Сопротивление двигателя формула: Измерение сопротивления двигателя — Блог Режимщика

Содержание

Измерение сопротивления двигателя — Блог Режимщика

Как известно, обычный мультиметр не может нормально измерить сопротивление порядка 1 ома и ниже. Такое сопротивление имеют измерительные шунты и … обмотки двигателей. И не мудрено. Длина провода одной обмотки двигателя мощностью 260 Вт составляет всего-лишь 30 см.

Что есть сопотивление двигателя?

Лично у меня сразу возник этот вопрос. Ведь оттуда торчит 3-4 провода (4-й средняя точка звезды). Ответ лежит на поверхности — это сопротивление между любыми двумя проводами (для 3х проводных). Обычно мотают 3 обмотки и соединяют в общем случае либо в звезду, либо в треугольник. На самом деле вариантов тьма тьмущая, но смысл один — сопротивление обмоток, соединенных в треугольник меньше, чем соединеных в звезду. Поэтому для них нужно меньшее напряжение, а ток получается выше. А мы помним, что момент пропорционален току. Чтобы не перегревать обмотки их соединяют в звезду, но при этом падает мощность, поэтому повышают напряжение. Также, двигатели «со  звездой» в 1.73 раза крутятся медленнее чем «с треугольником» при одинаковом напряжении. Схему выбирают в зависимоти от нужного момента и требуемой скорости вращения при заданном напряжении. Подробнее неплохо расписано тут.

Как и чем измерять?

И здесь нам опять поможет закон Ома R = U/I. В зависимости от диаметра провода обмотки (которую, обычно, видно), можно прикинуть максимальный ток и отсюда определить максимальное напряжение источника питания. В моем случае имеется двигатель с неизвестными параметрами. На глазок, диаметр провода 0.5 мм, тогда по табличке определяем примерное сопротивление R=0,1 Ом на 1 м, а также длительно допустимый ток не более Iдоп = 1А. В моторе 12 зубьев, т.е. по 4 зуба на обмотку. Можно очень примерно прикинуть кол-во витков и средний диаметр зуба чтобы грубо вычислить длину провода. При соединении в звезду на 2 обмотки в моем моторе больше 1 м вряд-ли влезет, поэтому в первом приближении буду ориентироваться на величину сопротивления 0,1 Ом.

Далее вспомним про кратность пускового тока порядка K = 7 для переменного тока, а для постоянного импульсного можно вполне взять K = 10 (это почти наобум, но с хорошим запасом — см. список в конце статьи). Отсюда делаем вывод, что при измерении сопротивления нужно обеспечить кратковременный ток около I = Iдоп*K = 1*10 = 10А. Это значит, что нам нужно подать напряжение U = I*R = 10 * 0,1 = 1В. Довольно маленькое напряжение при довольно большом токе. Выбор пал на пару оставшихся в живых Ni-Cd аккумуляторов от шуруповерта. Они обеспечивают большой ток разряда при номинальном напряжении 1.2В. В прошлый раз я измерил их внутреннее сопротивление и получил 0.13 и 0.22 Ома соответственно. Остальные 10 штук совсем дохлые. Соединенные параллельно они должны дать около I = U/(Re+R) = 1.2/(0.13*0.22/(0.13+0.22) + 0.1) = 6.6 А. Не много, но ничего мощнее под рукой не оказалось. Если под рукой нет подходящего источника питания можно попробовать подобрать токоограничивающий резистор достаточной мощности чтобы погасить на себе излишки. Если есть источник 5В (например, компьютерный БП обычно дает 12А и более), то в моем случае потребуется шунт Rш = U/I — R = 5/10 — 0.1 = 0.4 Ом. Найти такое сопротивление будет не просто, тем более что оно должно быть мощностью 40W или хотябы кратковременно пропускать такую мощность. Можно посмотреть в сторону ламп накаливания…

Ну а дальше все просто. Кратковременно подключаем нашу батарею к любым двум выводам двигателя. Быстро замеряем напряжение и ток. Делим одно на другое и получаем искомое сопротивление.

Само собой, для измерения я задействовал свой приборчик на Arduino. Честно говоря, изначально именно для этого измерения он и был собран.

 

Перед измерением хорошенько накачал аккумуляторы. Батарея выдала аж 20 мОм, видимо немного раскачались.  А измеренное сопротивление нашего подопытного бесколлекторного двигателя 112 мОм оказалось очень близким к прикидочному и косвенно подтвердило предположение о соединении обмоток в звезду. Так что способ подсчета кол-ва витков также работает, но тут нет гарантии, что намотка не проводилась жгутом из нескольких проводов, да и при малом диаметре и большой плотности навивки подсчитать кол-во витков бывает очень затруднительно.

Зачем вообще это надо?

Знать сопротивление нужно чтобы исходя из диаметра проводов обмоток определить допустимую электрическую мощность двигателя или если проще, то какое максимальное напряжение можно подать на двигатель чтобы он не перегрелся. В современных двигателях постоянного тока все чаще применяют неодимовые магниты (привет, электрокары). Известны случаи построения кулибиными ветрогенераторов мощностью до 5 кВт с использованием этих магнитов. Но есть и недостаток — при температуре выше 90°С он теряет свои суперсвойства, поэтому контроль нагрева таких двигателей очень важен, а значит важно знать сопротивление обмоток.

Тут конечно еще много неизвестных. Нужно определить максимальный ток провода при импульсном питании. Есть такие данные:

1А — 0.05мм, 3А — 0.11мм, 10А — 0.25мм, 15А — 0.33мм,
20А — 0.4мм, 30А — 0.52мм, 40А — 0.63мм, 50А — 0.73мм,
60А — 0.89мм, 70А — 0.92мм, 80А — 1.00мм, 90А — 1.08мм, 100А — 1.16мм

Вроде бьются с моими параметрами, но откуда они я пока не разбирался. Похоже на ток плавкого предохранителя, т.е. прям край-край. Если руководствоваться ими, то в моем случае диаметр 0,4мм «по меди» даст 20А, а мощность при 3S Li-Po батареии составит P = 3*3,7*20 = 222 Вт; при 4S составит P = 4*3,7*20 = 296 Вт. Какое максимальное напряжение можно подать зависит от теплового баланса, т.е. от условий охлаждения, а это посчитать уже проблематично — проще измерить, но это, возможно, тема отдельной статьи.

P.S.

Лично мне измерение сопротивления моего двигателя помогло убедиться в том, что найденные в интернете характеристики мотора, внешне похожего на мой, заслуживают доверия. Его заводские характеристики: ток без нагрузки 0.4А, максимальный ток 22 А, мощность 260 Вт (механическая в соответствии с ГОСТ Р 52776-2007). А в другом месте нашел, что у подобного мотора сопротивление 0.119 Ом, что в принципе, близко к моим результатам.

Купон на 15% скидку на радиоуправляемые игрушки на Алиэкспресс.

Сопротивление изоляции электродвигателя: измерения и нормы

Современное электротехническое оборудование, как правило, содержит медные токопроводы, надежно защищенные изоляционной оболочкой. Используемые в промышленности и в быту электродвигатели не является исключением. Но для эффективной работы этих агрегатов важно следить за тем, чтобы изоляция проводников поддерживалась в идеальном состоянии и сохраняла свои защитные свойства.

Содержание

Для чего нужна проверка сопротивления изоляции

Если регулярно не проверять сопротивление изоляции электродвигателей – через какое-то время она может высохнуть или сильно износиться и перестать выполнять свои защитные функции. А такое положение чревато серьезными последствиями, из которых короткое замыкание – самое неприятное. Следствием его нередко становится возгорание изоляции и других горючих материалов, постепенно перерастающее в полномасштабный пожар.

Измерение сопротивления изоляции электродвигателя

Именно поэтому организация и проведение измерений сопротивления изоляции электродвигателя – первостепенная задача служб, ответственных за поддержание электротехнического оборудования в рабочем состоянии. Ее своевременное проведение в соответствие с утвержденным рабочим графиком позволит избежать серьезных последствий (предотвратит выход из строя дорогостоящего оборудования).

Нормы сопротивления изоляции

Как и для других элементов электротехнического оборудования – для электродвигателей и схожих с ними по устройству машин постоянного тока предусмотрены предельные величины по проводимости защитной изоляции. Если реальный показатель оказывается при измерении ниже допустимого предела – агрегат снимается с эксплуатации.

Нормы для асинхронных двигателей

Согласно ПУЭ при измерении сопротивления изоляции обмоток электродвигателя следует учитывать специфику конструкции и заявленную мощность агрегата. Только после того, как учтены все эти факторы – можно начать измерять контролируемый параметр

С учетом этих факторов проверяемый показатель должен соответствовать следующим значениям:

  • Для статорных обмоток – не менее 0,5 мОм;
  • Для ротора двигателя – не менее 0,2 мОм;
  • Показатель для термических датчиков не нормируется.

Дополнительная информация: Приблизительная оценка, нередко используемая в практике измерений, исходит из значения этого показателя не ниже 1мОм.

Его снижение до 0,5 мОм, например, свидетельствует о незначительных отклонениях от нормы, которые, тем не менее, со временем приводят к серьезным последствиям. При обнаружении существенного снижения этого показателя, вызывающий сомнение агрегат лучше всего отправить на обследование в специализированную мастерскую.

Нормы для машин постоянного тока

Методики проверки для машин постоянного тока несколько отличаются от уже рассмотренных процедур для асинхронных двигателей. Здесь сначала потребуется снять щетки из щеткодержателей (как вариант – подложить под их корпус кусочек изоляционного материала).

Проверка минимального сопротивления изоляции организуется между следующими узлами и элементами схемы:

  • между всеми возбуждающими обмотками и коллектором;
  • между щеткодержателем и основанием (корпусом) агрегата;
  • между коллектором якоря и основанием;
  • а также между возбуждающими обмотками и корпусом агрегата.

Важно! В ходе проверки катушки возбуждения электрически отключаются от других узлов и проверяются каждая по отдельности.

Допустимое сопротивление изоляции определяется рядом факторов, основные из которых – это рабочего напряжение агрегата и температура воздуха. При среднем показателе в 20°С оно соответствует следующим значениям:

  1. при 220 Вольтах питания – 1,85мОм;
  2. при 380 или 440 Вольтах – 3,7мОм;
  3. в случае напряжения в 660 Вольт – 5,45 мОм (этот же показатель предусмотрен для высоковольтных машин на 6 кВ или 10 кВ).

Помимо рассмотренных узлов контролируется сопротивление бандажей. Оно меряется между им самим и корпусом, и, кроме того, между им и фиксируемой обмоткой двигателя. Это показатель не может быть менее 0,5 мОм.

Методы обследования

При проведении испытаний асинхронных двигателей статорные обмотки, включенные по схемам «звезда» или «треугольник» потребуется демонтировать и проверить все входящие в их состав катушки. Вслед за этим производятся замеры нужного параметра по отношению к корпусу и между собой. Для этого применяются различные методы, основные из которых перечислены ниже:

  • Использование специального измерительного прибора – мегаомметра.
  • Посредством вольтметра и аналогового амперметра.
  • С применением измерительного моста или современного цифрового омметра.
  • Испытание напряжением высокой величины.
  • Использование обычного мультиметра.

Каждый из этих способов нуждается в подробном рассмотрении.

Мегаомметр

Проверка мегомметром проводится с соблюдением следующих условий:

  • при питающем напряжении до 500 Вольт используется прибор с соответствующим номиналом;
  • при больших напряжениях выбирается мегаомметр с рабочими значениями до 1000 Вольт.

Обратите внимание: Если электротехническое оборудование рассчитано на 600 Вольт – предписывается применять прибор на 2500 Вольт.

Проверки по отношению к корпусу двигателя и между обмотками осуществляются по очереди для каждой из цепей с разными выводами. При этом все остальные концы соединяются с корпусом агрегата. Те же процедуры для обмоток трехфазного двигателя, включенных звездой или треугольником, проводится для всех трех составляющих.

Измерение сопротивления изоляции электродвигателя мегаомметром

Имеющиеся в схеме элементы, постоянно подсоединенные к корпусу агрегата (защитные конденсаторы или изолированные обмотки, например) на время испытаний отсоединяются. Для измерений, проводимых с электродвигателями, обмотки которых имеют водяное охлаждение, потребуется прибор с защитным экраном. Его зажимы перед снятием показаний присоединяются к стационарному или переносному . По завершении измерений с каждой из проверяемых цепей снимается остаточный заряд путем прикосновения ее к заземленному корпусу машины.

Измерительный мост и цифровой омметр

Измерения по этой методике поводятся согласно прилагаемой к приборам инструкции. Схема измерительного моста содержит два постоянных резистора и один переменный. Они соединены таким образом, что образуют два своеобразных «плеча» в виде 2-х цепочек На незанятое место во второй половинке включается сопротивление, которое нужно измерить.

Измерительный мост постоянного тока

В диагональ моста включен стрелочный измерительный прибор. Изменяя величину переменного сопротивления оператор добивается баланса двух цепочек, когда через плечи течет одинаковый ток. Искомое сопротивление определяется из соотношения, в которое подставляются значения трех

Цифровой омметр СО 3001

сопротивлений (2-х постоянных и одного переменного, полученного в результате измерений).

Цифровой омметр – это современный электронный прибор, позволяющий измерять сопротивление в широких пределах (фото справа).

Использование амперметра плюс вольтметр

Достаточно точно найти искомые значения для обмоток можно методом измерения напряжения и тока. С этой целью придется проделать следующие операции:

  1. Подключить между центральной жилой обмотки двигателя и его корпусом вольтметр, а последовательно в эту цепочку установить амперметр.
  2. Подать на полученную схему небольшое напряжение, а затем измерить ток и напряжение в ней.
  3. По классической формуле R=U/I определить сопротивление.
  4. Проделать те же операции, постепенно повышая напряжение до предельного значения.
  5. На основе полученных данных рассчитать среднеарифметический показатель.

Измерение сопротивления изоляции электродвигателя с помощью амперметра и вольтметра

Затем нужно проделать те же операции для других обмоток и элементов электродвигателя.

Использование повышенного переменного напряжения

Для проведения таких испытаний потребуется повышенное напряжение, получаемое с линейного преобразователя (трансформатора). Последний оснащен устройством регулировки, позволяющим получать нужный уровень испытательного потенциала. Кроме того, в схему установки входит выключатель с видимым разрывом и устройство токовой защиты. С его помощью трансформатор автоматически отключается при пробое в цепях вторичной обметки или при разрушении изоляционной защиты.

Схема испытания изоляции электродвигателя повышенным напряжением переменного тока.

Время приложения напряжения при проведении испытаний выбирается равным 1-ой минуте для основной изоляции и 5 минутам – для межвитковой. Кратковременное приложение высоковольтного потенциала на сказывается на состоянии изоляции (не ухудшает ее защитных свойств).

Важно! Повышать напряжение до 1/3 испытательной величины можно произвольно, не учитывая динамику процесса.

По достижении этого уровня его следует наращивать плавно, со скоростью, позволяющей снимать показания со стрелочных шкал визуально. При тех ж операциях с электрическими машинами время наращивания напряжения от 1/2 до максимального значения не может быть менее 10 секунд.

Мультиметр

С помощью мультиметра точно измерить изоляцию обмоток двигателя не получится. При его наличии удается только приблизительно оценить ее качество. Другими словами – в данном случае можно убедиться только в том, что нет короткого замыкания, например. О снятии точных значений искомого показателя в этой ситуации не может быть и речи.

Причины низкого сопротивления

В нормальных условиях сопротивление изоляции проводов электродвигателя, покрытых защитной пленкой, сохраняет свое значение в течение длительного времени. Но в ходе эксплуатации на нее воздействует ряд разрушающих факторов, основными из которых являются:

  • Механические напряжения.
  • Повышенная влажность окружающей среды.
  • Воздействие содержащихся в ней агрессивных веществ.
  • Резкие колебания температуры.

Дополнительная информация: Существенное влияние на состояние защитной оболочки оказывает и перегрев двигателя, работающего во внештатном режиме.

Все перечисленные факторы приводят к снижению сопротивления изоляции с возможностью последующего пробоя обмотки на корпус или межфазного замыкания.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Как рассчитать ток двигателя с сопротивлением обмотки

Обновлено 03 ноября 2020 г.

Крис Дезил

Согласно закону Ома, ток (I) через проводящий провод прямо пропорционален приложенному напряжению (V) и сопротивлению провода (R). Это соотношение не изменится, если проволока намотана на сердечник, образуя ротор электродвигателя. В математической форме закон Ома выглядит так:

V=IR

или, если поставить ток и сопротивление по разные стороны от знака равенства:

I=\frac{V}{R}

Сопротивление провода зависит от его диаметра, длины, проводимости и температуры окружающей среды. Медная проволока используется в большинстве двигателей, и медь имеет одну из самых высоких электропроводностей среди всех металлов.

TL;DR (слишком длинно, не читал)

Закон Ома гласит, что ток в проводе, даже если он длинный, намотанный на соленоид двигателя, равен напряжению, деленному на сопротивление. Вы можете определить сопротивление катушки двигателя, если знаете сечение провода, радиус соленоида и количество витков.

Сопротивление провода

Закон Ома говорит вам, что вы можете рассчитать ток через обмотку двигателя, если знаете напряжение и сопротивление провода. Напряжение легко определить. Вы можете подключить вольтметр к клеммам источника питания и измерить его. Определение другой переменной, сопротивления провода, не так просто, потому что оно зависит от четырех переменных.

Сопротивление провода обратно пропорционально диаметру провода и проводимости, а это означает, что оно тем больше, чем меньше эти параметры. С другой стороны, сопротивление прямо пропорционально длине провода и температуре — оно увеличивается с увеличением этих параметров. Что еще более усложняет ситуацию, так это то, что сама проводимость изменяется с температурой. Однако, если вы проводите измерения при определенной температуре, например при комнатной температуре, и температура, и проводимость становятся постоянными, и вам нужно учитывать только длину провода и его диаметр для расчета сопротивления провода. Сопротивление (R) становится равным константе (k), умноженной на отношение длины провода (l) к диаметру (d):

R=k\frac{l}{d}

Длина провода и сечение провода

Для расчета сопротивления необходимо знать как длину провода, намотанного на соленоид двигателя, так и его диаметр. Однако, если вы знаете калибр проволоки, вы знаете и диаметр, потому что вы можете найти его в таблице. Некоторые таблицы помогают еще больше, указывая сопротивление на стандартную длину для проводов всех калибров. Например, диаметр провода 16-го калибра составляет 1,29 мм или 0,051 дюйма, а сопротивление на 1000 футов составляет 4,02 Ом.

В конце концов, все, что вам действительно нужно измерить, это длину провода, если вы знаете сечение провода. В соленоиде двигателя провод несколько раз обмотан вокруг сердечника, поэтому для расчета его длины вам нужны две части информации: радиус сердечника (r) и количество витков (n). Длина одной обмотки равна длине окружности сердечника — 2πr, поэтому общая длина провода равна 2πrn. Используйте это выражение для расчета длины провода, и как только вы его узнаете, вы сможете экстраполировать сопротивление из таблицы сопротивлений.

Рассчитать ток

Зная приложенное напряжение и рассчитав сопротивление провода, у вас есть все, что вам нужно, чтобы применить закон Ома для определения тока, протекающего через катушку. Поскольку сила тока определяет силу индуцированного магнитного поля катушки, эта информация позволяет количественно определить мощность двигателя.

Сопротивление обмотки бесщеточного двигателя —

RC Общий калькулятор

 

Сопротивление обмотки бесщеточного двигателя — это постоянная двигателя, которая напрямую связана с КПД двигателя. Сопротивление обмотки, скорее всего, самый простой для понимания параметр бесколлекторных двигателей. Здесь нет секретов! Сопротивление обмотки двигателя — это просто сопротивление в самой обмотке двигателя. Теперь я знаю, что определение термина с использованием слов внутри термина — не очень хороший способ объяснить определение, однако существует не так уж много способов описать эту моторную константу. Возможно, мы можем сказать, что сопротивление — это ограничение потока электричества, а обмотки — это медные провода, используемые в наших двигателях.

Что создает сопротивление обмотки двигателя?

К сожалению, ничто в жизни не дает стопроцентной эффективности. То же самое и с проводами, и идеально, если сопротивление двигателя равно нулю. Ом – это единица измерения сопротивления в электричестве. Каждый провод, используемый в любом приложении, имеет определенное сопротивление на фут. Когда мощность, протекающая по проводам, испытывает сопротивление из-за самого провода, это приводит к потере энергии. Потраченная энергия преобразуется в тепло, и эта энергия не обеспечивает какой-либо формы работы, которая вносит свой вклад в выходную мощность бесщеточного двигателя в наших радиоуправляемых автомобилях. Однако определить мотор мы можем с помощью недорогих бытовых инструментов.

Измерение сопротивления обмотки бесщеточного двигателя

Мы можем измерить сопротивление обмотки двигателя, введя в цепь еще один компонент сопротивления. Причина, по которой мы хотели бы сделать это, заключается в том, что обычные мультиметры не обладают чувствительностью для измерения миллиом. В этом случае мы добавляем в цепь дополнительную нагрузку, чтобы снизить ток до приемлемого уровня. Затем мы используем закон Ома, V = I x R, чтобы определить значение сопротивления, поскольку мы знаем, что напряжение на двигателе и ток будут одинаковыми во всей цепи. Трудность возникает там, где мы увеличиваем температуру контура. При подаче тока на фазу двигателя мы тратим электричество в виде тепла. Это тепло увеличивает сопротивление обмоток. Однако, если мы знаем температуру обмотки в момент снятия показаний, мы можем нормализовать этот результат до стандартных 20 градусов Цельсия.

Требуются следующие инструменты:

  1.  2 мультиметра. Один будет использоваться для измерения тока, а другой – для измерения напряжения.
  2. 4-элементный LiPo (макс. 15,10 В), 3-элементный LiPo или 2-элементный LiPo.
  3. Резистор 25 Вт – 10 Ом для 3- или 4-элементного LiPo. 25 Вт — резистор 5 Ом для 2-элементного LiPo
  4. Провод для подключения аккумулятора к резистору и проводам двигателя.
  5. Температурный пистолет (дополнительно, но настоятельно рекомендуется)

Процедура следующая:

  1. Подключите мультиметр последовательно к силовому резистору.
  2. Подсоедините 2 из 3 проводов бесщеточного двигателя последовательно к силовому резистору и мультиметру.