Подключение двигателя 380в: Схемы подключения асинхронных электродвигателей

Содержание

Как подключить электродвигатель с 380 В к однофазному или трёхфазному питанию • Мир электрики

Содержание

  1. Как подключить двигатель 380 на 380
  2. Подсоединение двигателя 380 В
  3. Схема звезда-треугольник
  4. Как подключить электродвигатель 380 В на 220 В
  5. Схема подключения
  6. Выводы

Предположим, что в наличии есть электродвигатель на 380 в, но понадобилось подключить его к одной фазе. Учитывая, что пользователь не является электриком, для него эта процедура покажется весьма затруднительной. Но эта статья может помочь в этом деле, предоставив некоторую нужную информацию по этой теме.

О том, как подключить двигатель 380 В на 380 В, можно будет узнать ниже. С этим трудностей возникнуть не должно. А вот с подключением трёхфазного двигателя к одной фазе могут возникнуть вопросы. Поэтому сначала будет описана именно эта процедура.

Перед тем как осуществить подключение, следует помнить тот факт, что ожидать полной рабочей мощности от трёхфазного электродвигателя, работающего на одной фазе, не стоит. Трёхфазный двигатель вполне может работать на однофазном обеспечении, но его мощность будет равнять в лучше случае 70% от его реальной возможной мощи. К тому же будут проблемы с подбором рабочей ёмкости при постоянно меняющейся нагрузке.

Как подключить двигатель 380 на 380

Инструменты, которые понадобятся в процессе подключения:

  • паяльник
  • вольтметр стрелочный
  • отвёртка

Материалы, используемые в работе:

  • электродвигатель 380
  • рабочие конденсаторы
  • пусковой конденсатор
  • кнопка пуска 220 В
  • олово
  • кислота или канифоль
  • изолента

Подсоединение двигателя 380 В

Осуществить подключение трёхфазного двигателя к однофазной сети можно, используя схему звезда-треугольник.

Схема звезда-треугольник

Во многих отечественных электродвигателях схема звезда уже собрана, что в этом случае предполагает лишь реализация треугольника. Это подразумевает подключение трёх фаз и образование звезды из оставшихся шести концов обмотки.

Звезда-треугольник обладает очень важным достоинством. Дело в том, что при использовании данной схемы электрический двигатель реализует в работе свою максимальную мощность. Основным минусом такой схемы считается её сложность. Чаще всего такая схема используется мастерами-любителями.

Встретить такую схему где-нибудь на производстве весьма проблематично, так как в таких условиях встречается она редко. Это обстоятельство объясняется тем, что из-за сложности схемы весьма трудно, да и бессмысленно, организовываться такое трудоёмкое соединение.

Отличие отдельных схем звезда и треугольник заключается в том, что в первом случае используются шесть клемм подключения, в то время как во втором — три. Если брать во внимание характеристики, то можно заметить тот факт, что двигатели со звездой работают на порядок тише. Но этот плюс может быть перекрыт существенным минусом электродвигателей, работающих при таком подключении. Минус заключается в пониженной мощности работы при подключении к однофазной сети — около 50% от номинальной. Электродвигатель, подключённый к однофазной сети при использовании схемы треугольник, работает громче, но мощность ощутимо выше и составляет примерно 70% от номинальной.

На видео ниже описан принцип подключения трёхфазного электродвигателя, используя схему треугольник.

Как подключить электродвигатель 380 В на 220 В

Для начала, перед подключением, следует определиться с конденсаторами. В названном подключении используется сразу два их вида:

  1. Пусковые
  2. Рабочие

Первый тип конденсаторов будет использован для запуска двигателя. И только для этого. Когда двигатель наберёт необходимое количество оборотов пусковые конденсаторы исключаются из электроцепи. Если этого не произойдёт, это приведёт к серьёзным последствиям. Иначе говоря, это повлечёт за собой то, что двигатель просто сгорит в результате перекоса по току в двух обмотках электродвигателя.

Основная работа предназначена для рабочих конденсаторов. Для того чтобы конденсатор работал исправно и долго, то следует придерживаться трёх очень важных правил, которые помогут обеспечить эффективную работу рабочих конденсаторов:

  1. Все рабочие конденсаторы должны быть подключены между собой только параллельно.
  2. Общую ёмкость рабочих конденсатором следует определять специальным отношением: на 100 Вт мощности электродвигателя 7 микрофарад рабочего конденсатора.
  3. Номинальное напряжение каждого конденсатора — не меньше 300 Вольт.
  4. Следуя этим правилам, можно намного продлить работу рабочих конденсаторов и не только их. Работа и долговечность двигателя также зависит от работы и эксплуатации конденсаторов при включении оных в электроцепь. В лучшем случае двигатель прекратит работу в рамках одного процесса либо вовсе не начнёт в случае неправильного подключения. В худшем случае электродвигатель сгорит и пользователю придётся ломать голову насчёт того, как восполнить потерю.

Очень важно знать, что ёмкость пусковых конденсаторов обязательно должна быть больше ёмкости рабочих конденсаторов в три раза.

Следует учитывать, что расчёт ёмкости конденсаторов производится на мощность номинальную, поэтому, если двигатель будет работать недогруженным, то он будет греться и потребуется уменьшить ёмкость рабочего конденсатора для того, чтобы уменьшить ток в обмотке.

В случае если ёмкость будет меньше, чем требуется, то мощность, которую будет развивать электродвигатель, будет низкой.

Следует помнить, что конденсаторы даже после отключения сохраняют на своих выводах опасное напряжение. Чтобы исключить случайные прикосновения, следует всегда делать ограждения вокруг конденсаторов. Рекомендуется всегда проводить разрядку конденсатором перед тем, как начать с ними работу.

Нельзя забывать, что подключение трёхфазного двигателя мощностью 3 Квт дома к стандартной проводке категорически запрещено. Такое подключение приведёт к выбиванию пробок и автоматов. Также возможно будет плавиться изоляция на более старых проводах или в случаях с неправильно подобранной защиты по току.

Схема подключения

  1. Для начала следует соединить конденсаторы. Как было указано выше, делать это следует, соединяя их параллельно. Это очень важный момент.
  2. Затем нужно подсоединить связку конденсаторов двумя проводами к электродвигателю и к сети переменного тока.
  3. На третьем этапе следует просто включить движок. Это нужно сделать для того, чтобы для начала проверить в ту ли сторону он крутится. Если в ту, что требуется, то никаких больше действий предпринимать не надо. Подключение произведено. В противном случае следует выполнить несложные манипуляции с проводами, а именно следует поменять местами провода подключения к обмотке.

Для более понятного и наглядного объяснения всего процесса подключения ниже можно ознакомиться с приложенным видео. Эта подробная видеоинструкция поможет разобраться во всём процессе и во всех моментах, непонятных читателю:

Выводы

Подключение трёхфазного электродвигателя как к однофазной сети, так и трёхфазной, в принципе не составляет большого труда, особенно если существует большое количество схем, инструкций и видеоматериалов по данной теме.

Одним из главных моментов при осуществлении подключения двигателя к сети электропитания является соблюдение мер безопасности. Следует всегда помнить о том, что все манипуляции с сетями, по которым проходит ток — уже определённый риск. Так что следует избегать все контакты с элементами, которые находятся под напряжением.

Если существуют некоторые опасения и сомнения насчёт осуществления всей процедуры, а опыта нет, следует проконсультироваться с профессионалом во избежание поломки оборудования и получения физических травм, так как лучше всё-таки не рисковать своим здоровьем.

Как подключить двигатель с шестью выводами

Схемы подключения электродвигателя к электропитанию

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т. к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит. В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например: — зачем шесть контактов в двигателе? — а почему контактов всего три? — что такое «звезда» и «треугольник»? — а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается? — а как измерить ток в обмотках? — что такое пускатель? и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию. Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В, 2. Трехфазная сеть 220 В (обычно используется на кораблях), 3. Трехфазная сеть 220В/380В, 4. Трехфазная сеть 380В/660В. Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети? Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В. В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они в 99% бывают на 2 вида напряжения – 220/380

и
380/660
В. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты

И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!. Двигатель на 220/380 В

Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит!!!

Как будет выглядеть подключение подобного двигателя в коробке:

Подключение в “Звезду” двигателя на 220 – 380 В

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660

идеально подходит
для работы в схеме “Звезда/Треугольник”.
Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Напряжение питания 660 В в реальной жизни используется редко (горношахтное оборудование), а схема, показанная справа, используется для “раскрутки” ротора.

Реальные примеры:

Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”

Вот этот же двигатель, его коробка борно, подключен в треугольник:

Обмотки двигателя подключены в треугольник на 380 В

Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1.

Для начала выясняем, на какое напряжение рассчитана наша сеть.
2.
Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

Схема включения трехфазного двигателя на 220 вольт

Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.

А это более наглядная картинка:

Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:

Ток для расчёта мы возьмём с шильдика двигателя:

Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:

Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.

Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.

Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:

Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

Плюсы и минусы подключения двигателя «звездой» и «треугольником»

Применение данного вида подключения помогает сделать неразрывную линию в электрической цепи. Схема называется так благодаря своей треугольной форме. Основные плюсы следующие:

  • при подключении получается наибольшая мощность приборов во время использования;
  • используется реостат для включения мотора;
  • заметно повышается крутящий момент;
  • создается сильное тяговое поле.

Внешний вид переключателя
Среди минусов выделяют только максимальные показатели пусковых токов, а также постоянное тепловыделение во время эксплуатации.

Обратите внимание! Этот вид соединения широко используется в мощных приборах, в которых есть максимальные токи нагрузки. Именно благодаря этому повышается электродвижущая сила, которая влияет на мощность крутящего момента

Обозначение выводов как соединять

Условия для подключения электродвигателя

Основным условием для нормальной работы трехфазных двигателей является стабильность напряжения и тока в каждой из фаз электрической сети. Обрыв хотя бы одной фазы приведет к тому, что двигатель потеряет значительную часть мощности и при нагрузке на валу свыше 50 % нормативной остановится и выйдет из строя. Пуск на двух фазах возможен только при полном отсутствии нагрузки и только в то время, когда ротор сохраняет хотя бы небольшую угловую скорость.

Асинхронный двигатель

К сведению! В момент пуска асинхронный двигатель потребляет ток, в 3-5 раз превышающий номинальный до тех пор, пока ротор не наберет определенные обороты. Это явление исходит из принципа работы двигателя.

Таким образом, если в рабочем режиме ток двигателя позволяет использовать обычные автоматические выключатели, то для обеспечения нормального пуска коммутацию следует производить через мощный контактор (магнитный пускатель).

Магнитный пускатель

В отдельных случаях возможно подключение трехфазного двигателя в бытовую однофазную сеть. При этом сильно падают мощностные характеристики. Такая ситуация возникает очень часто, когда необходимо использовать промышленный привод в бытовых условиях. Используя специальную схему включения, обеспечивают нормальную работу мотора с учетом снижения мощности.

Пуск и работа двигателя в звезде (690В) на 380В.

Пуск и работа двигателя в звезде (690В) на 380В.

Недавно увидел такую штуку на рабочей установке. Есть вибросито (с эксцентриком), двигатель на 30kW (треугольник/звезда – 380/660), двигатель собран в звезду (660В) и подключен на 380В, прямой пуск (к двигателю идет один кабель).

Это система работает уже давно, никто не знает почему так собрали, но есть версия, что двигатель взят с запасом и чтобы не использовать плавный пуск его включили в звезду (без переключения в треугольник). Вопрос: что Вы думаете по этому.

Мне кажется что это не нормально (просто двигатель пришел с завода в звезде и его никто не переключал), если нужно плавно запустить нужно делать звезда/треугольник (или плавный пуск), но на постоянной основе подключать к звезде (660В) напряжение 380В как-то неправильно.

Re: Пуск и работа двигателя в звезде (690В) на 380В.

Сообщение Jackson » 29 июл 2015, 11:21

Re: Пуск и работа двигателя в звезде (690В) на 380В.

Сообщение Ryzhij » 29 июл 2015, 12:49

Re: Пуск и работа двигателя в звезде (690В) на 380В.

Сообщение Jackson » 29 июл 2015, 12:54

Re: Пуск и работа двигателя в звезде (690В) на 380В.

Сообщение Jackson » 29 июл 2015, 13:31

Даже поднял книжки. Электрическая мощность прямо пропорциональна напряжению (1,73*U*I*cosФ), так что она упадёт в 660/380 раз, то есть в 1,73. Номинальный ток остаётся прежним потому что обмотки более толстым проводом никто не перематывал, и он указан на шильде. 2 раз, т.е. втрое.

Частота вращения тоже упадёт потому что увеличится скольжение.

В общем, если такой двигатель стоял в действующей установке, то я думаю что изначально это всё было рассчитано и двигатель подобран соответственно. Зачем – хороший вопрос. Может просто были такие движки на складе – вот и применили. Для движка ничего страшного тут нет, главное чтобы он своей пониженным моментом и частотой провернул установку. Раз проворачивает – значит всё в порядке.

Re: Пуск и работа двигателя в звезде (690В) на 380В.

Сообщение Ryzhij » 29 июл 2015, 15:16

Re: Пуск и работа двигателя в звезде (690В) на 380В.

Сообщение Михайло » 29 июл 2015, 16:06

В этом утверждении небольшая (нет, все-таки большая!) неточность: момент на валу ЛЮБОГО двигателя определяется нагрузкой. Уменьшатся пусковой и критический момент. Если эти моменты не упадут ниже плинтуса, то двигатель будет работать почти одинаково как на 660 В, так и на 380 В. Частота вращения АД от напряжения не зависит.

Что касается ответа на вопрос топик-стартера – если переподключить двигатель на треугольник, то возможно двигатель будет чрезмерно резво дергать, проведите эксперимент.

Подключение трехфазного двигателя 380В к однофазному 220В.

При подключении трехфазного двигателя к однофазному сектору есть несколько решений.

Это конденсаторная сборка, о которой пойдет речь

Важно:

Подключение трехфазного двигателя к моно с конденсатором снижает его выходную мощность. Мы теряем в среднем 30% полезной мощности и 50% при запуске.

В столовых приборах эта система будет хорошо работать для машин, которые не запускаются под нагрузкой, например барабан или полировальный станок. Не используйте этот узел для двигателей, которые начинают заряжаться или большой мощности в качестве задней стойки или песта.

Все системы с конденсаторами еще прихватки, которые могут работать хорошо, но результат никогда не гарантирован, надо пробовать и тестировать.

Конденсатор можно купить девятку (штуки техники) а так же восстановить на старый двигатель или стиральную машину. Всегда убедитесь, что это конденсатор для 230 В переменного тока (поэтому неполяризованный) и для непрерывной работы двигателя. Конденсаторам в пластиковой оболочке (так называемые «самовосстанавливающиеся») следует отдавать предпочтение конденсаторам, упакованным в алюминий (старое поколение).

Для изменения направления вращения двигателя необходимо перекрестить 2 провода сектора.

Крепление:

Для подключения нашего трехдвигательного двигателя 380 В к моно 220 В (фаза + нейтраль) мы будем использовать треугольную муфту.

Подключим например: фазу в «u», нейтраль в «v», и нужно будет добавить конденсатор между «v» и «w»

Очень важно!

Конденсатор должен иметь напряжение более 230 В и переменный ток ??~, НИКОГДА не используйте поляризованный конденсатор, иначе он взорвется!

Обычная емкость конденсатора выражается в микрофарадах «мкф»

Чтобы найти его значение, достаточно мощность в л. с. умножить на 50.

Пример: двигатель мощностью 250 Вт (0,25 кВт)

 для начала вам нужно преобразовать ватты в лошадиные силы. для этого делим ватты на 736 (1 л.с. = 736 Вт)

В нашем примере 250/736 = 0,34 л.с., наш двигатель 0,34 л.с.

Чтобы найти емкость конденсатора: 0,34 x 50 = 17, значит, для работы двигателя мощностью 0,25 кВт требуется конденсатор емкостью 17 мкФ.

Если номинал конденсатора меньше 17 мкф, то двигатель будет работать намного хуже, либо вообще не будет.

Если значение больше 17 мкФ, это вообще не раздражает.

Резюме:

  C = 50 x P

C = емкость конденсатора в микрофарадах «мкф»

P = мощность двигателя в л.с. :

Вт = кВт x 1000 ——- пример ——- 0,25 кВт x 1000 = 250 Вт

Чтобы преобразовать Вт (ватт) в CV (лошадей):

CH = Вт / 736 ——- пример ——- 250 Вт/736 = 0,34 л.с.

*** Справка: Конденсаторы ***

Если у вас нет конденсатора нужного номинала, вы можете ассоциировать несколько:

Конденсаторы:

Соединение нескольких конденсаторов

— При добавлении дополнительных значений номиналов или ответвлений параллельно.

Пример: C1=10 мкФ и C2=15 мкФ => C total = 25 мкФ

пример: C всего = 1 / ( ( 1 / C1 ) + ( 1 / C2 ))

( 1 / 10 ) = 0,1 ; (1/15)=0,0666666

(1/10) + (1/15)=0,1666666

1 / ( ( 1 / 10 ) + ( 1 / 15 ) ) = 6

C1=10 мкФ и C2=15 мкФ => Ctotal = 6 мкФ

*** Помощник: le Bornier du moteur***

При наличии трехфазного двигателя для подключения к однофазному сектору есть несколько решений.

Это конденсаторная сборка, о которой пойдет речь

Важно:

Подключение трехфазного двигателя к моно с конденсатором снижает его выходную мощность. Мы теряем в среднем 30% полезной мощности и 50% при запуске.

В столовых приборах эта система будет хорошо работать для машин, которые не запускаются под нагрузкой, например барабан или полировальная машина. Не используйте этот узел для двигателей, которые начинают заряжаться или большой мощности в качестве задней стойки или песта.

Все системы с конденсаторами еще прихватки, которые могут работать хорошо, но результат никогда не гарантирован, надо пробовать и тестировать.

Конденсатор можно купить девятку (штуки техники) а так же восстановить на старый двигатель или стиральную машину. Всегда убедитесь, что это конденсатор для 230 В переменного тока (поэтому неполяризованный) и для непрерывной работы двигателя. Конденсаторам в пластиковой оболочке (так называемые «самовосстанавливающиеся») следует отдавать предпочтение конденсаторам, упакованным в алюминий (старое поколение).

Для изменения направления вращения двигателя необходимо перекрестить 2 провода сектора.

Крепление:

Для подключения нашего трехцилиндрового двигателя 380 В к моно 220 В (фаза + нейтраль) мы будем использовать треугольную муфту.

Подключим например: фазу в «u», нейтраль в «v», и нужно будет добавить конденсатор между «v» и «w»

Очень важно!

Конденсатор должен иметь напряжение более 230 В и переменный ток ??~, НИКОГДА не используйте поляризованный конденсатор, иначе он взорвется!

Обычная емкость конденсатора выражается в микрофарадах «мкФ»

Чтобы найти его значение, достаточно мощность в л. с. умножить на 50.

Пример: двигатель мощностью 250 Вт (0,25 кВт)

должны преобразовать ватты в лошадей. для этого делим ватты на 736 (1 л.с. = 736 Вт)

В нашем примере 250/736 = 0,34 л.с., наш двигатель 0,34 л.с.

Чтобы найти емкость конденсатора: 0,34 x 50 = 17, значит, для работы двигателя мощностью 0,25 кВт требуется конденсатор емкостью 17 мкФ.

Если номинал конденсатора меньше 17 мкФ, мотор будет работать намного хуже, либо вообще не будет.

Если значение больше 17 мкф, то это вообще не раздражает.

Резюме:

  C = 50 x P

C = емкость конденсатора в микрофарадах «мкф»

P = мощность двигателя в л.с. :

Вт = кВт x 1000 ——- пример ——- 0,25 кВт x 1000 = 250 Вт

Преобразование Вт (ватт) в CV (лошадей):

CH = w/736 ——- пример ——- 250 w/736 = 0,34 л.с.

*** Справка: Конденсаторы ***

Если у вас нет конденсатора правильное значение, вы можете связать несколько:

Конденсаторы:

Соединение нескольких конденсаторов

— При добавлении дополнительных значений, которые можно разделить параллельно.

Пример: C1=10 мкФ и C2=15 мкФ => C total = 25 мкФ

пример: C всего = 1 / ( ( 1 / C1 ) + ( 1 / C2 ))

(1/10) = 0,1; (1/15)=0,0666666

(1/10) + (1/15)=0,1666666

1/((1/10) + (1/15)) = 6

C1=10 мкФ et C2=15 мкФ => Ctotal = 6 мкФ

*** Помощник: le Bornier du moteur***

Подписаться на:
Сообщение Комментарии (Атом)

Подключение трехфазного двигателя к однофазной и трехфазной сети

Из всех типов электроприводов наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, отсутствует щеточно-коллекторный узел. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит практически вечно. Но есть одна проблема — большинство асинхронных двигателей, которые можно купить на ближайшей барахолке, трехфазные, так как предназначены для использования на производстве. Несмотря на тенденцию перехода на трехфазное электроснабжение в нашей стране, подавляющее большинство домов по-прежнему с однофазным вводом. Поэтому давайте разберемся, как подключить трехфазный двигатель к однофазной и трехфазной сети.

  • Что такое звезда и треугольник в электродвигателе
  • Подключение к трехфазной сети
  • Подключение к однофазной сети

Что такое звезда и треугольник в электродвигателе

Для начала разберемся, какие бывают схемы соединения обмоток. Известно, что односкоростной трехфазный асинхронный электродвигатель имеет три обмотки. Подключаются двумя способами, по схемам:

  • звезда;
  • треугольник.

Такие способы подключения характерны для любого типа трехфазной нагрузки, а не только для электродвигателей. Вот как они выглядят на схеме:

Питающие провода подключаются к клеммной колодке, которая находится в специальной коробке. Его называют брно или борно. Он выводит провода от обмоток и крепится к клеммникам. Сама коробка снимается с корпуса двигателя, как и расположенные в ней клеммники.

В зависимости от конструкции двигателя брно может иметь 3 провода, а может и 6 проводов. Если проводов 3, то обмотки уже соединены по схеме звезда или треугольник и при необходимости их нельзя быстро переключать, для этого нужно вскрывать корпус, искать соединение, разъединять его и делать изгибы.

Если в Брно 6 проводов, что встречается чаще, то в зависимости от характеристик двигателя и напряжения сети (см. ниже) можно соединить обмотки так, как считаете нужным. Ниже вы видите брно и клеммники, которые в нем установлены. Для 3-х проводного варианта в клеммной колодке будет 3 контакта, а для 6-ти проводного — 6 контактов.

Начало и концы обмоток соединяются со шпильками не просто «абы как» или «как удобно», а в строго определенном порядке, чтобы можно было соединить треугольник и звезду одним комплектом перемычек. То есть начало первой обмотки над концом третьей, начало второй обмотки над концом первой и начало третьей над концом второй.

Таким образом, если установить перемычки на нижние выводы клеммной колодки в линию, получится соединение обмотки звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На «заводских» двигателях в качестве перемычек используются медные шины, что удобно использовать для подключения – не нужно гнуть провода.

Кстати, на крышках ответвлений электродвигателя часто нанесено расположение перемычек этих цепей.

Подключение к трехфазной сети

Теперь, когда мы разобрались, как связаны обмотки, давайте разберемся, как они подключаются к сети.

6-проводные двигатели позволяют переключать обмотки для различных напряжений питания. Так получили распространение электродвигатели с питающими напряжениями:

  • 380/220;
  • 660/380;
  • 220/127.

Причем больше напряжение для схемы соединения звезда, а меньше для треугольника.

Дело в том, что не всегда трехфазная сеть имеет привычное напряжение 380В. Например, на кораблях есть сеть с изолированной нейтралью (без нуля) 220В, а в старых советских постройках первой половины прошлого века и сейчас иногда есть сеть 127/220В. Пока сеть с линейным напряжением 660В встречается редко, чаще в производстве.

О различиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: https://my.electricianexp.com/ru/linejnoe-i-faznoe-napryzhenie.html.

Итак, если вам необходимо подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите напряжение питания.

Электродвигатели на шильдике которых указано 380/220 к нашим сетям можно подключать только звездой. Если вместо 380/220 написано 660/380 — соедините обмотки треугольником. Если вам не повезло и у вас старенький двигатель 220/127, то либо понижающий трансформатор, либо однофазный тут нужен преобразователь частоты с трехфазным выходом (3х220). В противном случае подключить его к трем фазам 380/220 не получится.

Наихудший сценарий, когда номинальное напряжение трехпроводного двигателя с неизвестной цепью обмотки. В этом случае нужно вскрывать корпус и искать точку их соединения и, если возможно, и они соединены по схеме треугольника — переделывать в схему звезда.

С подключением обмоток разобрались, теперь поговорим о том, какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками на номинальное напряжение 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод на ноль, а не на фазу «В».

Электродвигатели почти всегда подключаются через магнитный выключатель (или контактор) Схему подключения без реверса и самоподхвата вы видите ниже. Он работает таким образом, что двигатель будет вращаться только при нажатии кнопки на панели управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты при удержании нажатыми, как те, что используются в клавиатурах, мышах и дверных звонках.

Принцип работы данной схемы: при нажатии кнопки «ПУСК» через катушку контактора КМ-1 начинает протекать ток, в результате якорь контактора притягивается и силовые контакты контактора КМ-1 закрываются, двигатель начинает работать. Когда вы отпустите кнопку СТАРТ, двигатель остановится. QF-1 представляет собой автоматический выключатель, обесточивающий как силовую цепь, так и цепь управления.

Если вам нужно, чтобы вы нажали на кнопку и вал начал вращаться — вместо кнопки поставьте тумблер или кнопку с защелкой, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.

Но делают это нечасто. Чаще электродвигатели запускаются с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — контактная колодка пускателя (или контактора), включенная параллельно кнопке «ПУСК». Такую схему можно использовать для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одну сторону.

Принцип работы схемы:

При включении автоматического выключателя QF-1 на силовых контактах контактора и цепи управления появляется напряжение. Кнопка СТОП нормально замкнута, т. е. ее контакты размыкаются при нажатии на нее. Через «СТОП» подается напряжение на нормально разомкнутую кнопку «СТАРТ», контакт блока, и в конечном счете катушку, поэтому при ее нажатии происходит цепь управления катушкой будет обесточена и контактор выключится.

На практике в кнопочном посте каждая кнопка имеет нормально разомкнутую и нормально замкнутую пару контактов, выводы которых расположены с разных сторон кнопки (см. фото ниже).

При нажатии на кнопку «СТАРТ» через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается как А1 и А2) начинает протекать ток, в результате его якорь притягивается и мощность контакты КМ-1 замкнуты. КМ-1.1 — нормально разомкнутый (НО) блок-контакт контактора, при подаче напряжения на катушку замыкается одновременно с силовыми контактами и шунтирует кнопку «СТАРТ».

После отпускания кнопки «ПУСК» двигатель продолжит работу, так как ток на катушку контактора теперь подается через контакт блока КМ-1.1.

Это называется «самоблокирующийся».

Основная трудность, которая возникает у новичков в понимании этой базовой схемы, заключается в том, что не сразу становится понятно, что пост кнопки находится в одном месте, а контакторы в другом. При этом КМ-1.1, подключаемый параллельно кнопке «СТАРТ», реально может находиться в пределах десятка метров.

Если Вам необходимо, чтобы вал двигателя вращался в обе стороны, например, на лебедке или другом грузоподъемном механизме, а также на различных станках (токарных и др.) — используйте схему подключения трехфазного двигателя с реверсом .

Кстати, эту схему часто называют «схемой обратного стартера».

Реверсивные схемы подключения представляют собой две нереверсивные схемы подключения с некоторыми изменениями. КМ-1.2 и КМ-2.2 — нормально замкнутые (НЗ) блок-контакты контакторов. Они включены в цепь управления катушкой встречного контактора, это так называемая «защита от дурака», она нужна для того, чтобы не произошло межфазного замыкания в силовой цепи.

Между кнопкой «ВПЕРЕД» или «НАЗАД» (назначение их то же, что и в предыдущей схеме для «ПУСК») и катушкой первого контактора (КМ-1) нормально-замкнутый (НЗ) блок-контакт подключен второй контактор (КМ-2). Таким образом, при включении КМ-2 нормально-замкнутый контакт соответственно размыкается и КМ-1 не включится, даже если нажать «ВПЕРЕД».

Наоборот, НК от КМ-2 устанавливается в цепи управления КМ-1, для предотвращения их одновременного включения.

Для запуска двигателя в обратном направлении, то есть для включения второго контактора, необходимо отключить существующий контактор. Для этого необходимо нажать кнопку СТОП, при этом цепь управления двумя контакторами обесточивается, а после этого нажать кнопку пуска в обратном направлении вращения.

Это необходимо для предотвращения короткого замыкания в цепи питания. Обратите внимание на левую часть схемы, отличия в подключении силовых контактов КМ-1 и КМ-2 заключаются в порядке подключения фаз. Как известно, для изменения направления вращения асинхронного двигателя (реверс) нужно поменять местами 2 из 3-х фаз (любых), здесь фазы 1 и 3 перепутаны местами.

В остальном работа схемы аналогична предыдущей.

Кстати, на советских пускателях и контакторах были совмещенные блочные контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов необходимо установить сверху приставку блочного контакта, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.

Подключение к однофазной сети

Для подключения трехфазного электродвигателя 380В к однофазной сети 220В чаще всего применяют схему фазосдвигающие конденсаторы (пусковые и рабочие). Без конденсаторов двигатель может запуститься, но только без нагрузки, а его вал при запуске придется раскручивать вручную.

Проблема в том, что для работы АД нужно вращающееся магнитное поле, которое невозможно получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения на -90˚, а с помощью конденсатора +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз рассмотрен в статье: https://my. electricianexp.com/ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Чаще всего для сдвига фаз используются именно конденсаторы, а не дроссели. Таким образом, он не вращающийся, а эллиптический. В результате вы теряете примерно половину мощности от номинальной. Однофазные АД лучше работают при таком включении, в связи с тем, что их обмотки изначально рассчитаны и расположены на статоре для такого включения.

Типовые схемы подключения двигателей без реверса для схем звезда или треугольник показаны ниже.

Резистор на схеме ниже нужен для разряда конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.

Емкость конденсатора для подключения трехфазного двигателя к однофазной сети можно выбрать на основании приведенной ниже таблицы. Если вы наблюдаете сложный и затяжной запуск, вам часто требуется увеличить пусковую (а иногда и рабочую) мощность.

Или посчитайте по формулам:

Если двигатель мощный или запускается под нагрузкой (например, в компрессоре), необходимо подключить пусковой конденсатор.

Для упрощения включения вместо кнопки «РАЗГОН» использовать «ПНВС». Это кнопка запуска двигателей с пусковым конденсатором. У нее три контакта, к двум из них подключаются фаза и ноль, а через третий — пусковой конденсатор. На передней панели две клавиши – «СТАРТ» и «СТОП» (как на станках АП-50).

При включении двигателя и нажатии первой клавиши до упора замыкаются три контакта, после раскрутки двигателя и отпускании «СТАРТ» средний контакт размыкается, а два крайних контакта остаются замкнутыми, пусковой конденсатор удаляется из цепи. При нажатии кнопки STOP все контакты размыкаются. Схема подключения практически такая же.

Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:

Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом представлена ​​ниже. Переключатель SA1 отвечает за реверс.

Обмотки двигателя 380/220 соединены треугольником, а у двигателей 220/127 звездой, так что напряжение питания (220 вольт) соответствует номинальному напряжению обмоток. Если вывода всего три, а не шесть, то поменять схемы подключения обмоток без вскрытия не получится. Здесь есть два варианта:

  1. Номинальное напряжение 3×220В — вам повезло, используйте приведенные выше схемы.
  2. Номинальное напряжение 3х380В — вам повезло меньше, так как двигатель может плохо запуститься или вообще не запуститься, если вы подключите его к сети 220В, но попробовать стоит, наверняка получится!

А вот при подключении электродвигателя 380В к 1 фазе 220В через конденсаторы возникает одна большая проблема — потеря мощности. Они могут достигать 40-50%.

Основным и эффективным способом подключения без потери мощности является использование частотника. Однофазные преобразователи частоты выдают 3 фазы с линейным напряжением 220В без нуля. Таким образом, можно подключать двигатели до 5 кВт, для большей мощности преобразователи, способные работать с однофазным вводом, просто большая редкость.