Виды поршневых двигателей: Типы двигателей внутреннего сгорания

Автомобильный двигатель: конструкция, виды, характеристики

refix=»og: http://ogp.me/ns# article: http://ogp.me/ns/article# profile: http://ogp.me/ns/profile# fb: http://ogp.me/ns/fb#»>

Содержание

  • 1 Классификация двигателей ВС
    • 1.1 Поршневой двигатель внутреннего сгорания
    • 1.2 Роторный двигатель внутреннего сгорания
  • 2 Устройство поршневого двигателя автомобиля
  • 3 Как работает 4-тактный автомобильный двигатель

Автомобильный двигатель внутреннего сгорания – агрегат, состоящий из ряда узлов и деталей. Работает он за счет того, что топливно-воздушная смесь функционирует в закрытой от внешней среды камере сгорания. Попадая туда, смесь воспламеняется.

Вследствие расширения газов (они, в свою очередь, появляются за счет воспламенения смеси), образуется тепловая энергия. Согласно законам физики, она трансформируется в механическую, начиная передавать крутящий момент через трансмиссию на ведущие колеса. На основе всех этих процессов и работает автомобильный двигатель внутреннего сгорания.

Классификация двигателей ВС

Со времен первой разработки и до наших дней производятся поршневые и роторно-поршневые ДВС (Ванкеля).

Поршневой двигатель внутреннего сгорания

Рабочая камера сгорания в поршневых моторах располагается внутри цилиндра, между поверхностью плоскости ГБЦ (головки блока цилиндров) и днищем поршня, когда тот находится в верхней мертвой точке (максимальный подъем поршня).

Тепловая энергия образуется при помощи КШМ (кривошипно-шатунного механизма), обеспечивающий возвратно-поступательные движения. Полученная энергия в результате воспламенения смеси давит на поршень, передавая энергию на коленчатый вал.

Поршневые моторы существуют в трех вариациях:

Бензиновый карбюраторный автомобильный двигатель. Посредством карбюрации, топливно-воздушная смесь образуется вне камеры сгорания (внешнее смесеобразование), а готовится в карбюраторе. Смесь воспламеняется от свечи зажигания.

Бензиновый инжектор. смесеобразование происходит внутри камеры сгорания. Топливо подается электронно-управляемыми форсунками, которые могут быть установлены на конце впускного коллектора, либо вмонтированы в ГБЦ. Управляет и корректирует работу всего мотора ЭБУ (электронный блок управления двигателем).

Дизельный двигатель. Воспламенение дизельного топлива происходит без участия свечи зажигания, а посредством сжатия воздуха, в результате чего температура воздуха превышает температуру горения. Впрыск топлива осуществляется форсунками, а за впрыск под давлением отвечает ТНВД (топливный насос высокого давления).

Роторный двигатель внутреннего сгорания

Роторно-поршневой автомобильный двигатель работает следующим образом: рабочая камера двигателя овальной формы, внутри которой движется треугольный ротор, двигающиеся по планетарной траектории вокруг своей оси.

Ротор берет на себя функцию поршня, КШМ и ГРМ (газораспределительного механизма). В камере есть 4 отсека, в каждом их которых происходит такт:

  1. впуска,
  2. сжатия,
  3. рабочего хода,
  4. выпуска.

Роторно-поршневые двигатели имеет высокий КПД относительно поршневого, так как потери на трения у первого значительно меньше, но максимальный ресурс ротора не превышает 100 000 км.

Устройство поршневого двигателя автомобиля

Наиболее простой двигатель внутреннего сгорания имеет рядное расположение цилиндров. В современных моторах их от 3 до 6. Более компактный автомобильный двигатель имеет V-образную форму, то есть поршни расположены под углом напротив друг друга.

Цилиндров у V-образного двигателя может быть 4, 6, 8, 10 и 12. Также существуют рядно разнесенные моторы VR и W, их конструкция сложна, поэтому устройство мотора лучше изучить на рядной «четверке».

Основа двигателя – блок цилиндров. В этих цилиндрах двигаются поршни. Внизу блока крепится коленвал на подшипниках трения (вкладышах), к нему присоединен шатун, а к шатуну – поршень.

Такой узел называется кривошипно-шатунным. Поскольку коленчатый вал имеет, соответственно названию, форму колена, без шатуна невозможно было бы обеспечить возвратно-поступательные движения поршня.

Конструкция шатуна выполнена так, что его нижняя часть делает колебательные движения, а верхняя часть, соединенная с поршнем, не движется в боковом направлении.

Поршень двигателя имеет три кольца: два компрессионных и одно маслосъемное. О предназначении колец говорит само название: компрессионные обеспечивают давление в цилиндре, не допустив прорыва газов в картер, а маслосъемные кольца снимают масло со стенок цилиндра и сбрасывают его в масляный картер.

К коленчатому валу с передней стороны соединен шкив для обеспечения работы навесного оборудования через ремень, а также работы ГРМ, если тип привода ременной. Если ГРМ цепного типа, то на коленвале установлена звезда. Дополнительная звезда на коленчатом валу может быть установлена, если привод маслонасоса цепной.

С задней стороны к коленвалу устанавливается маховик. Маховик аккумулирует механическую энергию, и через трансмиссию передает ее на ведущие колеса. На маховике установлены зубцы для соединения со стартером.

Сверху цилиндры герметично накрыты головкой блока цилиндров, между которыми установлена металлическая прокладка. Камера сгорания находится как раз в ГБЦ, и может быть сферической или полусферической формы, а в дизельных моторах камера сгорания находится в выемке поршня.

В конструкции классической ГБЦ есть:

  • распределительный вал (один или два),
  • клапана впускные и выпускные, приводящиеся в движение от кулачка распредвала.

За возврат клапана в исходное место отвечает пружина, которая накрывается тарелкой, и фиксируется «сухарями».

Привод ГРМ, чаще всего цепной или ременной. Для цепного привода требуются пластиковые успокоители и натяжитель механического или гидравлического типа. Ременной привод ГРМ простой конструкции включает в себя ремень, обводной ролик и натяжитель.

Как работает 4-тактный автомобильный двигатель

Четырехтактный автомобильный двигатель внутреннего сгорания имеет, соответственно, 4 такта:

  1. Впуск. Поршень в положении ВМТ. Опускаясь вниз, он создает разряжение, а впускной клапан открывается. Через впускной канал всасывается топливно-воздушная смесь, и когда поршень доходит до нижней точки, клапан закрывается.
  2. Сжатие. Поршень поднимается из нижней в верхнюю точку. Вследствие сжатия увеличивается давление и температура в цилиндре. Когда поршень добирается до верхней точки, свеча зажигания воспламеняет смесь, толкая его вниз. Это действие преобразует энергию тепловую в механическую, заставляя ДВС работать.
  3. Рабочий ход. Поршень из ВМТ опускается в НМТ, посредством расширения газов. В этот момент смесь должна максимально эффективно сгореть.
  4. Выпуск. Поршень начинает движение вверх, выпускной клапан открывается, и поршень в процессе движения выталкивает отработанные газы. Они, двигаясь по выпускной магистрали по коллектору, через выхлопную трубу выбрасываются наружу.

По базовому принципу работают все двигатели внутреннего сгорания. Их разница с дизельными в том, что вместо свечи высокое давление образует воспламенение, а точнее – детонация.





Adblock
detector

Что такое двигатель и как он работает

Nevada 1976Что такое двигатель и как он работает — фото видео. 0 Comment

Содержание статьи

 

СЕГОДНЯ МОЖНО ВСТРЕТИТЬ СЛЕДУЮЩИЕ ВИДЫ ДВИГАТЕЛЕЙ:

  • двигатель внутреннего сгорания – самый распространенный вид на сегодняшний день,
  • электродвигатель – относительно молодая модель,
  • гибридная силовая установка, или комбинированный двигатель – так же относительно новая модель.

Двигатель внутреннего сгорания в свою очередь подразделяется на поршневую, роторно-поршневую и газотурбинную модель. Сегодня инженеры при разработке автомобилей используют поршневые установки. Все остальные виды двигателей можно встретить крайне редко, в основном машины с такими двигателями можно встретить только в музеях. Поршневые двигатели работают на основе жидкого топлива, в качестве которого используется бензин или же дизельное топливо или на основе природного газа. Самым распространенным видом является поршневой двигатель, работающий на основе бензина.

Относительно недавно появились электромобили, которые оснащены электродвигателями. Этот вид двигателя работает на основе электрической энергии, в качестве источника которой берутся топливные элементы или аккумуляторные батарейки. Сегодня такие автомобили, пока, не пользуются большим спросом, так как они нуждаются в частой подзарядке. Зато такой вид транспорта не выбрасывает в атмосферу вредных смесей.

Современные производители активно выпускают автомобили, оснащенные гибридной или комбинированной силовой установкой. В этом случае двигательная система имеет ДВС и электромотор.

На сегодняшний день распространены бензиновые и дизельные двигатели внутреннего сгорания. Они имеют следующие рабочие циклы:

Бензиновые двигатели имеют принудительное зажигание топливо-воздушной смеси искровыми свечами. Различаются по типу системы питания:
в карбюраторных смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей снижается из-за низкой экономичности и несоответствия современным экологическим нормам;
в впрысковых двигателях топливо может подаваться одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра (распределенный впрыск). В них возможно некоторое увеличение максимальной мощности и снижение расхода бензина и токсичности отработавших газов за счет более точной дозировки топлива электронной системой управления двигателем;
двигатели с непосредственным впрыскиванием бензина в камеру сгорания, который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно уменьшается расход топлива и выброс вредных веществ.

Дизели — двигатели, в которых воспламенение смеси топлива с воздухом происходит от повышения ее температуры при сжатии. По сравнению с бензиновыми эти двигатели обладают лучшей экономичностью (на 15-20%) благодаря большей (в два и более раз) степени сжатия (см. ниже), улучшающей процессы горения топливо-воздушной смеси. Достоинством дизелей является отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и увеличивает расход топлива. Максимальный крутящий момент (см. ниже) дизели развивают на меньшей частоте вращения коленчатого вала (в обиходе — «тяговиты на низах»).
Дизели устаревших конструкций обладали по сравнению с бензиновыми двигателями и рядом недостатков:
большей массой и стоимостью при одинаковой мощности из-за высокой степени сжатия (в 1,5-2 раза больше), увеличивавшей давление в цилиндрах и нагрузки на детали, что заставляло изготавливать более прочные элементы двигателя, увеличивая их габариты и вес;
большей шумностью из-за особенностей процесса горения топлива в цилиндрах;
меньшими максимальными оборотами коленвала из-за более высокой массы деталей, вызывавшей большие инерционные нагрузки. По этой же причине дизели, как правило, менее приемисты — медленнее набирают обороты.

Роторно-поршневой двигатель (Ванкеля) — в нем ротор-поршень совершает не возвратно-поступательное движение, как в бензиновых двигателях и дизелях, а вращается по определенной траектории. Благодаря этому он обладает хорошей приемистостью — быстро набирает обороты, обеспечивая автомобилю хорошую динамику разгона. Из-за конструктивных особенностей степень сжатия ограничена, поэтому работает только на бензине и обладает худшей экономичностью из-за формы камеры сгорания. Раньше его недостатком был меньший ресурс, а теперь и невысокие экологические показатели, которым сейчас уделяется большое внимание.

Двигатель — устройство, преобразующее энергию сгорания топлива в механическую работу. Практически все автомобильные двигатели работают по циклу, состоящему из четырех тактов:

•впуск воздуха или его смеси с топливом;
•сжатие рабочей смеси,
•рабочий ход при сгорании рабочей смеси;
•выпуск отработавших газов.

Наибольшее распространение в автомобилях получили поршневые двигатели — бензиновые и дизели.

Турбированные двигатели и «атмосферники»: главные отличия

Для начала немного истории и теории. В основу работы любого ДВС положен принцип сгорания топливно-воздушной смеси в закрытой камере. Как известно, чем больше воздуха удается подать в цилиндры, тем больше горючего получается сжечь за один цикл. От количества сгоревшего топлива будет напрямую зависеть количество высвобождающейся энергии, которая толкает поршни. В атмосферных моторах забор воздуха происходит благодаря образованию разрежения во впускном коллекторе. Другими словами, мотор буквально «засасывает» в себя наружный воздух на такте впуска самостоятельно, а объем поместившегося воздуха зависит от физического объема камеры сгорания.

Получается, чем больше рабочий объем двигателя, тем больше воздуха он может уместить в цилиндрах и тем большее количество топлива получится сжечь. В результате мощность атмосферного ДВС и крутящий момент сильно зависят от объема мотора. Рекомендуем также прочитать отдельную статью о том, что такое рабочий объем двигателя. Из этой статьи вы узнаете, какие параметры определяют данную характеристику, чем измеряется объем мотора и на что влияет данный показатель. Принципиальной особенностью двигателей с нагнетателем является принудительная подача воздуха в цилиндры под определенным давлением.

Данное решение позволяет силовому агрегату развивать больше мощности без необходимости физически увеличивать рабочий объем камеры сгорания. Добавим, что системами нагнетания воздуха может быть как турбина (турбокомпрессор), так и механический компрессор. На практике это выглядит следующим образом. Для получения мощного мотора можно пойти двумя путями:
увеличить объем камеры сгорания и/или изготовить двигатель с большим количеством цилиндров; подать в цилиндры воздух под давлением, что исключает необходимость увеличивать камеру сгорания и количество таких камер;

С учетом того, что на каждый литр топлива требуется около 1м3 воздуха для эффективного сжигания смеси в ДВС, автопроизводители по всему миру долгое время шли по пути совершенствования атмосферных двигателей. Атмомоторы представляли собой максимально надежный вид силовых агрегатов. Поэтапно происходило увеличение степени сжатия, при этом двигатели стали более стойкими к детонации. Благодаря появлению синтетических моторных масел минимизировались потери на трение, инженеры научились изменять фазы газораспределения, внедрение электронных систем управления двигателем позволило добиться высокоточного впрыска горючего и т. д. В результате моторы от V6 до V12 с большим рабочим объемом долгое время являлись эталоном производительности.  Также не стоит забывать и о надежности, так как конструкция атмосферных двигателей всегда оставалась проверенным временем решением.

Параллельно с этим главными минусами мощных атмосферных агрегатов справедливо считается большой вес и повышенный расход топлива, а также токсичность. Получается, на определенном этапе развития двигателестроения увеличение рабочего объема оказалось попросту нецелесообразным. Теперь о турбомоторах. Еще одним типом агрегатов на фоне популярных «атмосферников» всегда оставались менее распространенные агрегаты с приставкой «турбо», а также компрессорные двигатели. Такие ДВС появились достаточно давно и изначально шли по другому пути развития, получив системы для принудительного нагнетания воздуха в цилиндры двигателя. Рекомендуем также прочитать статью о том, что лучше, механический компрессор или турбина. Из этой статьи вы узнаете о преимуществах и недостатках указанных систем нагнетания воздуха, а также о том, какой мотор выбрать, с компрессором или турбированный.

Стоит отметить, что значительной популяризации моторов с наддувом и быстрому внедрению подобных агрегатов в широкие массы долгое время препятствовала высокая стоимость автомобилей с нагнетателем. Другими словами, двигатели с наддувом были редким явлением. Объясняется это просто, так как на раннем этапе машины с турбодвигателем, механическим компрессором или одновременной комбинацией сразу двух решений зачастую ставились на дорогостоящие спортивные модели авто. Немаловажным фактором оказалась и надежность агрегатов данного типа, которые требовали повышенного внимания в процессе обслуживания и уступали по показателям моторесурса атмосферным ДВС. Кстати, сегодня это утверждение также справедливо для двигателей с турбиной, которые конструктивно сложнее компрессорных аналогов и еще дальше ушли от атмосферных версий.

Как работает двигатель и из чего он состоит?

Принцип работы двигателя автомобиля – это вопрос, интересующий практически каждого автовладельца. В ходе первого ознакомления со строением двигателя все выглядит очень сложным. Однако в реальности, с помощью тщательного изучения, устройство двигателя становится вполне понятным. В случае необходимости знания о принципе работы двигателя можно использовать в жизни. 1. Блок цилиндров представляет собой своеобразный корпус мотора. Внутри него расположена система каналов, которая используется для охлаждения и смазки силового агрегата. Он используется в качестве основы для дополнительного оборудования, к примеру, картера и головки блока цилиндров.

2. Поршень, являющийся пустотелым стаканом из металла. На его верхней части расположены «канавки» для поршневых колец. 3. Поршневые кольца. Кольца, расположенные внизу, называются маслосъемными, а верхние – компрессионные. Верхние кольца обеспечивают высокий уровень сжатия или компрессию смеси топлива и воздуха. Кольца используются для обеспечения герметичности камеры сгорания, а также в качестве уплотнителей, предотвращающих попадание масла в камеру сгорания.

4. Кривошипно-шатунный механизм. Отвечает за передачу возвратно-поступательной энергии поршневого движения на коленчатый вал двигателя. Многие автолюбители не знают, что на самом деле принцип работы ДВС является достаточно несложным. Сначала топливо попадает из форсунок в камеру сгорания, где оно смешивается с воздухом. Затем свеча зажигания выдает искру, которая вызывает воспламенение топливно-воздушной смеси, из-за чего она взрывается. Газы, которые формируются в результате этого, двигают поршень вниз, в процессе чего он передает соответствующее движение коленчатому валу. Коленвал начинает вращать трансмиссию. После этого набор специальных шестерён осуществляет передачу движения на колеса передней или задней оси (в зависимости от привода, может и на все четыре).

Устройство автомобиля. Двигатель внутреннего сгорания

Что такое КОНТРАКТНЫЙ ДВИГАТЕЛЬ. Как осматривать Б/У двигатель при покупке. Секреты перекупа.

Что такое роторный двигатель? История создания и особенности конструкции.

Разница между типами поршней

26 марта

  • Автор: Car Guy

Не все поршни созданы одинаково. Выбираете ли вы облицовку блока цилиндров поршнями с плоской верхней частью, выпуклыми или куполообразными поршнями, все зависит в первую очередь от требований к карманам клапанов и требований к сжатию. Мы рассмотрим основы, чтобы помочь вам понять различия, чтобы вы могли принять взвешенное решение о том, чем запастись при следующей пользовательской сборке или обновлении.

Как работает поршень

В каждом двигателе есть цилиндр. Внутри этого цилиндра находятся ваши поршни. Количество имеющихся у вас поршней, а также их расположение определяются типом вашего двигателя. Работа поршня во всем этом заключается в передаче силы от взрывающегося газа на коленчатый вал. Каждый поршень внутри цилиндра соединен штоком, который позволяет ему двигаться вверх и вниз. Воздух и топливо смешиваются и втягиваются в цилиндр. Цилиндр сжимает смесь, искра воспламеняет ее, и у вас есть мощность. Возникающие в результате этого расширяющиеся газы толкают поршень двигателя вперед, чтобы двигаться так же, как нажатие на педаль велосипеда заставляет двигаться колесо.

Типы поршней

Существует три типа поршней, каждый из которых назван по своей форме: с плоской вершиной, куполом и тарелкой.

Поршни с плоской вершиной

Как бы просто это ни звучало, поршень с плоской вершиной имеет плоскую верхнюю часть. Поршни с плоским верхом имеют наименьшую площадь поверхности; это позволяет им создавать наибольшую силу. Этот тип поршня идеален для создания эффективного сгорания. Поршни с плоским верхом обеспечивают наиболее равномерное распределение пламени. Трудность, связанная с этим, заключается в том, что он может создавать слишком большую компрессию для меньших камер сгорания.

Тарельчатые поршни

Тарельчатые поршни представляют наименьшие проблемы для инженеров. Это больше из-за того, где они используются, чем из-за собственности, которой они сами владеют. Они имеют форму тарелки со слегка загнутыми внешними краями. Как правило, тарельчатые поршни используются в двигателях с форсированным двигателем, которые не требуют распределительного вала с большой подъемной силой или высокой степени сжатия.

Купольные поршни

Противоположные тарельчатым поршням концепции, эти поршни находятся в центре, как крыша стадиона. Это делается для увеличения площади поверхности, доступной на верхней части поршня. Большая площадь поверхности означает меньшее сжатие. Хотя большее сжатие означает, что генерируется большее усилие, существует верхний предел того, с чем может справиться каждая камера сгорания. Уменьшение степени сжатия таким образом, по существу, предотвращает разрыв двигателя на части. Это всего лишь один из способов ограничения генерируемой силы до уровня, с которым двигатель может безопасно справиться.

Если вы только начинаете, это только начало. Вы не сможете понять всю головоломку, не поставив ее части в контекст друг друга. Таким образом, хотя это объясняет, что делают поршни и какое значение имеют различия в форме, его необходимо понимать в контексте всего двигателя, чтобы получить полную картину. Продолжайте учиться, и вы будете в пути.

Если вам нужна помощь в обновлении вашего движка или создании собственной сборки движка, позвоните нам по телефону (805) 237-8808 или отправьте электронное письмо по адресу [email protected]

Категории: Новости

50790

1

13 Типы поршней и их использование [Полная информация]

Типы поршней

Что такое поршень?

Типы поршней ( Что такое поршень ) двигатель; он имеет форму диска, который совершает возвратно-поступательное движение внутри цилиндра. Поршень движется за счет сгорания топливно-воздушной смеси в цилиндре. Поршень также выполняет работу по сжатию топливно-воздушной смеси. ( Типы двигателей )

Основная работа поршня в любом двигателе внутреннего сгорания заключается в приеме импульса, который генерируется за счет расширения газа. Затем этот импульс передается на соединительный вал через шатуны. Еще одно основное назначение поршня — рассеивание избыточного тепла, образующегося при сгорании, на стенки цилиндра двигателя.

Мы классифицируем поршень на основе следующих факторов:

A) Эта классификация основана на конструкции юбки.

Типы поршня в соответствии с этой классификацией:

1. Поршень со сплошной юбкой: ( Типы поршня )

Этот поршень не имеет вырезов. На его юбке также нет никаких символов или имен. Этот тип поршня обычно используется в дизельных двигателях, в которых вырабатывается большая мощность. Поэтому он используется там, где на двигатель действует большая тяга или нагрузка.

2. Тип поршня с разрезной юбкой: ( Типы поршня )

В поршне с разрезной юбкой юбка поршня разделена на две части. Этот тип поршня обычно используется в двухтактных двигателях, бензиновых двигателях или небольших двигателях. Он использовался в древности, а в настоящее время используется реже.

3. Поршень с прорезью или поршень с постоянным зазором

  • Этот тип поршня похож на обычный поршень, но имеет прорезь. Если прорезь имеет Т-образную форму, то он называется поршнем с Т-образной прорезью, а если он имеет форму «L», то он называется поршнем с прорезью «L».
  • T-образный поршень с прорезями
  • L-образный поршень с прорезями

B) Эта классификация основана на форме и применении поршня

Мы классифицируем поршень на основе следующих факторов:

1. Поршень скользящего типа: ( Типы поршня )

Этот тип поршня используется в современных высокоскоростных двигателях. Он такой же, как обычные поршни, но с той лишь разницей, что его инерционный вес (инерционный вес — это только вес поршня) больше. При этом одна сторона поршня соединена с поршневым пальцем и зафиксирована с этой стороны, а с другой стороны поршень совершает движение в обе стороны. Сторона поршня с поршневым пальцем называется неупорной. Эта сторона свободна от каких-либо рывков и остается неподвижной. В то время как другая сторона известна как сторона тяги.

Юбка на напорной стороне действует как направляющая всякий раз, когда поршень совершает движение вверх-вниз. Когда поршень доходит до ВМТ, он ударяется о стенку с левой стороны, а когда он опускается вниз, он ударяется о стенку с правой стороны. Всякий раз, когда возникает тяга, издается звук, который называется «поршневой щелчок». Следовательно, диаметр поршня больше на упорной стороне (со стороны юбки). Для уменьшения веса поршня часть металла вырезается из поршня.

2. Поршень со стальным вкладышем: (Типы поршня)

Этот тип поршня используется в тяжелых или больших двигателях. Во время выработки мощности в двигателе тяга действует на бобышку поршня. Чем больше мощность генерируется, тем выше вероятность повреждения бобышки поршня. Поэтому для уменьшения повреждений и увеличения площади контакта в поршень вставлена ​​стальная втулка (поршень изготовлен из алюминиевого сплава).

3. Поршень со стальным ремнем: ( Типы поршня )

В этом типе поршня стальной ремень расположен в поршне между втулкой поршня и кольцевой площадкой. Этот ремень останавливает поршень, чтобы расшириться, когда поршень нагревается.

4. Кулачковый шлифованный тип поршня: ( Типы поршня )

Нижняя часть поршня не круглая, а овальной формы, то есть диаметр упорной стороны больше, а диаметр неупорной сторона меньше. Это используется в современных двигателях.

5. Поршень типа Alfinz: ( Типы поршня )

В этом типе поршня стальной сплав фиксируется в канавках кольца. Его конструкция напоминает крючок.

6. Поршень теплозащитного типа: ( Типы поршней )

Обычно на поршне нарезаются три кольцевые канавки, но в этом поршне над кольцевыми канавками нарезается дополнительная канавка меньшей глубины и меньшей ширины. Основное преимущество использования поршня с тепловой заслонкой заключается в том, чтобы остановить поток тепла (который возникает в результате взрыва воздушно-топливной смеси внутри двигателя) от верхней части поршня к нижней части поршня. Если тепло идет сверху вниз поршня, то поршень может удариться о гильзу. Следовательно, чтобы избежать этого, используются поршни с тепловой заслонкой.

C) Эта классификация основана на конструкции головки или днища поршня

Мы классифицируем поршень на основе следующих факторов:

1. Купольный тип поршня: (Типы поршня) головка поршня этого типа имеет куполообразную форму, напоминающую вершину стадиона. Дополнительный объем добавляется к верхней части поршня, придавая ему куполообразную форму.