. Несмотря на то, что объем реактора составляет примерно 1 л, наш производственный процесс является непрерывным. Когда биодизель вынимали из конденсатора, в реактор одновременно добавляли сырье и катализатор.

Топливные свойства продуктов WCOSD оценивались по сравнению с обычным дизельным топливом с использованием методов ASTM. Охарактеризованы цетановое число, плотность, кинематическая вязкость, температура вспышки, углеродный остаток, зольность, сера и теплота сгорания ВКОСД. Цетановое число определяли путем сравнения его характеристик сгорания в испытательном двигателе с характеристиками смесей эталонных топлив с известным цетановым числом в стандартных условиях эксплуатации (ASTM D-613). Для измерения образца использовали цифровой анализатор плотности при температуре 25 °C (ASTM D-4052). Кинематическая вязкость определялась с использованием вискозиметра с U-образной трубкой (ASTM D-445). Температуру воспламенения WCOSD определяли путем заполнения испытательного тигля WCOSD до метки наполнения внутри испытательного тигля, и зажженное испытательное пламя пропускали по окружности тигля (ASTM D-9).2). Теплотворную способность образцов определяли с помощью бомбового калориметра (ASTM D-240). Углеродный остаток рассчитывали по количеству углеродистого остатка, оставшегося после выпаривания и пиролиза образца (ASTM D-189). Зола рассчитывалась путем поджигания и сжигания образцов до тех пор, пока не останется только зола и углерод (ASTM D-482). Содержание серы определяли с помощью энергодисперсионного рентгенофлуоресцентного анализатора (ASTM D-4294).

Испытательное оборудование, экспериментальная установка и процедура испытаний

Тестовые виды топлива и двигатель, использованные в эксперименте

В этом исследовании было использовано синтетическое дизельное топливо из отработанного масла для жарки, успешно полученное в этом исследовании, и его сравнили с обычным дизельным топливом, когда оно использовалось для работы на двигателе внутреннего сгорания. Физические и химические свойства топлив WCOSD и CD представлены в таблице 1. Испытуемый двигатель представляет собой четырехтактный одноцилиндровый дизельный двигатель с водяным охлаждением без наддува и непосредственным впрыском топлива.

Таблица 1. Физико-химические свойства испытанных топлив

Полноразмерная таблица

Испытательная установка и процедура эксперимента

На рис. 2 показана принципиальная схема испытательного стенда двигателя, включая испытательный двигатель, динамометр шасси, устройство для анализа выхлопных газов, блок управления, устройство расхода топлива, прибор для измерения расхода воздуха и датчик температуры. датчики. Для определения удельных оборотов двигателя были проведены эксперименты с одноцилиндровым дизелем, соответствующие различным оборотам двигателя. В эксперименте двигатель был соединен с регенеративным динамометром мощностью 40 кВт. Давление в цилиндрах регистрировалось с помощью высокоскоростной системы сбора данных, включающей два высокоточных пьезоэлектрических преобразователя давления, датчик угла поворота коленчатого вала и устройство анализа сгорания. Устройство расхода топлива определяло расход топлива, подаваемого на испытательный двигатель. Для измерения расхода воздуха на впускном коллекторе опытного двигателя был установлен расходомер воздуха. Кроме того, шесть различных цифровых термопар были настроены для измерения температуры выхлопных газов, моторного масла, охлаждающей жидкости на входе и выходе, топлива и воздуха на входе. Кроме того, регистрировались температура окружающей среды, плотность воздуха и относительная влажность. Для управления двигателем и динамометром использовалась система управления; следовательно, он собирал сигналы от измерительного оборудования и отображал результаты измерений. Выбросы выхлопных газов испытаний, в том числе СО, СО 2 , Углеводород (HC), O 2 и NO x были измерены с помощью анализатора выхлопных газов, изготовленного для измерения выбросов двигателей внутреннего сгорания. Характеристики измерительных приборов и газоанализаторов представлены в таблице 2.

Рис. 2

Схема стенда двигателя и готового стенда двигателя в эксперименте

Изображение в натуральную величину

Таблица 2 Точность измерительных приборов и газоанализаторы

Полноразмерная таблица

Результаты и обсуждения

Сравнение свойств WCOSD и дизельного топлива

Свойства WCOSD показаны в Таблице 3 и сравниваются со стандартной спецификацией Euro V для дизельного топлива. Цетановое число ВКОСД было несколько ниже, чем у дизельного топлива из-за содержания ненасыщенных компонентов; которые могут препятствовать сгоранию топлива в двигателе. Еще одним недостатком была низкая теплотворная способность WCOSD из-за высокого содержания оксигенатных соединений (Wako et al. 2018), что хуже сказывалось на работе двигателя. Вязкость биодизеля была несколько выше, чем у дизельного топлива, что приводило к худшему распылению в двигателе и, вероятно, к снижению полноты сгорания из-за образования нагара, загрязняющего камеру сгорания. Однако WCOSD имел некоторые преимущества, такие как полное отсутствие серы, отсутствие зольности и углеродистого остатка по сравнению с дизельным топливом. Установлено, что ВКОСД по своим свойствам ближе к обычному дизельному топливу; следовательно, обычное дизельное топливо использовалось в качестве топлива для сравнения при проверке характеристик двигателя.

Таблица 3 Характеристики топлива WCOSD по сравнению со стандартными спецификациями дизельного топлива EN 590:2009

Полная таблица

Сравнение характеристик двигателя

На рисунке 3a показано сравнение характеристик двигателя при различных оборотах двигателя и условиях полной нагрузки когда WCOSD и CD использовались в качестве тестовых топлив. В целом, работа двигателя была полностью стабильной в диапазоне оборотов двигателя от 1400 до 2100 об/мин. Действительно, при использовании в качестве топлива КД тормозные мощности при рабочих оборотах двигателя 1400 об/мин и 1700 об/мин составили соответственно 2,90%, что на 2,43% выше, чем у WCOSD. Также топливные характеристики тестового двигателя в случае использования WCOSD были выше, чем в случае использования CD, как показано на рис. 3b, что, вероятно, связано с более низкой теплотворной способностью WCOSD, как показано в таблице 1. Кроме того, плотность и кинематическая вязкость дизельного топлива были выше, чем у WCOSD, что также способствовало снижению мощности двигателя из-за увеличения потерь на трение. Однако, как показано на рис. 3а, на высокой скорости мощность двигателя в случае использования WCOSD была несколько выше, чем у CD, что было обусловлено влиянием вязкости. Поскольку вязкость WCOSD была меньше, чем вязкость CD, смесь WCOSD и воздуха стала более выгодной по сравнению с CD, особенно в случае высоких оборотов двигателя, поскольку продолжительность смесеобразования была ограничена.

Рис. 3

Сравнение характеристик двигателя a мощность двигателя и b расход топлива

Изображение в натуральную величину , 1700 и 2100 об/мин и крутящий момент двигателя в диапазоне от 0 до 50 Н·м при работе тестового двигателя на WCOSD и CD. Результаты показали, что BSFC WCOSD всегда был выше, чем у CD в каждой точке работы двигателя. При одинаковых условиях эксплуатации наибольшая разница в BSFC между двумя видами топлива составляет 19% в рабочей точке при частоте вращения двигателя 1700 об/мин и нагрузке 25%. Между тем, BSFC двух видов топлива был одинаковым при 75% от максимального крутящего момента. Эта тенденция аналогична тем, которые были сделаны Meng et al. (2008), Necati et al. (2009), Hirkude and Padalkar (2012), Zhu et al. (2011), Ди и соавт. (2009) и Necati and Canakci (2010), исследующих два типа биодизеля, полученного из отходов пальмового масла и масла канолы. Чтобы поддерживать ту же выходную мощность, следует подавать большее количество WCOSD, как это было предложено Муралидхараном и Васудеваном (2011 г.), Буюккая (2010 г.), Хиркуде и Падалкаром (2012 г.), Чжу и др. (2011) и Di et al. (2009 г.) из-за более низкой теплотворной способности WCOSD по сравнению с CD.

Рис. 4

Тормозное. Меньшая выходная мощность и более высокий расход топлива WCOSD привели к более низкой тепловой эффективности тормозов (BTE) по сравнению с CD при всех режимах работы двигателя, как показано на рис. 5. Например, при тех же условиях работы 1400 об/мин. и 70 % режима нагрузки, BTE двигателя, работающего на CD, достигла максимального значения 38,3 %, тогда как двигатель, работающий на WCOSD, составил 36,6 %. Примечательно, что в рабочей точке 1400 об/мин и 25 % нагрузки разница в BTE между WCOSD и CD составляла примерно 21 %. Вторая причина этих результатов может быть объяснена более высокой вязкостью и низкой летучестью WCOSD, что приводит к более плохим характеристикам распыления и сгорания, как описано в результатах, сделанных Hirkude and Padalkar (2012) и Necati and Canakci (2010).

Fig. 5

Brake thermal efficiency of the test engine fueled CD and WOCSD at a 1400 rpm, b 1700 rpm, c 2100 rpm and d full load

Full size image

Comparison характеристик сгорания

Характеристики сгорания WCOSD и CD в этом исследовании были исследованы на основе значений давления в цилиндре и задержки воспламенения. Для анализа процесса сгорания были измерены и проанализированы данные о давлении в цилиндрах и давлении в топливной магистрали за 200 циклов с разрешением 0,4° по углу поворота коленчатого вала. На рисунке 6а показано изменение давления в цилиндрах в зависимости от угла поворота коленчатого вала, когда тестовый двигатель работал на топливе CD и WCOSD при скорости 1400 и различных нагрузках двигателя 11, 23 и 35 Н·м. Наблюдаемые пики давления в цилиндрах двигателя, работающего с WCOSD, были ниже, чем у CD, на 0,43, 0,32 и 0,74 бар при 11, 23 и 35 Н·м соответственно. Однако давление в цилиндрах было примерно одинаковым в областях, удаленных от верхней мертвой точки. Более низкие пики давления в цилиндрах могут быть результатом неправильного смешивания WCOSD с воздухом при низкой температуре двигателя из-за его характеристик.

Рис. 6

Изменение давления в цилиндрах опытного двигателя, работающего на CD и WOCSD, при a 1400 об/мин, b 1700 об/мин, c 2100 об/мин и d 5 задержке зажигания при различных условиях работы

Изображение полного размера

На рисунке 6d сравнивается задержка воспламенения, которая определяется как интервал времени между началом впрыска и началом сгорания, для тестового двигателя, работающего на WCOSD и CD, при различных условиях работы. Видно, что воспламенение ВКОСД началось раньше, чем КД, на от 0,4 до 0,8°С. Раннее начало воспламенения WCOSD обусловлено физическими свойствами WCOSD (Tesfa et al. 2013). Кроме того, задержка воспламенения для WCOSD была короче, чем для CD при низкой и средней нагрузке, тогда как при высоких нагрузках был обнаружен противоположный результат, как показано на рис. 6d.

Сострадание по выбросам выхлопных газов

Сравнение выбросов угарного газа

На рисунке 7 показаны экспериментальные результаты выбросов угарного газа (CO) от испытательного двигателя, работающего на двигателях WCOSD и CD. Можно видеть, что тенденции выбросов CO от двигателя, работающего на двух видах топлива, были похожи друг на друга. Выбросы CO были низкими при низких и средних нагрузках и высокими при полных нагрузках. Основная причина этого явления заключается в том, что смеси при полной нагрузке были более обильными, чем при низкой и средней нагрузке, что приводило к недостатку кислорода в процессе сгорания в условиях полной нагрузки. В условиях полной нагрузки выбросы CO двигателя, работающего на CD, были выше, чем на WCOSD, на 34,85% выше при 1400 об/мин и на 58,33 % выше при 1700 об/мин. Однако при высоких оборотах двигателя тенденция была противоположной. При 2100 об/мин, когда тестовый двигатель работал на CD, выбросы CO составляли 45,9.% ниже, чем при использовании WCOSD.

Рис. 7

Выбросы угарного газа тестового двигателя, работающего на CD и WOCSD при a 1400 об/мин, 1700 об/мин, 2100 об/мин и b при полной нагрузке

Полноразмерное изображение 5 7

Выбросы в натуральную величину 90905
На рисунке 8 показано изменение выбросов оксидов азота (NO x ) в зависимости от частоты вращения двигателя и нагрузки. При тех же рабочих условиях выбросы NO x , производимые WCOSD, были выше по сравнению с CD. Самый высокий № x выбросы, произведенные WCOSD, составляли 1165, 1140 и 846 при 1400, 1700 и 2100 об/мин соответственно, тогда как у CD были соответственно 1150, 1023 и 833 частей на миллион. Более высокий выброс NO x тестового двигателя в случае использования WCOSD мог быть результатом обеспечения содержания кислорода в WCOSD, что, вероятно, способствовало образованию NO x . Другим фактором, вызвавшим увеличение выбросов NO x , является более высокая пиковая температура во время сгорания для WCOSD по сравнению с дизельным топливом.

Рис. 8

NO x Выбросы тестового двигателя, заправленного CD и WOCSD при A 1400 об / мин, 1700 об / мин, 2100 об / мин. выбросы

Выбросы углеводородов (HC) испытательного двигателя, работающего как на WCOSD, так и на CD, оказались очень низкими при всех режимах работы двигателя. Изменения выбросов УВ между двумя типами топлива при 12 рабочих условиях, протестированных в этом исследовании, показаны на рис. 9.. Видно, что в большинстве условий эксплуатации выбросы УВ тестовых двигателей, работающих на WCOSD, были ниже, чем у CD. Выбросы УВ двигателя, работающего на ВКОСД, снизились в среднем на 26,3 % по сравнению с двигателем, работающим на КД. Исходя из этих результатов, мы можем сделать вывод, что использование WCOSD в целом приводило к снижению выбросов УВ благодаря более чистому сгоранию. Кроме того, в условиях полной нагрузки, когда частота вращения двигателя увеличивается с 1400 до 2100 об/мин, выброс УВ двигателя, работающего на двух видах топлива, значительно снижается за счет более высоких температур, приводящих к лучшему распылению и испаряемости.

Рис. 9

Выбросы углеводородов испытательного двигателя, работающего на CD и WOCSD при a 1400 об/мин, 1700 об/мин, 2100 об/мин и b при полной нагрузке представлены результаты экспериментов по дымовыделению испытательного двигателя, работающего на двигателях WCOSD и CD. Тенденции выброса черного дыма из двигателя, работающего на обоих испытуемых видах топлива, были схожими. Выбросы дыма были низкими при низких и средних нагрузках и высокими при полных нагрузках. Основная причина этого явления заключается в том, что смеси при полной нагрузке были значительно богаче, чем при низкой и средней нагрузке, что приводило к недостатку кислорода в процессе сгорания при работе двигателя в режиме полной нагрузки. Кроме того, также можно обнаружить, что среднее количество выбросов черного дыма при работе двигателя на WCOSD было на 17% ниже, чем на CD. В условиях полной нагрузки с обоими видами топлива выбросы дыма из двигателя соответственно увеличивали скорость, как показано на рис. 10b. Это явление можно объяснить тем, что при увеличении оборотов двигателя сокращались сроки процессов испарения и смешения топлива, что снижало качество сгорания.

Рис. 10

Дымообразование испытательного двигателя на топливе CD и WOCSD при а 1400 об/мин, 1700 об/мин, 2100 об/мин и б при полной загрузке растительное масло синтетическое дизельное топливо из отработанного кулинарного масла было получено каталитическим крекингом в реакторе периодического действия с использованием MgO в качестве катализатора и использовано в качестве исследуемого топлива. Двигатель заправлен WCOSD и CD для сравнения характеристик двигателя, включая мощность двигателя, расход топлива, процесс сгорания и выбросы. Результаты показали, что полученный биодизель по своим качествам пригоден для работы на дизельных двигателях. Хотя мощность моторного торможения ВКОСД несколько снижалась на малых и средних оборотах двигателя из-за меньшей его теплотворной способности, при высоких оборотах она несколько возрастала, так как низкая вязкость ВКОСД усиливала образование воздушно-топливной смеси в камере сгорания. Кроме того, BSFC испытательного двигателя, работающего на WCOSD, увеличилась практически при всех режимах работы двигателя. Напротив, пики давления в цилиндрах двигателя, работающего с WCOSD, были ниже, чем у CD, на 0,43, 0,32 и 0,74 бар при 11, 23 и 35 Н·м соответственно. Кроме того, выбросы оксидов азота опытного двигателя, работающего на ВКОСД, были выше, чем у КД, на всех режимах испытаний. Углеводород был ниже для WCOSD по сравнению с CD почти во всех рабочих условиях.