Виды электрический двигатель: типы, устройство, принцип работы, параметры, производители

Содержание

Типы и виды электродвигателей — переменного и постоянного тока, коллекторные, асинхронные, прямого привода

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Одним из основных стимулов к широкой электрификации, начавшейся в XX веке, стала возможность легкого преобразования энергии электрического тока в механическую — к тому времени уже был известен коллекторный электродвигатель, изобретенный Якоби еще в первой половине XIX века.

Изобретение асинхронного двигателя переменного тока стало еще большим шагом вперед.

Электромотор лишился механически трущихся и искрящих узлов (щеток и коллектора), превзойдя по бесшумности и ресурсу любой другой существовавший в то время тип привода.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует:

  • перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях;
  • создания вращающегося магнитного поля в самом статоре (классический пример – асинхронный трехфазный двигатель).

Достоинства электродвигателей переоценить трудно. Это:

Крайняя простота.
Электродвигатель состоит из минимального количества узлов, поэтому ломаться в нем практически нечему.
Самостоятельный запуск.
Электродвигателю не нужен пусковой импульс, он начинает вращаться сам при включении питания (исключение – однофазные электродвигатели с пусковой обмоткой, но они практически вышли из употребления). Это позволяет отказаться от холостого хода, включая электромотор только при необходимости.
Отсутствие вибраций.
Так как в электродвигателях энергия магнитного поля непосредственно преобразуется во вращение, при должной балансировке ротора они полностью бесшумны и не создают вибрации.
Легкость управления оборотами и крутящим моментом.
Несмотря на то, что на разных типах электродвигателей это достигается разными способами, управление ими в любом случае достаточно просто и надежно.
Возможность реверса.
На коллекторном двигателе достаточно поменять местами полюса якоря, на трехфазном электромоторе – изменить порядок включения фаз.
Обратимость.
Коллекторные электродвигатели при внешнем приводе начинают работать как электрогенераторы, что позволяет использовать их для рекуперации энергии при торможении электротранспорта.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

© 2012-2022 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Типы электродвигателей — Однофазные электродвигатели , электродвигатели постоянного тока, асинхронные двигатели

Заказать оборудование

Команда Electrodvigatel.com приглашает к сотрудничеству производителей двигателей

Электродвигатель – это электрическая машина, служащая для преобразования электрической энергии в механическую энергию. Электродвигатель работает на основе  принципа электромагнитной индукции.

Существует множество видов электродвигателей, различающихся по конструкции, принципу действия, исполнению и другим характеристикам.  Различают основные виды электродвигателей:

По типу протекающего тока двигатели различают:

  • Электродвигатели постоянного тока. Широко используют в качестве промышленного оборудования, привода электротранспорта и микропривода исполнительных механизмов.
  • Электродвигатели переменного тока. Нашли широкое применение для приводов всех типов технологического оборудования, автоматических регуляторов, электроинструментов. 

По конструкции электрические машины различают с вертикально и горизонтально расположенным валом. Электродвигатели также классифицируют по мощности, климатическому исполнению, степени защиты, назначению и другим характеристикам.

Со всеми типами электродвигателей вы можете познакомиться на информационном портале по электродвигателям electrodvigatel.com. Здесь вы найдете преимущества и недостатки, того или иного электродвигателя, полный список производителей электродвигателей, а также сможете узнать стоимость на электродвигатели.

Виды электродвигателей

Однофазные электродвигатели

Трехфазные электродвигатели

Крановые электродвигатели

Лифтовые электродвигатели

Электродвигатели для частотного регулирования

Общепромышленные электродвигатели

Синхронные электродвигатели

Взрывозащищенные электродвигатели

Электродвигатели постоянного тока

Стоимость электродвигателя в основном зависит от следующих параметров:

  • Габарит (высота оси вращения)
  • Мощность
  • Климатическое исполнение

Стоит отметить, что с увеличением габарита электродвигателя усложняется технология изготовления электрических машин, уменьшается серийность выпуска и, соответственно, меняется экономика и ценообразование двигателей. Чем больше габарит двигателя – тем меньше производителей на рынке.

Конструкция электродвигателя

Вращающийся электродвигатель состоит из двух главных деталей:

  • статора — неподвижная часть
  • ротора — вращающаяся часть

У большинства двигателей внутри статора располагается ротор. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Электродвигатель в разрезе — 1 статор, 2 ротор, 3 подшипник

 

Условное обозначение электродвигателей

1 – тип электродвигателя:
общепромышленные электродвигатели:
АИ — обозначение серии общепромышленных электродвигателей
Р, С (АИР и АИС) — вариант привязки мощности к установочным размерам, т.е.
АИР (А, 5А, 4А, АД) — электродвигатели, изготавливаемые по ГОСТ
АИС (6А, IMM, RA) — электродвигатели, изготавливаемые по евростандарту DIN (CENELEC)
взрывозащищенные электродвигатели: ВА, АВ, АИМ, АИМР, 2В, 3В и др

2 — электрические модификации:










Электрические модификации

Определение

М

модернизированный электродвигатель: 5АМ

Н

электродвигатель защищенного исполнения с самовентиляцией: 5АН

Ф

электродвигатель защищенного исполнения с принудительным охлаждением: 5АФ

К

электродвигатель с фазным ротором: 5АНК

С

электродвигатель с повышенным скольжением: АС, 4АС  и др.

Е

однофазный электродвигатель 220V: АДМЕ, 5АЕУ

В

встраиваемый электродвигатель: АИРВ 100S2

П

электродвигатель для привода осевых вентиляторов в птицеводческих хозяйствах и т. д.

3 — габарит электродвигателя (высота оси вращения):
габарит электродвигателя равен расстоянию от низа лап до центра вала в миллиметрах 
50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400, 450 и выше

4 — длина сердечника и/или длина станины:





Длина сердечника

Определение

А, В, С

длина сердечника (первая длина, вторая длина, третья длина) 

XK, X, YK, Y

длина сердечника статора высоковольтных двигателей 

S, L, М

установочные размеры по длине станины

 

5 — количество полюсов электродвигателя:
2, 4, 6, 8, 10, 12, 4/2, 6/4, 8/4, 8/6, 12/4, 12/6, 6/4/2, 8/4/2, 8/6/4, 12/8/6/4 и др.

6 — конструктивные модификации электродвигателя:











Модификации электродвигателя

Определение

Л

электродвигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Е

электродвигатель с встроенным электромагнитным тормозом и ручкой расторможения: АИР 100L6 Е2 У3

Е2

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Б

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Ж

электродвигатель со специальным выходным концом вала для моноблочных насосов: АИР 80В2 ЖУ2

П

электродвигатель повышенной точности по установочным размерам: АИР 180М4 ПУ3 

Р3

электродвигатель для мотор-редукторов: АИР 100L6 Р3

С

электродвигатель для станков-качалок: АИР 180М8 СНБУ1 

Н

электродвигатель малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4 

7 — климатическое исполнение электродвигателя:







Категория размещения

Определение

У

умеренного климатического исполнения

Т

тропического исполнения 

УХЛ

умеренно холодного климата 

ХЛ

холодного климата 

ОМ

для судов морского и речного флота

8 — категория размещения: 







Категория размещения

Определение

1

на открытом воздухе

2

на улице под навесом 

3

в помещении 

4

в помещении с искусственно регулируемыми климатическими условиями 

5

в помещении с повышенной влажностью 

9 — степень защиты электродвигателя:
первая цифра: защита от твердых объектов

  вторая цифра: защита от жидкостей








Степень защиты IP

Определение первой цифры  —

защита от твердых объектов

Определение второй цифры  — защита от жидкостей

0

без защиты

без защиты

1

защита от твердых объектов размерами свыше 50мм (например, от случайного касания руками)

защита от вертикально падающей воды (конденсация)

2

защита от твердых объектов размерами свыше 12 мм (например, от случайного касания пальцами)

защита от воды, пдпющей под углом 15º к вертикали

3

защита от твердых объектов размерами свыше 2,5 мм (например, инструментов, проводов)

защита от воды, падающей под углом 60º к вертикали

4

защита от твердых объектов размерами свыше 1мм (например, тонкой проволоки)

защита от водяных брызг со всех сторон

5

защита от пыли (без осаждения опасных материалов)

защита от водяных струй со всех сторон

10 – мощность электродвигателя

11 – обороты электродвигателя

12 — Монтажное исполнение электродвигателя

Двигатели переменного тока

            Двигатели переменного тока подразделяются на две группы: асинхронные и синхронные. Синхронные двигатели в свою очередь делятся на основные исполнения групп двигателей:

  • общепромышленное
  • специальное (крановые, для дробилок, лифтовые и другие)
  • взрывозащищенное. Дальнейшее подразделение — для химической отрасли и рудничные, рудничные специальные.

Асинхронными двигателями (АД) называют машины переменного тока, в которых основное магнитное поле создается переменным током и частота вращения ротора, не связанная жестко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины, используемые главным образом в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели — более дорогие и менее надежные в эксплуатации, чем бесколлекторные.

По количеству фаз двигатели переменного тока подразделяются:

Асинхронные двигатели наиболее распространены в настоящее время, чем другие виды электродвигателей.

Синхронные и асинхронные машины переменного тока обладают свойством обратимости — они могут работать как в режиме генератора, так и в режиме двигателя.

Различные типы электродвигателей, используемых в электромобилях

Если вы заинтересованы в глубоком погружении в технологию двигателей внутреннего сгорания, вы должны быть готовы к тому, что вас обстреляют множеством различных концепций. Безнаддувные двигатели, двигатели с турбонаддувом, непосредственный впрыск, непрямой впрыск или как прямой, так и непрямой впрыск! Бензин, дизель, СПГ, СНГ, цикл Аткинсона, цикл Миллера, цикл Будэка, цикл Дизеля и цикл Отто (см. двигатель Mazda Skyactiv-X), турбо с фиксированной геометрией, турбо с изменяемой геометрией, турбо с двойной прокруткой, регулируемые фазы газораспределения… список продолжается. на.

Почти автоматически возникает вопрос: почему у нас так много конструкций и концепций двигателей внутреннего сгорания? Ответ прост — потому что ни один из них не является достаточно хорошим с точки зрения эффективности. В поисках повышения эффективности инженеры внедряли множество конструкций на протяжении всей истории автомобилестроения. Актуально ли это разнообразие конструкций и для электродвигателей? Сколько типов двигателей используется в электромобилях? Ответ только 3 основных. Познакомимся с ними.

Асинхронный асинхронный двигатель — Краткий урок истории

Асинхронный асинхронный двигатель не является чем-то новым. Он был изобретен двумя независимыми исследователями — единственным и неповторимым Николой Теслой и Галилео Феррарисом. Несмотря на то, что итальянский изобретатель впервые разработал этот двигатель в 1885 году, Никола Тесла первым подал заявку на патент в 1888 году.

Изобретение асинхронного двигателя, без сомнения, является одним из величайших достижений в использовании электричества для обеспечения нашей жизни. Внедрение этого типа двигателя настолько широко распространено в наши дни, что без него очень трудно представить повседневную жизнь. Эти двигатели используются во многих электрических устройствах, и подавляющее большинство промышленных двигателей относятся к асинхронному асинхронному типу.

Исторический патент Николы Теслы на асинхронный двигатель

Как работает асинхронный асинхронный двигатель?

Все электродвигатели состоят из двух основных частей. Статическая часть называется статором, а вращающаяся часть называется ротором. Начнем со статора — обычно это стальной цилиндр с прорезями и медными катушками, сплетенными с определенной геометрией. Эти катушки питаются трехфазным переменным током, который был преобразован из постоянного тока (обеспечиваемого аккумулятором) в силовой электронике. Этот ток создает вращающееся магнитное поле в статоре, и скорость этого вращающегося магнитного поля называется синхронной скоростью.

По сути, вот как работает этот тип двигателя: переменное напряжение подается на медные катушки (или обмотки), и в результате мы получаем вращающееся магнитное поле, это поле индуцирует напряжение в роторе, которое, в свою очередь, вызывает протекание тока. . Этот поток тока создает собственное вращающееся магнитное поле в роторе, которое отстает от магнитного поля статора. Сила между двумя магнитными полями, которые приводят в движение ротор, называется силой Лоренца. Затем движение ротора передается на колеса автомобиля через соответствующий редуктор.

Этот двигатель называется асинхронным, потому что вращающееся магнитное поле ротора и статора не синхронизированы. Индукционная часть возникает из-за вращающегося магнитного поля, напряжения и тока, индуцируемых статором. Когда мы нажимаем на педаль акселератора, магнитное поле ротора немного отстает от поля статора. Когда мы замедляемся и двигатель работает как генератор (регенеративное торможение), то вращающееся магнитное поле ротора опережает статор. Эта разница во вращающихся магнитных полях называется «скольжением» и обычно составляет до 5 % в зависимости от конструкции двигателя.

Типовой КПД трехфазного асинхронного двигателя, используемого в автомобильной промышленности, составляет около 90 %. Благодаря своей надежности, простоте, долговечности и отсутствию требований к экзотическим материалам этот двигатель используется почти исключительно в промышленных процессах. Кроме того, его хорошие характеристики перегрузки делают его идеальным двигателем по требованию, поэтому его часто используют в качестве переднего двигателя в электромобилях с полным приводом.

Плюсы

  • Хорошая эффективность
  • Дешево сделать
  • Нет необходимости в редкоземельных материалах
  • Практически идеальная надежность

Минусы

  • Большие потребности в охлаждении
  • Меньшая удельная мощность
  • Более низкий КПД по сравнению с другими двигателями

Некоторые автомобили, использующие асинхронные двигатели: Audi e-Tron SUV, Mercedes-Benz EQC, Tesla Model S, 3, X и Y на передних осях, а также автомобили VW Group MEB используют их на передних осях.

Асинхронный двигатель, используемый в Mercedes-Benz EQC

Синхронный двигатель с постоянными магнитами

Основное различие между асинхронными асинхронными двигателями и синхронными двигателями с постоянными магнитами заключается в способе создания и взаимодействия вращающихся магнитных полей в роторе и статоре. . В синхронных двигателях с постоянными магнитами в роторе имеется собственное вращающееся магнитное поле, создаваемое постоянными магнитами (отсюда и название двигателя). Вращающиеся магнитные поля ротора и статора в этих двигателях заблокированы, и скольжение отсутствует.

Постоянные магниты в роторе являются одним из ключевых элементов, повышающих удельную мощность и повышающих эффективность двигателя. Повышенная удельная мощность означает высокую мощность при малом объеме, поэтому двигатели с постоянными магнитами используются исключительно в PHEV. Электродвигатель в этих транспортных средствах размещен в коробке передач, и существуют ограничения по пространству.

Постоянные магниты изготавливаются из редкоземельных материалов, большинство из которых контролируется Китаем. Есть вопросы об этических аспектах процесса добычи, и по этой причине многие производители стараются сократить использование этих материалов в своих двигателях. Тем не менее, синхронный двигатель с постоянными магнитами является королем КПД — он может достигать до 94-95% и когда в машине только один мотор, то используется именно этот тип мотора.

Плюсы

  • Очень высокая эффективность
  • Нижнее охлаждение требуется
  • Высокая удельная мощность

Минусы

  • Стоимость производства
  • Потребность в редкоземельных материалах
  • Теоретическая опасность размагничивания

Hyundai Ioniq 5 Двигатели с постоянными магнитами

Двигатели с постоянными магнитами используются в Hyundai Ioniq 5, Kia EV6, Tesla Model S, 3, X и Y на задних осях. Автомобили VW Group MEB также используют их на задних мостах, Jaguar i-pace, Audi e-tron GT и Porsche Taycan, и это лишь некоторые из них.

Синхронный двигатель с электрическим возбуждением

Синхронные двигатели с постоянными магнитами обеспечивают наилучший КПД из всех, но редкоземельные материалы, необходимые для их конструкции, имеют определенные последствия. Для решения этих проблем некоторые производители, а именно BMW, Renault Groupe и Smart в настоящее время, используют гибридную конструкцию двигателя — они используют синхронные двигатели, для которых не требуются редкоземельные материалы.

Итак, как работают эти моторы? Что ж, вместо использования постоянных магнитов в роторе для создания тока в этих двигателях используются щетки и контактные кольца. По данным BMW, этот тип двигателя обеспечивает КПД до 93%, что очень близко к эффективности двигателей с постоянными магнитами. Несмотря на то, что этот тип двигателя кажется очень многообещающим, тот факт, что в нем используются щетки, означает, что в какой-то момент потребуется замена этих компонентов. Будем надеяться, что производители, разрабатывающие такой мотор, используют щетки с достаточно долгим сроком службы.

Синхронный двигатель BMW с электрическим возбуждением

Pros

  • Очень высокий КПД
  • Дешевле в производстве, чем синхронный двигатель с постоянными магнитами
  • .

  • Отсутствие риска размагничивания
  • Нет необходимости в редкоземельных материалах

Минусы

  • Щетки долговременная надежность

Этот тип двигателя используется в BMW iX3, iX и i4; Renault Megane E-TECH и SMART EQ.

Типы электродвигателей и сравнение

Сравнение типов электродвигателей

«Оптимизация электродвигателей для рентабельного производства в больших объемах»

Электродвигатель с постоянными магнитами

Уменьшение магнитного материала СДПМ

Синхронные машины с постоянным возбуждением (СДПМ) имеют постоянные магниты в роторе. В зависимости от типа магнитного материала иногда может происходить размагничивание магнитов при слишком высоких температурах. В этом случае электродвигатель больше не имеет полного крутящего момента. Если в качестве материала магнита используется неодим-железо-бор, это значительно увеличивает стоимость двигателя. Если магниты удачно расположены в роторе, можно использовать реактивный момент и, таким образом, можно уменьшить используемый магнитный материал. Мы поможем вам уменьшить количество магнитного материала без снижения производительности двигателя.

Типы электродвигателей

Обзор двигателей переменного и постоянного тока

Благодаря более высокой удельной мощности и лучшему КПД двигатели переменного тока в основном используются для электромобилей. Батарея электромобилей подает напряжение постоянного тока, поэтому для двигателей переменного тока по-прежнему необходим инвертор.

Синхронный реактивный двигатель

Недорогая альтернатива PMSM

Поскольку для реактивных двигателей не требуются постоянные магниты, они недороги в производстве. Однако обычно требуется более высокий фазный ток, что делает инвертор более дорогим, чем двигатель с магнитами. Различают вентильные реактивные двигатели (двигатель SR) и синхронные реактивные двигатели, которые имеют меньшую пульсацию крутящего момента и более высокий КПД. Воздушный зазор оказывает большое влияние на КПД реактивных двигателей и не должен превышать 0,8 мм.

» Реактивный двигатель Функция и конструкция «

Проектирование электродвигателей

Процесс проектирования и расчета электродвигателей

Процесс проектирования электродвигателей начинается с определения требований. Очень важно сравнить преимущества и недостатки различных типов электродвигателей.

Синхронный двигатель с независимым возбуждением

Увеличение скорости синхронных двигателей с внешним возбуждением

Синхронные двигатели с внешним возбуждением (SESM) не имеют постоянных магнитов в роторе, а медные обмотки, которые создают поле ротора. Таким образом, магнитное поле ротора можно регулировать уровнем тока. Недостатком является дополнительная электроника, необходимая для тока ротора, а также щеточная система для соединения ротора с электроникой. Мы поможем вам увеличить максимальную скорость машин с внешним возбуждением, чтобы улучшить удельную мощность.

Асинхронный двигатель и асинхронный двигатель

Надежные и экономичные электродвигатели

В асинхронном двигателе ротор вращается медленнее, чем вращающееся поле статора. Другими словами, ротор работает асинхронно с магнитным полем статора. Разница скоростей индуцирует напряжение в клетке короткого замыкания, что приводит к магнитному полю ротора.