Ядерные космические двигатели: Космические ядерные двигатели | Атомная энергия 2.0

Содержание

NASA предложили ядерный двигатель — Ведомости

Ядерный ракетный двигатель — вещь недели / Роскосмос

В рамках подготовки NASA к высадке на Марс в 2035 г. американская компания Ultra Safe Nuclear Technologies (USNT) из Сиэтла предложила свое решение – ядерный тепловой двигатель (NTP). Его использование позволит людям добраться с Земли до Марса всего за три месяца. По словам руководителя USNT Майкла Идса, «ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем с химическими двигателями, используемыми сегодня, а это означает, что они будут летать дальше и быстрее, сжигая при этом меньше топлива, что позволит человечеству уйти с околоземной орбиты в дальний космос».

USNT предлагает классическое решение – ядерный двигатель с использованием сжиженного водорода в качестве рабочего тела: ядерный реактор вырабатывает тепло из уранового топлива, эта энергия нагревает жидкий водород, проходящий по теплоносителям, который расширяется в газ и выбрасывается через сопло двигателя, создавая тягу. Одна из основных проблем при создании такого типа двигателей – найти урановое топливо, которое может выдерживать резкие колебания температуры внутри двигателя. В USNT утверждают, что решили эту проблему, разработав топливо, которое может работать при температурах до 2400 градусов Цельсия. Топливная сборка содержит карбид кремния: этот материал, используемый в слое триструктурально-изотропного покрытия, образует газонепроницаемую преграду, препятствующую утечке радиоактивных продуктов из ядерного реактора, защищая космонавтов. Той же цели – защите экипажа – служит особая архитектура ракеты, максимально разделяющая пилотируемую часть и ядерный двигатель. Запас жидкого водорода, хранящийся между двигателем и зоной экипажа, будет блокировать радиоактивные частицы, действуя как хороший радиационный экран. Кроме того, для защиты экипажа и на случай непредвиденных ситуаций ядерный двигатель не будет использоваться во время старта с Земли – он начнет работу уже на орбите, чтобы минимизировать возможные повреждения в случае аварии или нештатной работы.

Ядерный ракетный двигатель не новинка. В США в 1960-х гг. существовал проект NERVA – совместная программа Комиссии по атомной энергии США и NASA по созданию такого двигателя, продолжавшаяся до 1972 г. Ее результатом стала демонстрация реальности использования подобного двигателя для полета к Марсу. Сейчас наибольший интерес вызывают проекты создания транспортных модулей для полетов на Луну, Марс и в дальний космос. Такие проекты есть и в США, и в России, говорит эксперт в области ядерной физики и популяризатор ядерных технологий Дмитрий Горчаков: «Проект USNT предполагает, что ядерный реактор будет использоваться как источник тепла, более эффективный, чем химическое топливо, для нагрева рабочего тела и ускорения ракеты уже в космическом пространстве. Однако мощности проекта не указываются».

В России уже более 10 лет силами «Роскосмоса» и «Росатома» ведется разработка транспортно-энергетического модуля с ядерным реактором небывалой для космических аппаратов мощности – в несколько мегаватт (тепловых), что в десятки раз выше любых когда-либо запущенных в космос реакторов. Он может использоваться как в качестве источника электроэнергии для самого корабля или космической базы, так и для питания электроэнергией ионных двигателей, уже использующихся в космонавтике. Однако концепция этого проекта не раз менялась, а проблемы с финансированием и отсутствие внятных планов его использования пока вызывают сомнения в том, что в ближайшие годы работа над аппаратом будет активно продвигаться.

Куда ближе к реализации другой космический реактор – американский Kilopower электрической мощностью до 10 кВт. Как и российский проект, это не ядерный двигатель, а источник электроэнергии. Он уже испытывается в железе и вполне может стать первым мощным ядерным источником энергии, отправившимся в космос в XXI в. для питания лунной или марсианской базы или космического корабля с ионными двигателями.

Ядерные двигатели в крылатых ракетах. Досье

19 июля 2018, 08:56

ТАСС-ДОСЬЕ. 19 июля 2018 года в Минобороны сообщили журналистам, что Россия готовится провести летные испытания опытных образцов усовершенствованной крылатой ракеты «Буревестник» с ядерным двигателем. В ведомстве указали, что малозаметная крылатая ракета с практически неограниченной дальностью, несущая ядерную боевую часть, является неуязвимой для всех существующих и перспективных систем как противоракетной, так и противовоздушной обороны.

Редакция ТАСС-ДОСЬЕ подготовила справочный материал о проектах использования ядерных двигателей в крылатых ракетах.

Ядерные двигатели

Идея использовать ядерные двигатели в авиации и космонавтике возникла в 1950-х годах вскоре после создания технологии управляемой атомной реакции. Плюсом такого двигателя является длительное время работы на практически не расходуемом в полете компактном источнике топлива, что означает неограниченную дальность полета. Минусами были большой вес и габариты атомных реакторов того времени, сложность их перезарядки, необходимость обеспечения биологической защиты обслуживающего персонала. С начала 1950-х годов ученые СССР и США независимо друг от друга изучали возможность создания разных типов атомных двигателей:

  • ядерный прямоточный воздушно-реактивный двигатель (ЯПВРД): в нем поступающий через воздухозаборник воздух попадает в активную зону реактора, нагревается и выбрасывается через сопло, создавая нужную тягу;
  • ядерный турбореактивный двигатель: действует по похожей схеме, но воздух перед попаданием в реактор сжимается компрессором;
  • ядерный ракетный двигатель: тяга создается за счет нагрева реактором рабочего тела, водорода, аммиака, других газов или жидкостей, которые затем выбрасываются в сопло;
  • ядерный импульсный двигатель: реактивную тягу создают поочередные ядерные взрывы малой мощности;
  • электрореактивный двигатель: вырабатываемая реактором электроэнергия используется для нагрева рабочего тела до состояния плазмы.

Наиболее подходящими для крылатых ракет и самолетов являются прямоточный воздушно-реактивный или турбореактивный двигатель. В проектах крылатых ракет предпочтение традиционно отдавалось первому варианту.

Советские проекты

В СССР работами по созданию ядерного прямоточного воздушно-реактивного двигателя занималось ОКБ-670 под руководством Михаила Бондарюка. ЯПВРД был предназначен для модификации межконтинентальной крылатой ракеты «Буря» («изделие 375»), которую с 1954 года проектировало ОКБ-301 под руководством Семена Лавочкина. Стартовый вес ракеты достигал 95 т, дальность должна была составить 8 тыс. км. Однако в 1960 году через несколько месяцев после смерти Лавочкина проект «обычной» крылатой ракеты «Буря» был закрыт. Создание же ракеты с ЯПВРД так и не вышло за рамки предэскизного проектирования.

Впоследствии специалисты ОКБ-670 (переименованного в КБ «Красная Звезда») занялись созданием ядерных ракетных двигателей для космических и боевых баллистических ракет, однако ни один из проектов так и не дошел до стадии испытаний. После смерти Бондарюка работы над авиационными ядерными двигателями были фактически прекращены.

К ним вернулись лишь в 1978 году, когда при НИИ тепловых процессов было образовано конструкторское бюро из бывших специалистов «Красной Звезды», занимавшееся прямоточными воздушно-реактивными двигателями. Одной из их разработок стал ядерный прямоточный воздушно-реактивный двигатель для более компактной, по сравнению с «Бурей», крылатой ракеты (стартовой массой до 20 т). Как писали СМИ, «проведенные исследования показали принципиальную возможность реализации проекта». Однако о ее испытаниях не сообщалось.

Само КБ просуществовало под различными названиями (НПВО «Пламя», ОКБ «Пламя-М») до 2004 года, после чего закрыто.

Опыт США

С середины 1950-х годов ученые Радиационной лаборатории в Ливерморе (штат Калифорния) в рамках проекта Pluto разрабатывали ядерный прямоточный воздушно-реактивный двигатель для сверхзвуковой крылатой ракеты.

К началу 1960-х годов были созданы несколько прототипов ЯПВРД, первый из которых — Tory-IIA — был испытан в мае 1961 года.  В 1964 году начались испытания новой модификации двигателя — Tory-IIC, который смог проработать пять минут, показав тепловую мощность около 500 МВт и тягу в 16 т.

Однако вскоре проект был закрыт. Традиционно считают, что причиной этого как в США, так и в СССР стало успешное создание межконтинентальных баллистических ракет, способных доставить ядерные боезаряды на территорию противника. В этой ситуации межконтинентальные крылатые ракеты не выдержали конкуренции.

В России

1 марта 2018 года, выступая с посланием Федеральному собранию РФ, президент России Владимир Путин сообщил, что в конце 2017 года на Центральном полигоне Российской Федерации была успешно испытана новейшая крылатая ракета с ядерной энергоустановкой, дальность полета которой «является практически неограниченной». Ее разработка была начата после выхода США в декабре 2001 года из Договора об ограничении систем противоракетной обороны 1972 года. Название «Буревестник» ракета получила 22 марта 2018 года по итогам открытого голосования на сайте Минобороны.  

Теги:

Путин, Владимир ВладимировичРоссия

6 вещей, которые вы должны знать о ядерных тепловых двигателях

Офис
Атомная энергетика

10 декабря 2021 г.

НАСА хочет отправить астронавтов на Марс, и они могли бы сделать это с помощью ядерных ракетных двигателей.

Ядерные тепловые двигательные установки (NTP) не новы, но они могут значительно сократить время полета и нести большую полезную нагрузку, чем современные химические ракеты, что дает людям большие возможности для исследования дальнего космоса.

Вот 6 вещей, которые вы должны знать о ядерных тепловых двигателях.

URL видео

Посмотрите анимацию выше, чтобы узнать о преимуществах ядерных тепловых двигателей.

Видео предоставлено Министерством энергетики

1. Системы NTP питаются от деления

Системы NTP работают, прокачивая жидкое топливо, скорее всего водород, через активную зону реактора. Атомы урана распадаются внутри ядра и выделяют тепло в результате деления. Этот физический процесс нагревает топливо и превращает его в газ, который расширяется через сопло для создания тяги.

2. Системы НТП более эффективны, чем химические ракеты

Ракеты НТП обладают большей энергоемкостью, чем химические ракеты, и в два раза эффективнее.

Инженеры измеряют эту производительность как удельный импульс, который представляет собой величину тяги, которую можно получить от определенного количества топлива. Удельный импульс химической ракеты, сжигающей жидкий водород и жидкий кислород, составляет 450 секунд, что ровно вдвое меньше, чем у начальной мишени для ядерных ракет (900 секунд).

Это потому, что более легкие газы легче разогнать. Когда химические ракеты сжигаются, они производят водяной пар, гораздо более тяжелый побочный продукт, чем водород, который используется в системе NTP. Это приводит к большей эффективности и позволяет ракете лететь дальше на меньшем количестве топлива.

3. Системы NTP не будут использоваться при запуске

Системы NTP не будут использоваться на Земле. Вместо этого они будут запущены в космос химическими ракетами до того, как их запустят. Системы NTP не предназначены для создания тяги, необходимой для отрыва от поверхности Земли.

4. Системы NTP обеспечивают большую гибкость

Системы NTP обеспечивают большую гибкость для полетов в дальний космос. Они могут сократить время полета до Марса на 25% и, что более важно, ограничить воздействие космической радиации на летный экипаж. Они также могут обеспечить более широкие окна запуска, которые не зависят от выравнивания орбиты, и позволяют астронавтам прерывать миссии и при необходимости возвращаться на Землю.

Загрузите нашу инфографику по ядерным тепловым двигателям.

5. Системы NTP были разработаны при поддержке DOE

NTP не нова. Он был изучен НАСА и Комиссией по атомной энергии (ныне Министерство энергетики США) в 1960-х годах в рамках программы «Ядерный двигатель для ракетных транспортных средств». За это время ученые Лос-Аламосской национальной лаборатории помогли успешно построить и испытать ряд ядерных ракет, на которых сегодня основаны нынешние конструкции NTP.

Хотя программа завершилась в 1972 году, продолжались исследования по улучшению базовой конструкции, материалов и топлива, используемых для систем NTP.

НАСА и Министерство энергетики в настоящее время работают с промышленностью над разработкой обновленных конструкций ядерных тепловых двигательных реакторов. Три отраслевые команды выиграли конкурс проектов в 2021 году и в настоящее время продолжают разработку проектов, которые будут представлены для оценки осенью 2022 года.

6. Системы NTP сосредоточены на использовании низкообогащенного урана испытание, разработка и оценка возможности использования нового топлива, требующего меньшего обогащения урана, для систем НТП.

Это топливо может быть изготовлено с использованием новых передовых технологий производства и потенциально может помочь снизить связанные с безопасностью затраты, связанные с использованием высокообогащенного топлива.

Национальная лаборатория Айдахо в настоящее время помогает НАСА разрабатывать и тестировать топливные композиты на своей установке для испытаний переходных реакторов (TREAT), чтобы изучить, как они работают при суровых температурах, необходимых для ядерных тепловых двигателей. Первоначальные испытания показали, что ядерное топливо, разрабатываемое НАСА и Министерством энергетики, способно выдерживать повышение температуры до рабочих температур ядерных тепловых двигателей без значительных повреждений.

Узнайте больше о работе НАСА по ядерным тепловым двигателям и узнайте о роли Министерства энергетики в освоении космоса.

Следите за Управлением ядерной энергии

Ядерная и космическая: ядерная тепловая тяга — Х-энергия: HTGR

Ядерная и космическая

Ядерная тепловая тяга

Как построить лучшую марсианскую ракету

Ваш браузер не поддерживает тег видео HTML5.

Куда-то собираетесь?

Химические ракеты возглавляют список самых быстрых объектов, когда-либо созданных. Но если мы хотим открыть Солнечную систему для исследования человеком, их скорости недостаточно.

Введите ядерную тепловую двигательную установку

Ядерный тепловой двигатель

Сегодня полет на Марс в один конец занимает минимум шесть месяцев. Для астронавта это долгий срок пребывания в космическом корабле размером с однокомнатную квартиру. Это также создает серьезные оперативные проблемы для миссии. Чем дольше астронавт находится в пути, тем больше он подвергается воздействию высоких доз опасного космического излучения и тем больше припасов ему нужно взять с собой для выполнения миссии.

За последние полвека инженеры выжали все до последней капли из обычных химических ракетных двигателей. Если мы действительно хотим совершать регулярные полеты на Марс, нам потребуется резкое изменение эффективности ракетных двигателей.

Если мы хотим открыть Солнечную систему для исследования людьми, их скорости недостаточно.

Как попасть на Марс?

Путешествие человека на Марс требует значительно более быстрой транспортировки. Ядерная тепловая двигательная установка позволяет космическим кораблям двигаться быстрее, сокращая время, в течение которого люди подвергаются воздействию радиации.

Более быстрый космический корабль

Как это работает

Ядерный реактор быстро нагревает топливо, такое как жидкий водород, который расширяется через сопло ракеты и обеспечивает значительную тягу.

Жидкий водород

Раннее происхождение

Идея ядерной тепловой тяги почти так же стара, как и сама космическая эра… идея когда-то опережала свое время.

НАСА

NTP: новый тип двигателя

В обычном жидкостном ракетном двигателе окислитель и топливо смешиваются в камере сгорания и воспламеняются. Это заставляет газы быстро расширяться, что резко увеличивает давление в камере сгорания и выталкивает выхлоп через сопло ракетного двигателя на высоких скоростях.

Тепловая ядерная двигательная установка также работает за счет выброса горячих газов из двигателя под высоким давлением. Ключевое отличие заключается в том, как эти газы доводятся до температуры. Вместо сгорания реакторная система NTP прокачивает жидкое топливо — обычно водород — через активную зону высокотемпературного ядерного реактора. Когда газ проходит через активную зону реактора, он нагревается до невероятно высоких температур (> 2500 ° C), что заставляет его быстро расширяться через сопло и создавать тягу.

Одним из основных преимуществ ядерных тепловых двигателей является их эффективность. Ядерная тепловая ракета может более чем в два раза повысить эффективность по сравнению с обычной химической ракетой, потому что ее топливо нагревается до гораздо более высокой температуры, чем в обычной камере сгорания. Это означает, что ядерная тепловая ракета может сократить время полета до Марса (и обратно домой) вдвое.

«Вы ничего не сжигаете, поэтому вам не нужно носить с собой кислород, который очень тяжел», — говорит Майк Кинард, бывший руководитель проекта NASA Space Nuclear Propulsion Project. «Но вам все еще нужно нести много водорода на Марс, чтобы вы могли вернуться, а для этого требуется чрезвычайно эффективная система. NTP создан специально для этого».

«Вы ничего не сжигаете, поэтому вам не нужно носить с собой кислород, который очень тяжелый»

Майк Кинард (бывший руководитель проекта НАСА по космическим ядерным двигателям)

Ядерная мечта НАСА

Идея ядерной тепловой тяги почти так же стара, как и сама космическая эра. В начале 1960-х НАСА объединило усилия с Комиссией по атомной энергии для изучения конструкции двигателя NTP. Новаторская программа NERVA завершилась серией наземных испытаний прототипа ядерного двигателя и вдохновила Вернера фон Брауна, директора Центра космических полетов НАСА имени Маршалла и отца современной ракетной техники, предложить отправить астронавтов на Марс на ядерной тепловой ракете с помощью 1980-е годы. Пыль после «гигантского прыжка» Нила и Базза едва осела, но фон Браун уже осознал огромный потенциал ядерных тепловых двигателей.

Несмотря на ранний энтузиазм НАСА по поводу ядерных тепловых двигателей, их двигатель NERVA так и не был запущен в космос. Программа столкнулась с техническими трудностями, особенно когда речь шла о поиске материалов, способных выдерживать интенсивные температуры реактора, которые являются ключевыми для эффективности ядерной ракеты. Материаловедение просто не было готово справиться с жарой — до сих пор.

Seeing Red

Теперь, когда НАСА снова обратило свои взоры на Марс, ядерные тепловые двигатели готовы к возрождению. В течение многих лет инженеры НАСА изучали фундаментальную физику и материаловедение критических компонентов ядерного теплового двигателя. Программа получила мощную поддержку Конгресса, который выделил более 100 миллионов долларов на программу ядерных тепловых двигателей НАСА в своем бюджете на каждый из последних четырех лет.

Цель НАСА — запустить первую демонстрационную полетную миссию ядерного теплового двигателя к середине 2020-х годов. Но они не могут сделать это в одиночку, поэтому агентство использовало энергию X, чтобы помочь разработать концепции реактора и топлива для космического ядерного теплового двигателя.

NTP @ XE

Летом 2020 года компания X-energy представила свои концепции ядерного теплового двигательного реактора, способного развивать удельный импульс в 900 секунд. Удельный импульс является мерой того, насколько эффективно ракетный двигатель использует свое топливо. Это похоже на расход бензина для автомобиля: более высокий удельный импульс означает, что вы можете ехать быстрее и дальше на заданном количестве топлива. Проект X-energy для ядерной тепловой двигательной установки будет способен более чем в два раза увеличить удельный импульс двигателей Saturn V, доставивших астронавтов на Луну, которые остаются самыми мощными и эффективными ракетными двигателями, когда-либо летавшими в космос.

Большой вопрос для НАСА заключается в том, какой тип ядерного топлива использовать в этих планетарных исследовательских реакторах. Обеспокоенность по поводу риска распространения ослабила энтузиазм по поводу использования высокообогащенного урана, но низкообогащенный уран, используемый в существующих наземных ядерных реакторах, не обладает достаточной плотностью энергии для удовлетворения потребностей высокотемпературной двигательной реакторной установки. Высокопробное низкообогащенное урановое топливо (HALEU), которое занимает промежуточное положение между низко- и высокообогащенным ураном (обогащение до 20%), является сильным претендентом на ядерные тепловые ракеты.

«Я думаю, что самым большим прорывом в последнее время является тот факт, что мы нашли способы использования низкообогащенного урана [высокой пробы] для получения таких характеристик, которые нам нужны для ядерных тепловых двигателей», — говорит Кинард.

X-energy — одна из немногих компаний в США, способных производить формы топлива с керамическим покрытием с использованием HALEU, который лежит в основе нашего топлива TRISO. Каждый топливный сердечник TRISO состоит из 0,5-микронной таблетки оксикарбида урана (размером с маковое зернышко), обернутой тремя чередующимися слоями графита и карбида кремния. Тысячи этих частиц заключены в форму графитового топлива: либо галька, либо призматические компакты. В наземном реакторе X-energy, Xe-100, более 60 000 таких камешков (размером примерно с биток) будут проходить через активную зону реактора в течение года.

«Мы спрашивали: «Почему все по-прежнему делается именно так?», и во многих ситуациях ответ был: «Мы всегда так делали». на фундаментальном уровне, чтобы мы могли внедрять новые материалы и технологии производства».

Д-р Даниэль Браун (инженер-технолог по топливу в X-energy)

«TRISO топливо впервые было создано в 1960-х годов, и во многих процессах, используемых для изготовления этого топлива, до сих пор используются технологии 1960-х годов», — говорит д-р Дэниел Браун, инженер-технолог по топливу в X-energy. «Мы спрашивали: «Почему все по-прежнему делается именно так?», и во многих ситуациях ответ был: «Мы всегда так поступали». уровне, чтобы мы могли внедрять новые материалы и технологии производства».

Вернувшись к основам, мы смогли определить ключевые области, в которых производство TRISO можно улучшить. После многих лет исследований и разработок компания X-energy создала запатентованные процессы производства топлива из твердых частиц с керамическим покрытием, которые значительно улучшили качество, стабильность и безопасность топлива TRISO, а также обеспечили надежные поставки в промышленных масштабах.

Мы называем наше творение TRISO-X .

Критическая температура

Самое главное в топливе X-energy TRISO-X заключается в том, что его можно безопасно использовать при экстремально высоких температурах. Слои графита и карбида кремния вокруг зерен урана действуют как автономный экран, удерживающий продукты деления урана. Это означает, что уран можно довести до температуры намного выше 3000 градусов по Фаренгейту — более чем в 7 раз выше рабочей температуры обычного ядерного реактора — без риска расплавления. Это критическая особенность ядерной тепловой ракеты, которая должна работать при гораздо более высоких температурах, чтобы достичь повышения эффективности по сравнению с двигателями на химическом топливе.

«Недостаточно быть «устойчивым к расплавлению» топливом… для ядерной тепловой ракеты требуется такое же надежное ядро».

Д-р Ханс Гугар (менеджер X-energy по разработке продуктов для разработки микрореакторов)

Но быть «устойчивым к расплавлению» топливом недостаточно, говорит д-р Ханс Гугар, менеджер X-energy по продуктам Инжиниринг для разработки микрореакторов. Ядерная тепловая ракета нуждается в таком же прочном сердечнике. Предложенная X-energy конструкция высокотемпературного газоохлаждаемого реактора восходит к программе НАСА NERVA. Как и в двигателе NERVA, конструкция X-energy пропускает горячий водород через графитовый сердечник для создания тяги. Ключевое отличие состоит в том, что в нашей топливной матрице TRISO-X используются современные материалы, которые не разрушаются при работе двигателя при экстремальных температурах. Наши усовершенствованные замедлители повышают эффективность реакции деления, позволяя использовать топливо HALEU, сохраняя при этом достаточно легкий вес реактора для полета.

Эффективность нашей ядерной тепловой двигательной установки является ключевым отличием нашей конструкции. Для любого космического приложения вес всегда является ключевым фактором, а это означает наличие минимального количества топлива, возможного для безопасного завершения миссии. В X-energy мы занимаемся производством небольших ядерных реакторов, но даже наши наземные блоки слишком велики для ракеты. Наш реактор Xe-100 слишком тяжел на несколько сотен тонн, чтобы его можно было запустить в космос. Будущее ядерных тепловых двигателей зависит от нашей способности производить примерно такую ​​же выходную мощность, как и типичный коммерческий усовершенствованный реактор, но работать при гораздо более высокой температуре, уменьшая его размер на порядки.

После нескольких месяцев работы над концептуальным проектированием для НАСА мы уверены, что наши инновации и опыт работы с небольшими высокотемпературными газовыми реакторами и неплавящимся топливом TRISO-X позволят в ближайшем будущем осуществлять межпланетные миссии с экипажем. Мы уже начинаем проводить эксперименты по усовершенствованному производству топлива NTP на нашем пилотном производственном объекте TRISO-X в Национальной лаборатории Ок-Ридж, поэтому мы готовы масштабировать производство топлива, чтобы уложиться в сроки исследований НАСА. Мы также извлекаем выгоду из опыта исследования космоса наших дочерних компаний, Intuitive Machines и Axiom Space, которые разрабатывают первый в мире частный лунный посадочный модуль и коммерческую космическую станцию ​​соответственно.

«Тесное сотрудничество с нашей топливной командой TRISO-X и нашими дочерними компаниями, которые планируют и выполняют космические миссии в течение многих лет, значительно ускорило наш междисциплинарный процесс проектирования и улучшило наши решения», — говорит д-р Брэд Реарден, директор Архитектор технических решений и решений X-energy для космических реакторов.