Синхронные асинхронные двигатели: Синхронный и асинхронный двигатель отличия | Полезные статьи

Содержание

Асинхронный и синхронный двигатель: в чем разница, что лучше

Асинхронні і синхронні електродвигуни — агрегати, дія яких перетворює електричну енергію в механічну. Ця функція широко затребувана в різних пристроях і механізмах. Найчастіше це прокатні верстати, компресори, поршневі насоси та ін Розберемо, в чому різниця двох видів двигунів і чим відрізняються сфери їх застосування.

 

Пристрій синхронних електродвигунів

 

Відповідь на питання, в чому різниця двигунів ховається в пристрої. Конструктивно синхронний двигун складається з:

  • рухомої частини, представленої індуктором або ротором;
  • нерухомої частини, що складається із статора або якоря;
  • щіток;
  • контактних кілець;
  • збудника;
  • вентилятора.

Статор — частина агрегату, що представляє собою сердечник з обмоток, що знаходиться всередині корпуса. Основна складова частина індуктора — електромагніти постійного струму. Сам індуктор може бути явнополюсним і неявнополюсным.

В роторі і статорі розміщуються феромагнітні сталеві сердечники, які зменшують магнітне опір і сприяю тому, щоб магнітний потік краще проходив.

Найбільш затребувані трифазні та однофазні синхронні електродвигуни, принцип роботи обох видів мало чим відрізняється. Обмотка якоря підключається до мережі при цьому ротор залишається нерухомим, а постійний струм направляється в обмотку. Коли значення середнього часу дорівнює нулю, на ротор виявляється механічний вплив, в результаті він розганяється до частоти, яка практично дорівнює частоті обертання магнітного поля, потім запускається синхронний режим.

Відмінність трифазного синхронного електродвигуна в тому, що розташування провідників має певний кут. У них з’являється магнітне поле, яке обертається з синхронною швидкістю.

 

Особливості асинхронних електродвигунів

 

Двигуни асинхронного типу відрізняються конструкцією. Статор агрегату складається із сталевих листів, в його серцевині є спеціальні пази з покладеної на них обмоткою. Осі пазів зсуваються на 120° один відносно одного.

Конструкція асинхронного електродвигуна типу може мати фазний або короткозамкнений ротор. Перший варіант передбачає наявність сердечника, що має алюмінієві стрижні, які замкнуті кільцями. Головна відмінність від фазних в тому, що останні складаються з трифазної обмотки у формі зірки.

Обертання, захист і охолодження конструкції здійснюється завдяки підшипників, валу, крильчатці, кожуха вентилятора і підшипниковий щитів.

На відміну від синхронних агрегатів статор і ротор асинхронних моделей виробляють магнітні поля, які обертаються з різною частотою. Струм в роторі індукується безконтактним способом, тому немає необхідності впровадження в систему ковзних контактів. «Змусити» обертатися агрегат в потрібну сторону можна зміною напрямку струму в обмотці.

 

Чим відрізняються асинхронні двигуни від синхронних

 

У чому різниця двох видів двигунів змінного струму? Зовнішніх відмінностей конструкції не мають, ті незначні моменти, які є непомітними навіть професіоналам. Всі важливі відмінності необхідно шукати в роторі.

В асинхронному електродвигуні ротору не потрібно живлення струмом. У синхронному деталь має обмотку збудження, що володіє незалежним живленням. І в першому, і в другому випадку статори ідентичні і виконують єдину функцію — виробляють обертове магнітне поле.

Ще одна важлива відмінність — обороти двигуна. У чому різниця оборотів проявляється з практичної сторони? Якщо конструкція вимагає постійних обертів незалежно від навантаження, що рекомендується вибирати двигун синхронного типу відповідної потужності.

 

Який двигун краще синхронний або асинхронний

 

Розібравшись, у чому різниця дух видів агрегатів, з’ясуємо, який же з них краще для тієї чи іншої задачі. Асинхронні двигуни —загальнопромислові, завдяки чому мають широку сферу застосування. Від них може працювати обладнання та верстати з відносно постійним навантаженням. Також даний тип електродвигуна актуальне, якщо зниження обертів через навантаження не провокує виникнення критичної ситуації на виробництві.

Ще у чому різниця? В ціні. Виробництво синхронних двигунів вимагає великих витрат, це робить їх вартість вище. Тому, якщо допустимо незначне зменшення кількості обертів, вибір краще зробити на користь асинхронного двигуна типу.

Синхронні найбільш затребувані в електроприводах, які не вимагають зміни частоти обертання. На відміну від асинхронних вони показують більш високий ККД. Ще один важливий момент у відповіді на питання, в чому різниця між двигунами криється в тривалості роботи. Синхронні — це великі потужності у сотні кіловат, які працюють цілодобово і практично не зупиняються.

Наш интернет-магазин предлагает купить
асинхронные электродвигатели АИР от производителя в Украине. В каталоге представлены модели различной мощности и количества оборотов, в том числе наиболее популярные и востребованные 1000, 1500, 3000 об/мин.

Чем отличается синхронный двигатель от асинхронного для чайников кратко, простыми словами, сравнение по конструкции и принципу действия

Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

СОДЕРЖАНИЕ:

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вами электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.

В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.

Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.

У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.

Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Принцип работы

Сначала к обмоткам возбуждения подводится постоянный ток. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Читайте также:

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

Плюсы:

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.

Минусы:

  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

Рассмотрим, из чего состоит асинхронный двигатель:

  • сердечник;
  • вентилятор с корпусом;
  • подшипник;
  • коробка с клеммами;
  • тройная обмотка;
  • контактные кольца.

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

Читайте также:

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

Простыми словами, принцип действия можно разложить на несколько составляющих:

  1. При подаче напряжения в статоре создается магнитное поле.
  2. В роторе появляется ток, взаимодействующий с ЭДС статора.
  3. Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

  • стиральных машинках;
  • вентиляторе;
  • вытяжке;
  • бетономешалках;
  • газонокосилках и т. д.

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

  • компрессоры;
  • вентиляция;
  • насосы;
  • задвижки автоматического типа;
  • краны и лебедки;
  • станки для обработки дерева и т. д.

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного типа имеет слабые и сильные места, о которых необходимо помнить.

Преимущества:

  1. Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
  2. Более низкая стоимость, по сравнению с синхронным аналогом.
  3. Возможность прямого пуска.
  4. Низкое потребление энергии, что делает двигатель более экономичным.
  5. Высокая степень надежности, благодаря упрощенной конструкции.
  6. Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
  7. Возможность применения при подключении к одной фазе.
  8. Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
  9. Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.

Недостатки:

  1. Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
  2. Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
  3. Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
  4. Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
  5. Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
  6. Трудности регулирования устройств, которые приводятся в движение «синхронниками».
  7. Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
  8. При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
  9. Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.

Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.

Читайте также:

Греется электродвигатель: причины неисправности у электромоторов на 220 и трехфазных на 380 вольт

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

электродвигатель | Определение, типы и факты

трехфазный асинхронный двигатель

Посмотреть все СМИ

Ключевые сотрудники:
Никола Тесла
Томас Давенпорт
Ипполит Фонтейн
Майкл Фарадей
Похожие темы:
синхронный двигатель
линейный двигатель
гистерезис двигателя
двигатель постоянного тока
двигатель переменного тока

См. всю связанную информацию →

электродвигатель , любой из классов устройств, преобразующих электрическую энергию в механическую, обычно с использованием электромагнитных явлений.

Большинство электродвигателей развивают свой механический крутящий момент за счет взаимодействия проводников, несущих ток, в направлении, перпендикулярном магнитному полю. Различные типы электродвигателей различаются способами расположения проводников и поля, а также управлением, которое может осуществляться над механическим выходным крутящим моментом, скоростью и положением. Большинство основных видов описаны ниже.

Простейший тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме «звезда», обычно без внешнего соединения с нейтральной точкой, либо по схеме «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены друг с другом на каждом конце ротора проводящим концевым кольцом.

Основу работы асинхронного двигателя можно разработать, если сначала предположить, что обмотки статора подключены к трехфазному источнику электропитания и что в обмотках статора протекает набор из трех синусоидальных токов формы, показанной на рисунке. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла. Для простоты показана только центральная петля проводника для каждой фазной обмотки. В данный момент t 1 на рисунке ток в фазе a является максимальным положительным, а в фазах b и c вдвое меньше отрицательного значения. Результатом является магнитное поле с примерно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. е. на одну шестую цикла позже) ток в фазе c максимален, а в обеих фазах b и фазы a имеют положительное значение половины значения. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60° против часовой стрелки. Изучение распределения тока для t 3 , t 4 , t 5 и t 5 и t 6 показывает, что магнитное поле продолжает вращаться во времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совместное действие трех равных синусоидальных токов, равномерно смещенных во времени и протекающих по трем равномерно смещенным по угловому положению статорным обмоткам, должно создавать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, зависящей от частоты электроснабжение.

Викторина «Британника»

Энергия и ископаемое топливо

От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Николы Теслы — мир живет за счет энергии. Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.

Вращательное движение магнитного поля по отношению к проводникам ротора вызывает индуцирование в каждом из них напряжения, пропорционального величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко друг с другом на каждом конце, эффект будет заключаться в том, что в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны наведенному напряжению, деленному на сопротивление проводника. Картина токов ротора на момент t 1 рисунка показан на этом рисунке. Видно, что токи примерно синусоидально распределены по периферии ротора и расположены так, чтобы создавать крутящий момент против часовой стрелки на роторе (т. е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока проводника ротора и крутящего момента. Скорость ротора достигает устойчивого значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому при этой скорости нагрузкой, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, как раз достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае возникло бы. токами ротора на рисунке. Тогда общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90°, чтобы обеспечить требуемую электрическую мощность. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть периода или 90°. При номинальной нагрузке эта составляющая намагничивания обычно находится в диапазоне от 0,4 до 0,6 величины составляющей мощности.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазной сети постоянного напряжения и постоянной частоты. Типичное линейное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно малой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для мощных двигателей мощностью до 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения во времени магнитного потока в статоре машины. Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. При частоте питания 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную, чтобы индуцировать требуемое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки. При полной нагрузке скорость обычно на 0,5–5 % ниже рабочей скорости (часто называемой синхронной скоростью), при этом более высокий процент применяется к двигателям меньшего размера. Эту разницу в скорости часто называют скольжением.

Другие синхронные скорости можно получить с источником постоянной частоты, создав машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — число полюсов (которое должно быть четное число). Данную железную раму можно намотать для любого из нескольких возможных чисел пар полюсов, используя катушки, которые охватывают угол приблизительно (360/ р )°. Крутящий момент, доступный от корпуса машины, останется неизменным, так как он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для 60-герцовых двигателей составляют 1800 и 1200 оборотов в минуту.

Синхронный асинхронный двигатель | Вопросы для собеседования по электротехнике

В приложениях, где требуется высокий пусковой момент и постоянная скорость, можно использовать синхронные асинхронные двигатели. Он имеет преимущества как синхронных, так и асинхронных двигателей. Синхронный двигатель обеспечивает постоянную скорость, тогда как асинхронные двигатели могут запускаться при полной нагрузке.

Рассмотрим обычный асинхронный двигатель с контактными кольцами, имеющий трехфазную обмотку на роторе, как показано на рис. 1.

Первоначально он работает как асинхронный двигатель с контактными кольцами с помощью пусковых сопротивлений. Когда сопротивление отключено, двигатель работает с проскальзыванием. Теперь соединения меняются, и возбудитель подключается последовательно с обмотками ротора, которые остаются в цепи постоянно. Двигатель подключается к возбудителю, который дает постоянный ток. подача к двигателю через токосъемные кольца. Одна фаза несет полный постоянный ток. ток, в то время как два других несут половину полного постоянного тока. тока, так как они включены параллельно. В связи с этим d.c. возбуждения, на роторе образуются постоянные полюса (N и S).

Поскольку двигатель работает как асинхронный двигатель, первоначально может быть создан высокий пусковой момент (до двойного значения полной нагрузки). Когда постоянный ток возбуждение при условии, что он приводится в синхронизм и начинает работать с постоянной скоростью. Синхронный асинхронный двигатель обеспечивает постоянную скорость, большой пусковой момент, низкий пусковой ток и коррекцию коэффициента мощности.

Возможно, что переменный ток обмотка надевается на ротор, а d.c. возбуждение осуществляется на статоре. Это упрощает управление механизмом. Это также дает лучшие возможности для изоляции, что позволяет использовать более высокие напряжения и более низкий постоянный ток. возбуждения.

Постоянный ток обмотка должна быть рассчитана таким образом, чтобы давать высокие м.д.с. с умеренным постоянным током мощность возбуждения. Потери возбуждения должны быть равномерно распределены по обмотке. Распределение mmf должно быть почти синусоидальным. Он также должен обеспечивать демпфирование вибраций и должен удовлетворительно запускаться как асинхронный двигатель.

Когда машина работает как асинхронный двигатель, в роторе индуцируются переменные токи, и скорость вращения ниже синхронной. Когда ротор несет постоянный ток. токи в роторе, и он работает ниже синхронной скорости. Когда ротор несет постоянный ток. токи поля ротора и, следовательно, ротор должен работать на синхронной скорости. Это означает, что скольжение должно быть сведено к нулю. Но если есть какое-либо отклонение от этой скорости при нормальной работе, то в роторе снова возникают наведенные токи. Ротор имеет низкое сопротивление, поэтому его обмотки действуют как демпфирующие обмотки. Следовательно, не требуются отдельные демпфирующие обмотки.

При возбуждении постоянным током быстро устанавливается синхронизирующий момент. Величина этого крутящего момента составляет T м sinθ, где θ — угол между полем статора и ротора. В дополнение к этому также присутствует крутящий момент асинхронного двигателя, который пропорционален скольжению (dθ/dt), если скольжение мало. Также может быть постоянный крутящий момент нагрузки, если он запускается под нагрузкой, и, наконец, для ускорения ротора требуется крутящий момент J(d 2 θ/d 2 t).

Можно видеть, что θ<π, пока синхронизирующий момент действует в направлении, противоположном направлению момента нагрузки, что имеет тенденцию уменьшать угловую скорость dθ/dt движения скольжения. когда π<θ<2π, тогда синхронизирующий крутящий момент действует в сочетании с крутящим моментом нагрузки, увеличивая скольжение, то есть ничего, кроме угловой скорости dθ/dt, и двигатель не синхронизируется.

Поскольку движение скольжения неравномерно, двигатель подвергается механическим нагрузкам. Также могут быть колебания тока и коэффициента мощности. Следовательно, желательно, чтобы двигатель синхронизировался как можно быстрее после переключения постоянного тока. возбуждение. Это требует, чтобы синхронизирующий момент был значительно больше, чем момент нагрузки, и он должен быть противоположен моменту нагрузки. Угол, полученный в момент переключения d.c. возбуждение также влияет на втягивание в шаг. На следующих рисунках представлены осциллограммы тока ротора при приложении возбуждения для различных значений θ. Когда возбуждение задерживается более чем на 60 o видно, что ротор не синхронизируется, так как крутящий момент асинхронного двигателя и синхронизирующий крутящий момент работают совместно, и крутящий момент будет иметь пульсирующее значение.

Таким образом, двигатель может быть переведен в синхронизм, если возбуждение применяется в положении, которое занимает ротор, когда поля статора и ротора синхронизированы.

Рис. 2

1.1 Рабочие характеристики синхронных асинхронных двигателей

При изучении рабочих характеристик синхронного асинхронного двигателя необходимо учитывать три различных типа крутящих моментов. К ним относятся пусковой момент, который указывает способность двигателя запускаться против нагрузки, пусковой момент, который указывает на способность двигателя поддерживать работу во время переключения с асинхронного двигателя на синхронный двигатель, пусковой момент, который представляет синхронную работу двигателя при Пиковая нагрузка. Первые два крутящих момента тесно связаны друг с другом и являются характеристиками машины, работающей как асинхронный двигатель. Вытягивающий момент является характеристикой, когда он работает синхронно. Кривые характеристик синхронного асинхронного двигателя, работающего при полной нагрузке, единица p.f. и при 0,8 п.ф. ведущий показан на рис. 3.

Когда нагрузка превышает синхронный тяговый момент, машина теряет синхронность и работает как асинхронный двигатель с колебаниями крутящего момента и проскальзыванием из-за постоянного тока. возбуждение. При уменьшении момента нагрузки двигатель автоматически ресинхронизируется.

1.2 Преимущества синхронного асинхронного двигателя

Ниже приведены преимущества синхронного асинхронного двигателя по сравнению с явнополюсным синхронным двигателем.
i) Синхронный асинхронный двигатель может запускаться и синхронизироваться при крутящем моменте, превышающем полную нагрузку, что невозможно для явнополюсного синхронного двигателя, который должен запускаться при небольшой нагрузке.
ii) Возбудитель, необходимый для синхронного асинхронного двигателя, имеет меньшую мощность, поскольку зазор невелик по сравнению с обычным явнополюсным двигателем.
iii) Обмотка ротора синхронного асинхронного двигателя может выполнять функцию обеспечения возбуждения и необходимого демпфирования. Таким образом, не требуется отдельной демпферной обмотки.
iv) Отдельного пускового и управляющего оборудования не требуется.

1.3 Недостатки синхронного асинхронного двигателя

i) Поскольку зазор мал по сравнению с обычным явнополюсным синхронным двигателем, он не обеспечивает большой перегрузочной способности.
ii) Изменение коэффициента мощности велико по сравнению с обычным синхронным двигателем.
iii) Изменение скорости невозможно для синхронного асинхронного двигателя, поскольку он работает при постоянном двигателе.

1.4 Применение синхронного асинхронного двигателя

В приложениях, в которых необходимо приводить в действие механическую нагрузку наряду с опережающими фазами синхронных двигателей, следует использовать синхронные асинхронные двигатели.