Повышение кпд двигателя: Ученые нашли способ повысить КПД автомобильных двигателей

Как повысить кпд двигателя внутреннего сгорания

10 марта 2019      Двигатель и КПП

 Повышение КПД двигателя внутреннего сгорания (ДВС) интересует многих автолюбителей. Дело в том, что какую бы машину Вы не купили, всегда хочется иметь более мощный двигатель и ездить быстрее.

Как ни странно, но эти мечты осуществимы. Мощность двигателя можно увеличить. Кроме того можно изменить расход топлива и экологический класс вашего автомобиля.

Но начнём с простого. У бензинового двигателя внутреннего сгорания (ДВС) для воспламенения топливно-воздушной смеси используется свеча зажигания. У дизельного двигателя применяется форсунка.

Чтобы они более эффективно работали, обеспечивая хорошее воспламенение смеси, необходимо подавать на них высокую энергию.

Для дизельной форсунки важна не только конструкция (а конструктив важен и для свечи зажигания), но и давление питающего ее насоса. Для свечи бензинового ДВС важно напряжение, коммутируемое на первичную обмотку катушки зажигания. Поэтому насосы с повышенным давлением для дизельных форсунок и системы тиристорного зажигания для свечного поджига бензиновых моторов, повышают КПД и мощность двигателя.

ПОВЫШЕНИЕ КПД ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Если так просто повысить КПД двигателя, то почему этим не пользуются авто производители? Пользуются! Но только для коммерческих грузовиков и генераторов. Ведь у них КПД превышает 80%, при 60% у обычных. Стоя рядом с работающим грузовым автомобилем Volvo или Iveco, ощущается запах озона, а не дизельной гари. То же и с дизельными генераторами ведущих фирм.

Что касается автомобилей некоммерческих, тут есть две причины – обе, правда, коммерческие.

Первое – это очевидный корпоративный сговор о том, что легковой автомобиль не должен быть слишком экономичным. Ведь нефть нужно продавать. И если применяются технологии, снижающие расход топлива, то конечный потребитель сильно переплачивает за них в соответствии с ценой автомобиля.

Второе – это усложнение конструкции, которое также отражается на стоимости автомобиля, а последняя – на конкурентных качествах. Апологетами можно назвать Ford Mondeo (класс “C”) и Ford Ka (класс “A”), которые ухитрялись расходовать одинаковое количество бензина – 8 литров на 100 километров пробега. Как говорится, “почувствуйте разницу”. На “хитрые решения” наподобие повышения давления на насосе впрыска или тиристорного зажигания фирмы не идут по совокупности описанных двух факторов.

Рекомендуем прочитать  Какие свечи зажигания лучше выбрать для автомобиля

Итак, переходим к самому интересному: полезные хитрости. Естественно, что их применение требует дополнительных мер безопасности! Все должно делаться “правильными” руками, иначе возрастает риск возгорания автомобиля.

КАК ПОВЫСИТЬ КПД ДВИГАТЕЛЯ

Подгонка ТНВД- топливного насоса высокого давления. Он есть даже в системах с электронным управлением впрыска. С помощью установки нагнетающего насоса от бензиновой системы впрыска стоимостью около $100 можно получить до 10-16 Бар на входе в насос высокого давления.

Для профилактики преждевременного износа шестерен и плунжеров этого дорогостоящего агрегата стоит поставить насос подкачки с генератором тока. Обычная 20 Вт лампочка соединенная последовательно с мотором насоса дает ограничение давления на выходе 1 Бар. Это предотвращает сухое трение в вакуумных пузырях топлива при засорении топливного фильтра грязью или парафином.
Такая хитрость позволяет продлить срок жизни ТНВД, в особенности – там, где холодные зимы. Дело в том, что моторчик подкачки еще и подогревает солярку.

Существуют некоторые опасности при неправильной настройке. Это прорыв магистрали от насоса к входному фильтру ТНВД, так как рассчитана она на вакуумирование, а не на высокое давление. Соединения могут пропускать, а то и рассоединяться.

Кстати, наибольшее количество “убитых” ТНВД и плохого запуска дизельного двигателя, как раз и приходится на “подсос” воздуха во всасывающей магистрали топлива. А это даже в напорных трубопроводах при фланцевых соединениях имеет место быть (форвакуумный, или инжекторный эффект).

ЗАЖИГАНИЕ

По тиристорному зажиганию пишут много неправды про то, что искра сильнее, но короче. Это не так. Если на первичную обмотку катушки зажигания подаётся 300 вольт вместо 15, то вполне естественно, что при том же токе потребления в 5 ампер то же количество энергии будет израсходовано примерно за 1/20. На самом деле – около 1/10-1/5, в зависимости от конструкции LC контура и величины зазора.

Рекомендуем прочитать  АКПП — как правильно пользоваться коробкой автомат

Но никто же не ограничивает в мощности накачки в разумных пределах! И 15, и даже 30 ампер большинство электро систем автомобиля выдерживают: при 80 амперных генераторах можно себе позволить. Свечи, конечно, будут изнашиваться быстрее, но обычная толсто электродная свеча будет жить как высокотехнологичная.
Кстати, на двух электродных катушках зажигания она работает всего 5000 километров при условии смены полярности – электрод распыляется на одном полюсе катушки. И в качестве бонуса – 30% экономии топлива!

Почему важна продолжительная искра? Что происходит, если укоротить искру? Машина попросту не едет: сняли конденсатор с катушки зажигания, и мотор “не тянет”. Заводится, крутится вхолостую, а тяги нету даже чтобы тронуться. В цилиндрах происходит эффект вакуумной бомбы: один импульс поджигает небольшой шарик объема топлива, а дальше идёт процесс горения, а не фронтового воспламенения… “Бомба маленькая была”.

После ее подрыва вернувшаяся назад волна с уплотненным фронтом (эффект укладывания обломков в кучку на месте взрыва) не встречает дружественно поджигающей искры. Этот вариант аналогичен тому, когда дизельная форсунка не распыляет топливо. Крупные капли плохо горят.

ТЕРИСТОРНОЕ ЗАЖИГАНИЕ

Поэтому было придумано много искровое тиристорное зажигание. В нем количество искр определяется количеством периодов накачивающего генератора в отведенный промежуток времени для поджига. Подбирать нужно к конструкции системы зажигания, объему цилиндра и конструкции поршня.

У BMW – купольные поршни, что является наилучшим вариантом. Отсюда и любовь владельцев “москвичей” к тиристорным системам зажигания. О обратный фронт очень быстро возвращается, и искра может быть короткой. Это – один из факторов “вечной жизни” свечей в старых моторах BMW.

Относительно обычного транзисторного зажигания, система получается намного сложнее и опаснее. Мало того, что такая искра способна ударить током, так и 300 вольт, подаваемые на первичную обмотку катушки зажигания, способны убить горе-специалиста автосервиса (а там, похоже, только такие остались).

Рекомендуем прочитать  Как работает коробка передач автомат- АКПП

Тем не менее, система зажиганию Common Rail по цене намного дороже и конструктивно сложнее. Вдобавок, эта система как правило сильно изнашивает поршневую. Но зато, это в духе современной коммерции: платите в кассы! А мы за это продадим вам призрачное преимущество – большую мощность двигателя при том же объеме. Неужели просто объем больше нельзя поставить, загнав его в нужный режим по крутящему моменту компьютером, как у BMW?

Чип тюнинг двигателя

Кроме того, что мы Вам рассказали, есть и самый простой способ повысить КПД двигателя. Увеличить мощность мотора любого автомобиля можно не только на бензиновом но и дизельном силовом агрегате. С этой целью используется Чип Тюнинг двигателя.

В обычном бензиновом двигателе, без турбо наддува, чип тюнингом можно добиться большего нагнетания горючей смеси в цилиндры. Изменить режимы работы различных систем. Можно экспериментировать с установкой более высоких углов опережения системы зажигания. Менять показатель ограничения количества оборотов и многое другое.

У турбированных моторах можно изменять максимальное давление и настройку момента запуска турбо наддува.

Чип тюнинг увеличивает мощность и крутящий момент бензинового атмосферного двигателя на 5–10 %. Это относится и к атмосферным дизельным моторам. Стоит заметить, что чип тюнинг турбированного дизельного двигателя позволяет увеличить его мощность на 20–25 %. Кроме того крутящий момент увеличивается до 30%.

Метки: КПД двигателя

История появления тюнинга легковых автомобилей

Предыдущая запись

Dayanis Garcia – девушки и авто

Следующая запись

Повышение КПД двигательных установок способом рекуперации сбросного тепла от их работы с помощью парового двигателя Емелина

Повышение КПД двигательных установок способом рекуперации сбросного тепла от их работы с помощью парового двигателя Емелина, на примере паротурбинной и дизельной силовой установки.

В статье описан принцип действия и конструкция парового двигателя Емелина. Описано применение устройства с целью повышения КПД двух таких распространённых типов двигателей как паровая турбина и дизельный двигатель. Рассказано об аспектах работы паровой турбины, ограничивающих её КПД.

Известно, что все существующие в настоящее время типы двигателей прошли большой путь развития и достигли высокой степени совершенства. КПД современного дизельного двигателя 40-45%, бензинового двигателя около 30%, КПД современных паротурбинных силовых установок достигает 40–42 %. В попытках повысить КПД инженеры борются сейчас уже не за проценты, а за доли процентов. Одним из способов значительно повысить КПД, является рекуперация тепла, вырабатываемого двигателям, получение за счёт этого дополнительной механической энергии и снижения за счёт этого расхода топлива. Например, у дизельного двигателя около 60 процентов тепловой энергии теряются в виде тепла, причем примерно половина из них это теплота выхлопных газов, а остальное — теплота, поглощённая в системе охлаждения двигателя.

Почему именно это устройство?

Двигатель Емелина способен использовать для своей работы пар низкого давления, с высокой степенью влажности. Это уникальное свойство, присущее только этому типу парового двигателя, позволяет эффективно использовать бросовую теплоту, остающуюся после работы технических устройств и рекуперировать её в полезную механическую энергию на валу. В том числе способен использовать теплоту, остающуюся после работы паровой турбины и двигателя внутреннего сгорания. Изобретение защищено заявкой в Роспатент №  2013129116 от 25 июня 2013г. Полное название: «Способ преобразования тепловой энергии в механическую с помощью двигателя внешнего сгорания и двигатель Емелина»

А будет-ли это работать?

Увидев чертежи этого двигателя, многие воскликнут: «Что-же тут нового! Этот механизм давно известен и широко используется в технике!» Это и к лучшему. Меньше сомнений в работоспособности предложенного технического решения. Основу конструкции двигателя составляет ротационно-лопастной механизм. Известны: пневматический двигатель, газовый компрессор, гидравлический мотор и гидравлический насос ротационно-лопастной конструкции. Теперь появился и ротационно-лопастной паровой двигатель, он же двигатель Емелина.

Рассмотрим аспекты работы паровой турбины.

Скорость потока пара внутри турбины превышает скорость звука. Большая скорость необходима для получения большой мощности. Пока пар сухой, горячий, турбина работает отлично. Но пар, совершая механическую работу, теряет температуру и набирает влажность. Внутри потока пара появляются мелкие капли жидкой воды и начинают увеличиваться в размерах.

Известно, что капля воды диаметром 2 мм, движущаяся со скоростью 750 м/с, вызывает разрушение алмаза, карбида вольфрама и деформацию высокопрочных сплавов. При меньших скоростях – порядка 200-600 м/с, многократные удары вызывают эрозию материала. Появляются и растут усталостные микротрещины внутри поверхностного слоя материала лопаток турбины. Затем начинается выкрашивание частиц металла. Это явление называется каплеударной эрозией. Появляется дисбаланс, вибрации, и как результат- поломки лопаток. 

Как это выглядит, видно на фотографиях с комментариями, с сайта научно-технического журнала «Надежность и безопасность энергетики», адрес в интернете http://www.sigma08.ru/jur1-11.htm

  

Рис. 1а и 1б. Эрозия входных кромок рабочих лопаток ротора низкого давления турбин Т-250/300-240. Наиболее часто возникающий дефект этих лопаток – эрозионный износ входных кромок. Рабочие лопатки последних ступеней изготавливаются из стали 15Х11МФ и связываются тремя рядами демпферных связей из двух разных материалов – титанового сплава ВТ-5 (наружная связь) и стали 20Х13 (внутренние связи).

Можно подать на вход турбины пар такого высокого давления и температуры, что на выходе турбины пар будет иметь низкую влажность. Лопатки турбины будут работать неограниченно долго. Но из-за плохого использования теплоты конденсации упадёт общий КПД процесса. Остаточная теплоемкость пара будет очень велика.

Можно наоборот, подать на вход турбины пар относительно небольшого давления. Влажность пара на выходе турбины будет высокая. Благодаря хорошему использованию теплоты конденсации общий КПД процесса будет высокий. Но из-за каплеударной эрозии лопаток ресурс турбины будет низким.

Вывод: У паровой турбины КПД находится в противоречие с ресурсом. Чем выше КПД, тем ниже ресурс и наоборот.

На практике применяют компромиссный вариант. Выбирают такой режим работы, при котором влажность пара на выходе из турбины составляет 13-14%. Ресурс турбины при этом составляет несколько лет. Хотя конечный итог всегда одинаковый-капитальный ремонт с заменой лопаток. Для защиты от повреждений, наносимых каплеударной эрозией, применяют высокопрочные высоколегированные стали и сплавы, специальные виды термообработки, многослойные покрытия и т.д. В результате характеристики улучшаются, но гораздо скромнее, чем хотелось бы. Проблема капле-ударной эрозии стоит как непреодолимая преграда на пути повышения КПД паровых турбин.

Но ведь если проблема не решается «в лоб», можно найти обходное решение. Например, можно пар, достигший критической для турбины степени влажности, дорабатывать на паровой машине, работающей по другому принципу, которая способна использовать влажный пар низкого давления без ущерба для своей работоспособности. Именно таким является паровой двигатель Емелина.

О том, какой КПД будет иметь связка паровая турбина плюс паровой двигатель Емелина, сейчас можно только гадать. Можно надеяться, что к 40% КПД паровой турбины двигатель Емелина добавит 15-20%, по скромным прикидкам. Остаточная теплоемкость пара, после работы в двух паровых машинах, будет относительно небольшой и может быть рассеяна в радиаторе, охлаждаемом набегающим потоком воздуха, аналогично радиатору системы охлаждения автомобиля или тепловоза. Пар будет конденсироваться в воду и снова подаваться в паровой котёл. Таким образом, будет обеспечен полностью замкнутый оборот воды. Важным следствием будет являться то, что паровая силовая установка станет независимой от источников воды, по настоящему мобильной.

Повышение КПД двигателя автомобиля

Одним из способов значительно повысить КПД автомобильного двигателя внутреннего сгорания, является рекуперация тепла, вырабатываемого двигателем и снижения за счёт этого расхода топлива. Попытки решения этой задачи предпринимались неоднократно. Последнюю по времени такую попытку предприняли разработчики баварского концерна BMW. Проект называется Turbosteamer. Система Turbosteamer состоит из двух ключевых узлов. Первый — двухступенчатый теплообменник, в котором выхлопные газы нагревают рабочую жидкость, превращающуюся в результате в пар высокого давления с температурой несколько сотен градусов. Второй главный узел — паровая турбина, куда перегретый пар поступает по магистрали, расширяется и выполняет полезную работу, помогая вращаться коленчатому валу основного мотора. После прохождения через турбину пар преобразуется обратно в жидкость в теплообменнике-конденсаторе, прежде чем попасть обратно в резервуар жидкости.

Остаточная теплота пара через теплообменник передается жидкости системы охлаждения двигателя и рассеивается в атмосфере с помощью радиатора. Экономичность двигателя возрастает на 10%-15%. Естественно, радиатор системы охлаждения должен иметь увеличенные размеры.

То, что прирост эффективности составляет всего 10%-15%, объясняется просто. Малогабаритная турбина имеет те-же недостатки, что и большая, Не способна использовать пар с влажностью выше 13-14% и потому КПД процесса не более 40%.

Усовершенствовать такую систему рекуперации тепла можно, заменив паровую турбину паровым двигателем Емелина. Причём в данном случае он может применяться самостоятельно, а не в связке с турбиной.

Такое техническое решение имеет следующие преимущества:

  • Генератор пара будет настроен на выработку пара низкого давления. Пар низкого давления безопаснее, чем пар высокого давления, требуемый для работы паровой турбины.
  • Меньше остаточная теплоёмкость отработавшего пара, требуется радиатор охлаждения меньшего размера
  • Меньше вес, не требуются толстые стенки, способные выдерживать большое давление

Для работы в составе автомобильной двигательной установки двигатель Емелина имеет полезные опции. Предусмотрена возможность предварительного прогрева перед пуском после нахождения в условиях отрицательных температур. Предусмотрен режим запуска двигателя с обеспечением максимального вращающего момента, начиная с нулевой скорости вращения.

 

Устройство двигателя Емелина

Двигатель состоит из статора 1, ротора 2, имеющего вал. На валу ротора установлен шкив (или звездочка или шестерня или полумуфта, в зависимости от типа передачи), закрепленный при помощи гайки. К торцам статора 1 с обеих сторон прикреплены при помощи болтов передняя и задняя крышки, соответственно 3 и 4.  В пазах ротора 2 свободно установлены лопатки 5. Ротор 2 расположен эксцентрично относительно внутренней цилиндрической поверхности статора 1. Лопатки 5 могут свободно перемещаться в пазах ротора 2 в радиальном направлении.  Вал ротора 2 установлен в двух подшипниковых узлах. В передней крышке 3 находится передний подшипниковый узел. В задней крышке 4 находится задний подшипниковый узел. В передней и задней крышках 3 и 4 установлены уплотнения.

Изюминкой конструкции парового двигателя является то, что все поверхности внутри двигателя, контактирующие с паром, покрыты фторопластом, выполняющим 3 важные функции.

1. Удаление конденсата пара из двигателя происходит под воздействием центробежной силы. Водоотталкивающие свойства фторопластового покрытия не позволяет воде задерживаться на поверхностях деталей двигателя даже в виде тонкой плёнки. Свежий пар, попадая в двигатель, не тратит никакой части своей энергии на испарение остатков воды.

2. Фторопластовое покрытие снижает трение между деталями двигателя. Фторопласт называют «Скользким чемпионом» за низкий коэффициент трения.

3. Покрытие резко снижает вредный теплообмен между паром и поверхностями деталей двигателя, поскольку теплопроводность фторопласта в 180 раз меньше, чем у стали.

Статор двигателя, состоит из гильзы, расположенной в центре, к которой с обоих торцов присоединены два фланца. На гильзе имеются: Впускные отверстия, тангенциально расположены относительно внутреннего диаметра гильзы. Для размещения впускных отверстий, на наружной поверхности гильзы имеется прилив материала. Выпускные отверстия, группа, для выброса отработавшего пара и конденсата. Расположены в шахматном порядке в пределах сектора выпуска. Внутренний диаметр гильзы покрыт фторопластом.

 

Ротор двигателя имеет пустотелую сборную  сварную конструкцию. Все поверхности ротора, кроме концов вала, имеют фторопластовое покрытие. Перед сваркой на все поверхности деталей, предназначенные под нанесение покрытия, наносят искусственную шероховатость (насечки).

Сборка ротора выполняется поочередной приваркой к валу отдельных сегментов. Сначала приваривают боковые стенки 7 сварным швом изнутри сегмента, потом к ним  шпангоуты 8 сварными швами изнутри сегмента. Потом приваривают крышку 9 наружным сварным швом. После проведения сварки наружные сварные швы зачищают. Ширина пазов между сегментами после сварки больше, чем у готового ротора, за счёт толщины покрытия на стенках. Для снятия остаточных напряжений после сварки  выполняют отжиг по технологии, обычной для сварных корпусов.

Наносят фторопластовое покрытие толщиной в несколько миллиметров, с припуском на механическую обработку. Пазы заполняют полностью материалом покрытия. При последующей механической обработке пазы вновь прорезают дисковой фрезой с использованием делительной головки. Обработку паза производят в два приема, черновое и чистовое прорезание фрезой.

Подшипниковые узлы двигателя могут иметь различные варианты конструкции, в зависимости от типов используемых подшипников. На чертеже, показан вариант конструкции с использованием в подшипниковых узлах  шариковых радиальных однорядных подшипников с защитными шайбами.

С целью недопущения перегрева подшипников, подшипниковые узлы отодвинуты от центральной, нагреваемой паром, части двигателя. Находятся в удлиненных пустотелых бобышках, снабжённых вентиляционными окнами.

Лопатки изготавливаются из листового материала, например стеклотекстолита. Покрыты со всех сторон слоем фторопласта.

 

Подготовка к работе двигателя после хранения в условиях отрицательных температур.

С целью прогрева замёрзшего двигателя, без вращения вала, в дополнительное отверстие для пара в одной из крышек 3 или 4, подают пар. Через другое отверстие пар выпускают. Пар, проходя через пазы ротора 2 под лопатками 5, вдоль оси вращения двигателя, нагревает двигатель изнутри.

 

Пуск двигателя

С целью обеспечения полного вращающего момента на валу, начиная с нулевой скорости вращения, в конструкции двигателя применено принудительное поджатие лопаток 5 к статору 1 в момент пуска.

Для этого перед пуском двигателя подают пар в дополнительное отверстие для  пара в одной из крышек 3 или 4. Дополнительное отверстие в другой крышке при этом заглушают.

Давление пара, попавшего в пазы ротора 2 под лопатки 5, раздвигает лопатки 5 и прижимает их к внутренней поверхности гильзы статора 1.

После этого подают пар во впускные отверстия в статоре 1, двигатель запускается, набирает рабочие обороты. После этого прекращают подачу пара в дополнительное отверстие в крышке. На рабочих оборотах поджатие лопаток 5 к статору 1 обеспечивается центробежными силами.

 

Работа двигателя

Пар низкого давления, поступая в двигатель через впускные отверстия, давит на выступающие части лопаток 5 и заставляет ротор 2 вращаться. Лопатки 5 при вращении прижимаются центробежной силой к внутренней поверхности статора 1, препятствуя перемещению пара из одной камеры в другую. Резко расширившись и совершив механическую работу, пар охлаждается и в нём начинается интенсивный процесс конденсации. Отработавший пар и конденсат, под действием центробежной силы, через выпускные отверстия в статоре 1, выбрасывается из двигателя. Свежий пар, поступающий в двигатель при следующем такте, встречает сухие стенки рабочих камер и не тратит энергию на испарение оставшейся жидкой воды.

 

Подробнее о принципе действия.

В отличии от паровой турбины, в которой для получения механической энергии на валу используют кинетическую энергию потока пара, в паровом двигателе Емелина для получения механической энергии на валу используют потенциальную энергию давления пара. Таким образом, по принципу действия двигатель Емелина ближе к поршневой паровой машине. Циклы работы этих двух двигателей включает одинаковые фазы:

  • фаза впуска пара, завершающаяся отсечкой заполнения
  • фаза расширения пара, совершающего механическую работу
  • фаза выпуска отработавшего пара
  • фаза сжатия оставшегося отработавшего пара
  • циклическое повторение указанных процессов

 

Собственно, конструкция двигателя Емелина появилась в результате попыток улучшить конструкцию поршневой паровой машины, устранив её недостатки. Основным недостатком поршневой паровой машины является плохое использование теплоты конденсации пара. Как известно, теплоёмкость пара состоит из двух составляющих-теплоты конденсации (парообразования) и  теплоты перегрева пара. Теплоту перегрева пара поршневая паровая машина использует отлично. Если говорить в кулинарных терминах, то для паровой машины теплота перегрева пара является полезной легкоусвояемой пищей, а теплота парообразования (конденсации) — пища тяжёлая, плохо перевариваемая. Проблема в том, что из-за особенностей физических свойств воды, теплота парообразования (конденсации) водяного пара, как правило, значительно больше теплоты перегрева пара.

Логически рассуждая, при хорошем использовании теплоты конденсации значительная часть пара будет переходить в жидкое состояние прямо внутри двигателя, в течении фазы расширения пара, совершающего механическую работу. В фазе выпуска отработавшего пара конденсат должен полностью удаляться из поршневой полости. Но выпуск из поршневой паровой машины возможен только в виде пара. Выпуск жидкости не предусмотрен конструкцией.

У поршневой паровой машины есть и другие недостатки, которые были хорошо изучены ещё во времена её широкого использования, в том числе на железнодорожном транспорте. Ниже приведена цитата из книги «Курс паровозов. Устройство и работа паровозов и техника их ремонта: 2 тома, под редакцией профессора Сергея Петровича Сыромятникова. Государственное транспортное железнодорожное издательство. Москва. 1937год. – 524 с.», том 2, стр. 31:

«Основным источником тепловых потерь, возникающих в паровом цилиндре, на почве теплообмена между паром и стенками цилиндра, является то обстоятельство, что впуск свежего и выпуск мятого пара происходит через одни и те же каналы и окна.

Порция свежего пара, попадая в цилиндр, встречает там металлические поверхности стенок, только что перед этим охлажденные током уходящего в конус отработанного пара. Вследствие этого в период впуска пара происходит интенсивное отнятие от него тепла, вызывающее в случае насыщенного пара частичную его конденсацию, а при работе перегретым паром — контракцию, т. е. снижение температуры, сопровождающееся уменьшением удельного объёма пара. И в том и в другом случае для осуществления в цилиндре заданной индикаторной работы приходится впускать в него большее количество пара, чем его требуется по теоретическому расчёту для заполнения объёма отсечки.

Отдача тепла холодным стенкам продолжается в течении всего периода впуска и на части периода расширения, пока быстро падающая при расширении температура пара не сделается ниже температуры стенок.

Начиная с этого момента, теплообмен меняет своё направление, — происходит обратная отдача тепла пару, особенно интенсивная в период предварения выпуска. К сожалению, эта запоздалая компенсация приносит мало пользы, так как в конце периода расширения тепло отдаётся пару при давлении его в цилиндре, гораздо более низком, чем в период получения тепла стенками; возвращаемое же пару тепло в период выпуска не приносит никакой пользы, так как целиком уносится в конус».   Конец цитаты.  

Недостатки поршневой паровой машины

Как это решено в двигателе Емелина

Вредный теплообмен между рабочим телом (пар) и металлическими поверхностями в поршневой полости цилиндра.

Покрытие резко снижает вредный теплообмен между паром и поверхностями деталей двигателя, поскольку теплопроводность фторопласта примерно в 180 раз ниже, чем у стали.

Впускают свежий и выпускают отработавший пар через одни и те же каналы и окна.

Впуск и выпуск происходит через раздельные отверстия и каналы

Отработавший мятый пар выпускают только в виде пара. Даже та часть пара, которая успела перейти в жидкое состояние, повторно испаряется за счёт тепла окружающей цилиндр паровой рубашки, и вместе с теплотой конденсации «целиком уносится в конус».

Удаление конденсата пара из двигателя происходит под воздействием центробежной силы. Водоотталкивающие свойства фторопластового покрытия не позволяет воде задерживаться на поверхностях деталей двигателя даже в виде тонкой плёнки. Свежий пар, попадая в двигатель, не тратит никакой части своей энергии на испарение остатков воды.

Какой величины КПД можно достичь?

Чтобы достигнуть максимального КПД, требуется максимально использовать теплоту конденсации пара, что соответствует максимально возможной конденсации пара в жидкость. Как добиться конденсации пара? Тут всё просто: пар, совершая механическую работу и одновременно расширяясь, охлаждается и конденсируется. Всё дело только в коэффициенте расширения. То-есть, во сколько раз увеличился первоначальный объём пара. Для пара низкого давления — один коэффициент расширения, для перегретого пара высокого давления потребуется гораздо больший коэффициент расширения.

Конечный результат одинаков. Пар превратится в воду. Почти весь. Небольшая часть останется в виде насыщенного пара. Если есть жидкая вода, есть и пар над её поверхностью, независимо от температуры. Даже над поверхностью снега и льда всегда есть небольшое количество водяного пара. КПД равный 100% невозможен, потому что весь пар не может перейти в жидкость. Да и для перехода всего пара в жидкость, возможно, потребуется коэффициент расширения, равный бесконечности. У любого парового двигателя коэффициент расширения пара — величина конечная и не очень большая. Практически увеличить степень расширения можно, использовав многоступенчатое расширение пара, подобно тому, как это сделано в поршневых паровых тандем-машинах. Чем больше степень расширения, тем выше КПД. Насколько близко удастся приблизиться к недостижимой отметке 100%, зависит от конструктивных ограничений. Использование больших коэффициентов расширения требует увеличенных габаритов и веса оборудования. Другими словами, чем больше габариты, тем выше КПД. Насколько большого КПД удастся достичь, покажет только время. В любом случае, паровой двигатель низкого давления должен иметь большие габариты, обусловленные большим объёмом и низкой плотностью пара.

Одно из достоинств двигателя Емелина то, что основные элементы конструкции двигателя пустотелые и тонкостенные. Это позволяет при росте габаритов сохранить вес оборудования в разумных пределах.

Тут кстати стоит вспомнить о винтовых паровых машинах, они также допускают использование влажного пара. Но их рабочие органы представляют из себя винтовые валы, выполненные из монолитной стали. При увеличении габаритов винтовых валов будет резкое нарастание веса. Это ограничивает их использование в области пара низкого давления.

 

Заявка на изобретение №  2013129116 от 25 июня 2013г.

«Способ преобразования тепловой энергии в механическую с помощью двигателя внешнего сгорания и Двигатель Емелина».

Автор: Емелин Сергей Александрович.

E-mail: [email protected]

Идея устройства создана с использованием ТРИЗ. Ход выработки технического решения освещен на сайте ТРИЗ по адресу  http://www.metodolog.ru/node/896

Статья об использовании двигателя Емелина в энергетике «Деньги на ветер или как решить проблему современной энергетики» по адресу: http://izobretatel.by/

 

10 простых способов повысить мощность двигателя

Джим Смарт

С момента появления двигателя внутреннего сгорания более века назад было сделано много обещаний: чудо-смазочные материалы, присадки к бензину, новомодные карбюраторы, свечи зажигания с форсунками и множество других чудесных путей к власти, каждый со своими разочарованиями.

Но бесплатных обедов в мире мощных двигателей не бывает. Двигатели в основном связаны с физикой, математикой и процессом преобразования тепловой энергии в механическое движение. Так как же получить больше крутки от этой тепловой энергии и вращательного движения обезьяны? У нас есть 10 быстрых и простых способов увеличить мощность вашего автомобиля и производительность двигателя. Убедитесь, что все работы выполнены правильно и не аннулируют гарантию производителя.

1. Синтетические смазочные материалы

Поскольку синтетические смазочные материалы, такие как синтетические моторные масла Mobil 1™, снижают трение, они продлевают срок службы двигателей. Синтетические смазочные материалы обеспечивают лучшую смазку между движущимися частями, чем обычные масла. Они не ломаются в условиях высоких температур и высоких нагрузок, поэтому вы видите, что они часто используются в высокопроизводительных приложениях. Они также предлагают отличные характеристики в холодную погоду и защиту от экстремальных температур. Например, синтетическое масло Mobil 1 разработано таким образом, чтобы быть более прочным с точки зрения прокачиваемости при низких температурах, стабильности при высоких температурах и защиты от отложений.

2. Зажигание

Поскольку за последние 20 лет системы зажигания стали малообслуживаемыми, мы не проверяем их до тех пор, пока не получим пропуски зажигания и не загорится индикатор «Проверьте двигатель». Факт остается фактом, обслуживание автомобиля все же должно включать в себя системы зажигания. А свечи все равно надо периодически менять. Когда придет время заменить компоненты зажигания, выберите лучшие высокопроизводительные детали зажигания, которые вы можете найти, то есть катушки, провода зажигания и свечи зажигания с платиновым наконечником.

Оригинальное оборудование — ваш лучший подход или высококачественные запасные части, такие как MSD. Причина: точное зажигание означает мощность. Пропуски зажигания или тусклый свет означают потерю мощности, расход топлива и увеличение выбросов выхлопных газов. Мощная искра от высокоэнергетической системы зажигания действительно влияет на мощность, какой бы малой она ни была. Урок здесь заключается в том, что все это приводит к значительному общему увеличению мощности.

Момент зажигания также является динамическим параметром мощности, с которым следует играть осторожно, потому что слишком большая его часть может повредить двигатель. С обычными системами зажигания с распределителем установите общий угол опережения зажигания на 2500 об/мин, начиная с 32 градусов до ВМТ (до верхней мертвой точки) с дорожных испытаний или динамометрического стенда. Затем меняйте время на один градус за раз — 33, 34, 35 и так далее вместе с дорожными/динамическими испытаниями. Никогда не превышайте общее время за 36 градусов до ВМТ.

Некоторые тюнеры работают на 38, 40 и даже 42 градусах до ВМТ, что глупо. Все, что превышает 36 градусов до ВМТ, представляет собой риск детонации. Если у вас внезапно возникнет обедненная смесь в сочетании с ранним синхронизацией, у вас может выйти из строя двигатель за наносекунду при полностью открытой дроссельной заслонке. Момент зажигания с электронным управлением двигателем требует профессионала, который знает, как настроить карты зажигания и топлива, чтобы получить мощность, не нанося вред двигателю.

3. Увеличенный корпус дроссельной заслонки и форсунки

Более крупный высокоэффективный корпус дроссельной заслонки обеспечивает большую мощность. В зависимости от того, какой тип двигателя у вас есть, вы можете получить на 10-20 лошадиных сил больше и сопоставимый крутящий момент. Однако есть одна загвоздка. Становитесь слишком большим, и вы можете потерять власть. Не каждый двигатель хорошо подходит для корпуса дроссельной заслонки большего размера, а это означает, что вам нужно заранее подготовиться. Побродите по Интернету и узнайте, что делают другие с таким же движком, и берите пример с них. Также помните, что большая дроссельная заслонка требует топливных форсунок с более высоким расходом. Размер корпуса дроссельной заслонки и форсунки пропорциональны. Вы также должны отвезти свой автомобиль к авторитетному тюнеру на динамометрическом стенде, чтобы отрегулировать кривые подачи топлива и искры, что точно настраивает модернизацию корпуса дроссельной заслонки / форсунки.

4. Компрессия

Повышение степени сжатия является наиболее продуктивным способом увеличения мощности. Создайте компрессию в вашем двигателе, и вы увеличите мощность. За более чем столетие внутреннего сгорания никогда не было более здравого способа получения энергии. Но будьте осторожны с тем, как вы повышаете компрессию. Сжатие и выбор кулачка идут рука об руку, потому что выбор кулачка также влияет на давление в цилиндре или рабочее сжатие.

Ваш изготовитель двигателя может лучше всего проконсультировать вас по компрессии и выбору кулачка. Оба должны быть выбраны в духе сотрудничества, поэтому вы получаете мощность, не повреждая свой двигатель. Сжатие выше 10,0:1 в наши дни может вызвать детонацию, искровой стук, преждевременное зажигание или то, что также известно как «пинг», если у вас недостаточно октанового числа. Следите за кривыми расхода топлива и искры, пока вы поднимаете компрессию. И помните, насосный газ уже не тот, что раньше. Тем не менее, высокооктановое неэтилированное топливо, разрешенное для использования в условиях смога, доступно в пятигаллонных канистрах, если у вас есть на это бюджет.

5. Найденная бонусная мощность

Задумайтесь об этом на минуту: ваш двигатель на самом деле производит больше мощности, чем выдает. Подумайте о мощности, теряемой из-за внутреннего трения, компонентов, которые потребляют неисчислимое количество энергии только для того, чтобы их двигать. И подумайте, сколько тепловой энергии теряется в атмосфере, которая ничего не дает для производства энергии. Знаете ли вы, что ваш двигатель тратит впустую 70-75 процентов тепловой энергии, вырабатываемой топливом/воздухом? Пятьдесят процентов из выхлопной трубы и 25 процентов через систему охлаждения. Это означает, что мы используем только 25 процентов БТЕ (британских тепловых единиц) топлива. Разговор об отходах. Это оскорбительно для экспертов по эффективности во всем мире.

Так как же уменьшить трение и высвободить энергию?

  • Ролик толкателя распределительного вала
  • Роликовые коромысла
  • Комплект ГРМ с двумя роликами
  • Звездочка кулачка с игольчатым подшипником
  • Поршневые кольца низкого напряжения
  • Увеличенные зазоры между поршнем и стенкой цилиндра (в пределах нормы)
  • Увеличенные зазоры подшипников (в пределах)
  • Увеличенные зазоры между клапаном и направляющей (в пределах допустимого)
  • Лоток лопасти (масляная форсунка на высоких оборотах снижает мощность)

Имейте в виду, что это всегда компромисс. Когда вы используете компоненты с низким коэффициентом трения, такие как роликовые толкатели и коромысла, вы выигрываете, но при этом тратите деньги. Поршневые кольца с низким натяжением и более широкие зазоры означают некоторую жертву долговечности.

Какая часть трансмиссии вашего автомобиля отнимает у вас мощность? И хотя это может звучать как старая пила, накачивание шин и размер шин/колес также являются факторами медлительности. Чем больше пятно контакта вашего автомобиля, тем больше энергии требуется для движения. Шины с недостаточным давлением заставят ваш автомобиль чувствовать себя так, будто он прикован к дереву при резком ускорении. Доведите накачку шин до предела их возможностей, в зависимости от температуры окружающей среды. Температура напрямую влияет на давление.

6. Блок скорости

Блок скорости представляет собой трубчатое устройство, которое устанавливается на входе воздуха в систему впуска двигателя, карбюратора или системы впрыска топлива и улучшает воздушный поток. Продукт снижает индукционную турбулентность, поэтому можно ожидать увеличения мощности.

7. Выбор правильного размера топливопровода

Вы можете смеяться, но удивитесь, как часто мы ошибаемся в этом вопросе. Вы не получите 450 лошадиных сил от 5/16-дюймовой топливной магистрали. Думайте об этом, как о попытке быстро налить чай со льдом через соломинку для коктейля. Вы не дотянете. Мощным двигателям нужно топливо, и его много. Минимальный размер топливопровода должен составлять 3/8 дюйма для большинства применений. Когда мощность превышает 500 лошадиных сил, вам понадобится топливопровод диаметром 7/16 дюйма.

8. Двухплоскостной коллектор

Вот еще один вариант, в котором энтузиасты производительности ошибаются чаще, чем нет. Пока мы так заняты, уделяя внимание лошадиным силам, мы забываем учитывать крутящий момент. Крутящий момент — ваш друг на улице, а не лошадиные силы. Вы хотите, чтобы крутящий момент плавно переходил в лошадиные силы при полностью открытой дроссельной заслонке. Однако с одноплоскостным впускным коллектором вы не доберетесь туда гладко.

Двухплоскостной впускной коллектор обеспечивает большой крутящий момент в диапазоне низких и средних оборотов, а также позволяет двигателю «дышать» на высоких оборотах. Это означает более высокие показатели крутящего момента во время ускорения и более высокие показатели мощности в лошадиных силах. Именно длинные впускные каналы двухплоскостного коллектора дают вам крутящий момент, а высокие потолки обеспечивают мощность. И еще: рассмотрите возможность использования проставки карбюратора, чтобы получить еще больше крутящего момента от светофора 9.0005

9. Поэкспериментируйте с размером струи

Мы снова и снова убеждаемся в динамометрических испытаниях, что смена струи может происходить в любом случае, когда речь идет о мощности. Слишком много или слишком мало может означать потерю мощности, поэтому рекомендуется взять реактивный комплект Holley и немного поэкспериментировать. Увеличивайте размер струи за раз и смотрите, что у вас получится, начиная сначала с основных, затем второстепенных. Всегда лучше ошибиться в сторону того, что богаче, чем беднее. Если вы теряете силу по мере того, как становитесь богаче, начните отступать на один размер струи за раз. Используйте показания свечи зажигания сразу после полного отключения дроссельной заслонки, чтобы определить дальнейшие действия.

Если вы используете карбюратор с сеткой топливопровода в топливном баке, снимите ее, пока вы там находитесь. Проходного топливного фильтра достаточно, и он не будет препятствовать подаче топлива.

10. Головка блока цилиндров

Было время, когда выбор головки блока цилиндров был явно скромным для тех, кто задавался вопросом, как повысить мощность двигателя. Сегодня отбор откровенно греховен. Хорошая замена головки блока цилиндров даст вам больше мощности, если вы сделаете это правильно. Больше не всегда значит лучше. Посмотрите на размер клапана и порта вместе с показателями расхода, чтобы принять взвешенное решение.

Помните, что вам нужен крутящий момент на улице, что требует хорошей скорости впуска в сочетании с совместимой продувкой выхлопных газов. Вам не нужны огромные клапаны и гигантские порты, чтобы добраться туда. Вам также нужен профиль распределительного вала, который хорошо работает с головками цилиндров, что означает хорошее перекрытие и хороший импульс потока.

Повышение эффективности двигателя внутреннего сгорания

Повышение эффективности двигателя внутреннего сгорания

Повышение эффективности двигателя внутреннего сгорания


Сегодняшняя ситуация эффективности:

ТОПЛИВО 100%

НАЖИМАНИЕ ПОРШНЕЙ 35%

ПРЕОДОЛЕНИЕ ТРЕНИЯ В ДВИГАТЕЛЕ И ПРОКАЧКА ВОЗДУХА И ТОПЛИВА

(типичные условия движения в США) 20%

Мы застряли на ~20% эффективности автомобильного двигателя?

Что можно сделать?

  1. Запустите двигатель на обедненной топливной смеси, то есть используйте избыток воздуха. Хорошо известно, что работа на обедненной топливной смеси повышает эффективность. В прежние времена в крейсерских условиях двигатели всегда работали на обедненной смеси с избытком воздуха около 15% — это было экономично. Так что же может изменить это? Проблема заключается в трехкомпонентном катализаторе (CO, UHC, NOx), используемом в выхлопных газах двигателя. Это работает только в том случае, если соотношение воздуха и топлива в двигателе (по массе) является стехиометрическим (химически правильным). Для бензина это соотношение составляет 14,6:1. Компьютер двигателя, действуя совместно с датчиком расхода воздуха двигателя, электронными топливными форсунками и датчиком кислорода в выхлопных газах, поддерживает стехиометрическое соотношение на протяжении большей части вашего вождения. Только при таком соотношении катализатор может окислять как CO, так и UHC (до CO 2 и H 2 O) и химически уменьшить NOx (до N 2 ). (UHC = несгоревшие углеводороды.) Человечеству нужен катализатор бедных NOx. Тогда мы могли бы повысить эффективность и продолжать оставаться чистыми!
  2. Также необходимы способы улучшения воспламеняемости обедненной смеси в бензиновых двигателях. То есть возможность сжигания настоящей обедненной смеси ограничена топливом. Если бензино-воздушная смесь слишком бедная, пламя не будет иметь достаточной скорости, чтобы пройти через цилиндр за время, разрешенное оборотами двигателя, которые хочет водитель, или пламя даже не запустит пропуски зажигания в цилиндре, и тогда катализатор сработает. окислять огромное количество UHC и, таким образом, может перегреться (что может означать, что вам придется купить новый катализатор).

    Фон:

    Первый курс термодинамики может научить эффективности цикла Отто (который является идеальным циклом, используемым для моделирования бензинового двигателя с искровым зажиганием). Такой курс выведет следующее уравнение для эффективности цикла Отто:

    ч

    = 1 1/р v г-1

    Степень сжатия двигателя r v . На самом деле, это объемное соотношение. Это отношение объема цилиндра, когда поршень находится в нижней части цилиндра, к объему цилиндра, когда поршень находится в верхнем положении: r v = V нижний /V верхний .

    Степень сжатия большинства автомобильных двигателей находится в диапазоне от 9 до 10,5. Отметим: чем выше степень сжатия, тем выше КПД! Параметр g представляет собой отношение удельной теплоемкости, т. е. удельной теплоемкости при постоянном давлении к удельной теплоемкости при постоянном объеме. С практической точки зрения, чем выше g, тем выше эффективность. Такой газ, как гелий или аргон, состоящий только из атомов, имеет максимально возможное значение g, равное 1,67. С другой стороны, комнатный воздух, состоящий в основном из O 9Молекулы 0120 2 и N 2 имеют g 1,4. Пары топлива имеют g меньше, чем у воздуха. Смесь воздуха и паров бензина, подаваемая в двигатель, имеет g около 1,35. Поскольку эта смесь сжимается и нагревается во время такта сжатия, ее g падает примерно до 1,33. При сгорании (когда поршень находится вблизи верхнего положения) топливо окисляется до CO 2 (и некоторого количества CO) и H 2 O, и g падает дальше. Он падает в диапазоне 1,20-1,25. Общий эффективный g для всего цикла для использования в приведенном выше уравнении эффективности составляет около 9.0093 1,27 .

    Эмпирическое правило: чем больше сложность молекул, тем меньше g. Нижний предел равен 1. Атомы аргона и гелия только транслируют, то есть движутся по прямым траекториям, пока не столкнутся с другим атомом. Молекулы воздуха в помещении перемещаются и вращаются (около 2-х своих осей). Горячий воздух начинает вибрировать (как два ядра, соединенные пружинкой). Молекулы паров топлива имеют массу возможностей колебаться даже при комнатной температуре. Продукты сгорания вибрируют. Однако только перевод молекул ТОЛКАЕТ поршень. Другие режимы молекулярного движения ничего не делают для толкания поршня. Таким образом, когда g падает (что указывает на большую вибрацию молекул), h падает. Бедный двигатель (т.е. двигатель с избытком воздуха) имеет более холодный процесс сгорания и больше воздуха по отношению к топливу, чем типичный двигатель с химически правильной смесью. Таким образом, его g выше, а его h больше.

    Подставьте g = 1,27 в приведенное выше уравнение эффективности, примите r v = 10, и вы получите h = 0,46. Умножьте это примерно на 0,75, чтобы учесть эффекты реального цикла (например, время, необходимое для сгорания, потери тепла в охлаждающую жидкость и выпускные клапаны, которые открываются до того, как поршень полностью достигнет нижнего положения), и вы получите h = 0,35. Это эффективность (приведенная выше) использования химической энергии топлива для толкания поршней. Умножьте это на механический КПД двигателя, который учитывает механическое трение в двигателе и работу по перекачиванию воздуха (и топлива), которую необходимо выполнить, и вы получите окончательный или общий КПД двигателя. Конечно, механический КПД зависит от условий вождения. Чем выше обороты двигателя, тем больше потери на трение. Чем сильнее закрыта дроссельная заслонка (т. е. чем дальше ваша нога от педали), тем выше насосные потери. Для типичного вождения в США результирующий общий КПД двигателя составляет около 20%. Обратите внимание: ваша педаль на самом деле не педаль газа, а педаль воздуха! Добавьте механические потери на трение в трансмиссии и главной оси (или потери на трение в трансмиссии) и расход нескольких основных аксессуаров, и вы получите 15% эффективности использования топлива на колесо для типичного автомобиля, эксплуатируемого в США.

  3. Более высокая степень сжатия. Здесь мы ограничены самовоспламенением бензинового стука. То есть, если компрессия бензинового двигателя выше примерно 10,5, если только октановое число топлива не высокое, происходит детонационное сгорание. Это раздражает, и если оно не исчезает, может произойти повреждение двигателя. Таким образом, эффективность бензиновых двигателей ограничена неспособностью топлива плавно сгорать в двигателях с высокой степенью сжатия.
  4. Однако это ограничение не распространяется на дизельный двигатель. Он работает с высокой степенью сжатия. Отчасти этим объясняется его высокая эффективность. Он также работает на обедненной смеси, и его насосная работа низка, что еще больше повышает его эффективность по сравнению с бензиновым двигателем. Человечеству нужны тихие, бездымные, без запаха дизеля!

  5. Нам нужны новые циклы для практического использования. Примером может служить цикл Аткинсона. Это имеет меньшую степень сжатия, чем степень расширения. Это означает, что T C уменьшается, так как продукты сгорания охлаждаются по мере расширения, что делает цикл эффективным. Мы выбрасываем меньше отработанного тепла через выхлоп.
  6. Запустите двигатель в оптимальных условиях, что означает низкое трение (умеренные обороты двигателя) и малую работу насоса (дроссель воздушной заслонки более открыт). Постарайтесь приблизиться к эффективности «толкания поршней» в 35%. Это уже происходит в некоторых стационарных поршневых двигателях, больших, тихоходных, поршневых двигателях, используемых, например, на трубопроводных компрессорных станциях. Также это важная характеристика двигателей, используемых в гибридных бензиново-электрических автомобилях. Пусть бензиновый двигатель гибридной бензино-электрической силовой установки работает только при хорошем открытии дроссельной заслонки и скромных оборотах. Пример одного типа имеющегося в продаже гибридного двигателя («параллельного» типа) можно найти по адресу: 9.0042

(

http://prius.toyota.com/technology/hybrid.html ).

Обратите внимание, что гибридная силовая установка также восстанавливает часть кинетической энергии транспортного средства, позволяя этому KE управлять электрическим генератором (во время торможения). Электрическая энергия хранится в батареях. (Обычно этот KE рассеивается в виде тепла в тормозах.) Инвертор используется для преобразования электричества постоянного тока от батарей в электричество переменного тока, необходимое для электродвигателя и создаваемое генератором.

 

______________________________

В приведенной ниже таблице сравнивается полный КПД нескольких автомобильных силовых установок. «Производство топлива» означает эффективность использования энергии при добыче, переработке и транспортировке топлива. «Eng» означает эффективность транспортного средства «топливо на колесо».