Ракетный микро двигатель: Что такое Ракетно-турбинный двигатель | значение термина

Двигатели для моделей ракет — Паркфлаер

Устройство модельного ракетного двигателя.
МРД относится к тепловым реактивным двигателям химического типа. Другими словами МРД преобразует тепловую энергию, выделяющуюся при химической реакции горения твердого ракетного топлива (ТРТ), в кинетическую энергию потока истекающих из сопла продуктов сгорания, который и создает реактивную силу тяги (тут можно вспомнить формулировку 3-го закона Ньютона).

Тягу ракетного двигателя можно описать следующей формулой (1): Р = mVa + Fa(pа — ph)

где Р — тяга двигателя, Н;

m — массовый секундный расход продуктов сгорания, истекающих через сопло, кг/с;

Va, Fa, pa — скорость, площадь поперечного сечения и давление на выходе из сопла;

ph — давление окружающий среды на высоте полёта, Па.

Таким образом тяга ракетного двигателя зависит от того, какую массу в единицу времени мы отбрасываем, с какой скоростью и на какой высоте у нас происходит полёт. Так, при полёте в безвоздушном пространстве (ph->0) тяга двигателя максимальна и совпадает с реактивной силой mVa+Fapa.

В любом случае, МРД — двигатель не регулируемый, его характеристики заданы при проектировании и изменить их в полёте невозможно. Двигатель после старта в любом случае отработает свою программу, мы не имеем возможности ни регулировать его характеристики, ни, тем более, выключить его.

Устройство модельного ракетного двигателя.

Рассмотрим составляющие МРД в том порядке, в котором они отмечены на рисунке:

1 — Реактивное сопло. Назначение его — максимально разогнать продукты сгорания топлива. Как видно из формулы (1), тяга двигателя напрямую зависит от скорости потока на выходе из сопла, поэтому в большинстве случаев сопла МРД имеют на выходе расширяющийся участок для ускорения потока продуктов сгорания до сверхзвуковой скорости. Минимальное проходное сечение сопла называется критическим, в нем скорость потока достигает скорости звука. Из всех элементов ракетного двигателя именно соплу приходится сложнее всего: по нему протекает поток раскаленных продуктов сгорания, состоящий не только из газов, но и из твёрдых частиц (особенность твердотопливных двигателей). Изготавливается сопло чаще всего из керамики.

2 — Заряд твердого ракетного топлива. Это и запас рабочего тела двигателя, и в то же время запас энергии, выделяющейся при химической реакции горения топлива. Для воспламенения топливному заряду необходим определенный начальный тепловой импульс, который обеспечивает штатный электровоспламенитель МРД. Обратите внимание! Прекратить работу запущенного МРД невозможно!!!

3 — Замедлитель. Отдельный заряд, формирующий задержку по времени от момента сгорания топлива до срабатывания вышибного заряда. Тяги он практически не создает, но часто образует густой дымовой шлейф, чтобы удобней было наблюдать полёт модели.

4 — Вышибной заряд, простейший элемент автоматики, предназначенный для выбрасывания из модели парашюта или включения двигателей верхней ступени для многоступенчатой модели ракеты. Даже легкая модель ракеты из ватмана обладает высокой скоростью полёта, и при посадке в огород страдают все участники встречи: и «морковка», и огород. А в огороде, бывает, и кролики пасутся, так что вывод один — на модели должна быть в обязательном порядке система спасения (или мягкой посадки, кому как нравится) и проверяем перед стартом, какой двигатель вы на модель ставите, чуть забегая вперед отмечу, что на некоторых МРД-шках вышибного заряда нет! В маркировке это конечно же отражается, а потому внимательно смотрим, что куда вставляем.

5 — Передний пыж из бумаги, прикрывающий вышибной заряд. Для эстетики и сохранности.

6 — Корпус двигателя. По совместительству это и ёмкость для хранения топлива, и камера сгорания. И соединяет все части двигателя в единое целое. При работе двигателя внутри корпуса находятся продукты сгорания с высокой температурой и давлением, поэтому требования к прочности корпуса достаточно серьёзные, так что любые повреждения корпуса могут сказаться, чаще всего, его разрушением. Грубо говоря — бабахнет.

Внешне же МРД имеет форму цилиндра, диаметром D и длиной L.
Чаще всего выпускаются МРД одноразовые, один двигатель — один полёт, хотя есть в природе и перезаряжаемые двигатели многоразового использования, к примеру двигатели фирмы AeroTech из рекламного ролика выше.

Следующий рисунок даёт представление о последовательности работы МРД.
Фаза 1 — зажигание, тепловой импульс от воспламенителя поджигает топливный заряд.
Фаза 2 — топливный заряд сгорает с выделением тепла и образованием высокотемпературных продуктов сгорания, которые, истекая из реактивного сопла с высокой скоростью, создают реактивную тягу.
Фаза 3 — топливный заряд передает эстафету замедлителю, он отсчитывает время пассивного участка траектории.
Фаза 4 — замедлитель воспламеняет вышибной заряд, выталкивающий систему спасения из корпуса модели, после чего вся система мягко возвращается на поверхность планеты.

Характеристики модельного ракетного двигателя.
Как правило, модель ракеты строится под какой-то определенный двигатель, характеристики которого известны. Или под серию двигателей, имеющих, допустим, одинаковые геометрические размеры и отличающихся энергетическими возможностями, временем работы замедлителя и т.п. Создавая спортивную модель для участия в соревнованиях вы ограничены по суммарному импульсу двигателей, разрешенных на моделях выбранного класса.

Прежде всего нас интересуют следующие характеристики МРД:

Геометрические характеристики двигателя: внешний диаметр D (калибр) и длина корпуса L. Вам же нужно двигатель куда-то на модели устанавливать, как-то крепить, а для этого нужно знать его габариты.

Полный импульс тяги двигателя, измеряется в Н*с и определяет энергетические возможности МРД. На основании закона о сохранении количества движения изменение импульса движущегося тела вызывается импульсом приложенной силы. Таким образом можно рассчитать скорость модели, которой она достигнет в конце активного участка траектории полёта. По величине полного импульса двигатели разделяются на классы. По суммарному полному импульсу установленных на модели двигателей делятся на классы и спортивные модели ракет.

Тяга двигателя, единица измерения — Ньютон. Тяга МРД не является постоянной во время его работы, каким образом она меняется можно узнать из тяговой диаграммы, для каждой марки двигателя тяговая диаграмма своя и вообще это одна из важнейших и интереснейших характеристик, ниже затрону её подробней. Для примера приведу тяговую диаграмму двигателя «Эстес» А10, имеющую типичную для модельных двигателей форму — пик в начале работы и участок, где тяга сохраняется постоянной.

Почему такая форма тяговой диаграммы наиболее распространена?
Быстрое нарастание тяги в начале работы двигателя приводит к энергичному разгону модели по направляющей пусковой установки с тем, чтобы стартующая ракета в момент схода с пусковой имела скорость достаточную для эффективной работы аэродинамических поверхностей-стабилизаторов (если они есть, конечно), которые обеспечивают устойчивость её полёта.
Затем уже происходит набор скорости при постоянной величине тяги двигателя.

Средняя тяга, двигателя за время его работы определяется как частное от деления полного импульса на время работы, измеряется также в Ньютонах. Можно выбирать двигатель в первом приближении исходя из его средней тяги и планируемой стартовой массы ракеты. Грубо говоря, при равенстве этих величин ракета отработает программу полёта не покидая пусковую установку в лучшем случае, либо сойдет с неё и плюхнется неподалеку, что не есть хорошо. Для гарантированного полёта отношение средней тяги к стартовой массе (тяговооружённость) должно быть больше единицы. Желательно, с запасом.

Время работы двигателя, складывается из времени выгорания основного заряда топлива и времени работы замедлителя. Первое задаёт нам продолжительность активного участка полёта (двигатель создает реактивную тягу), второе — пассивного участка (тяга двигателя отсутствует, модель летит по инерции до ввода в действие системы спасения модели).

Масса снаряженного двигателя. Входит в расчет стартовой массы ракеты, да и при балансировке модели без этого параметра не обойтись.

Масса топлива. Зная это, мы сможем вычислить массу и положение ЦТ модели в конце активного участка полёта. Кроме того, спортивные правила могут ограничивать массу топлива на борту модели.

Тяговая диаграмма.
Очень интересный график зависимости тяги двигателя по времени работы.
Получается этот график при стендовых испытаниях двигателей, производитель такие испытания проводит и для каждой марки двигателей прилагает соответствующую тяговую диаграмму. Что же по ней можно узнать?

Конечно, первое, что бросается в глаза — максимальная тяга двигателя. Но. Интерес представляет и то, в какой момент по времени максимум тяги достигается, и насколько быстро она нарастает. К примеру, существуют двигатели, тяговая диаграмма которых выглядит таким образом:

Различная скорость нарастания тяги двигателя приводит к различному ускорению модели в начале активного участка траектории. Особенно этот момент интересно прорабатывать для моделей-копий ракет, ведь зенитная ракета и ракета-носитель космических аппаратов стартуют с разным ускорением, а характер старта для копии должен бы повторять свой прототип.
Время работы двигателя, то есть время сгорания топлива и создания двигателем тяги отображается на тяговой диаграмме очень наглядно.
Если подсчитать площадь под кривой на тяговой диаграмме, можно определить полный импульс тяги МРД.
А поделив полный импульс на время работы получим значение средней тяги.

Разрабатывать модели ракет можно на бумаге, а можно использовать специальные программы, к примеру SpaceCAD или Open Rocket. Первая мощнее, с большими возможностями, но за деньги. Вторая попроще и бесплатная. Обе позволяют «собрать» модель ракеты из настраиваемых типовых элементов конструкции (оболочки, шпангоуты, бобышки и т.д.), подсчитывать вес получившейся конструкции, определять положение ЦТ и ЦД, т.е. сразу видно, устойчивым ли будет полёт модели и каков запас устойчивости, а также смоделировать траекторию полёта, выбрав требуемый двигатель из базы данных или есть возможность ввести тяговую диаграмму двигателя, в базе отсутствующего.

Обзор существующих МРД.
Ещё с советских времен наши ракетомоделисты используют модельные ракетные двигатели промышленного производства шосткинского ПО «Импульс».

Маркировка двигателей читается так, к примеру: МРД 20-10-4
МРД — модельный ракетный двигатель;
20 — полный импульс 20 Н*с;
10 — средняя тяга 10 Н;
4 — время работы замедлителя: 4 с.

От себя замечу, что из всей линейки шосткинских движков прочные отношения сложились лишь с МРД 2,5-3 и МРД 20-10. «Десятки» взрывались через одного, «пятерки» взорвались все. Возможно мне с ними просто не повезло или партия неудачная досталась, но «рабочей лошадкой» для моделей выбрал «двадцатку» и весьма доволен.

В настоящее время у нас появились в продаже МРД американской фирмы «Эстес».
Двигатели любопытные и при случае планирую опробовать их в деле. Конструкция их идентична отечественным, правда несколько отличаются по калибру. Если серии «Мини» (13 мм) и «Стандарт» (18 мм) практически совпадают с нашими, то более мощные двигатели классов С, D и Е, аналогичные нашим МРД 10-8 и МРД 20-10, выполнены в корпусе калибром 24 мм (наши имеют 20,25 мм), их в готовые ракеты под наши движки уже не установишь.

Маркировка двигателей почти аналогична нашим, только полный импульс обозначают буквой. Например, С11-6 читается таким образом:
С — полный импульс 10 Н*с;
11 — средняя тяга 1,1 Н;
6 — время работы замедлителя: 6 с.

Характеристики двигателей фирмы «Эстес»:

Подробную информацию о продукции фирмы «Эстес» можно найти на сайте http://www.estesrockets.com

Меры безопасного обращения с МРД.
1. Беречь двигатели от механический повреждений, порезов, ударов, падений с высоты на твёрдое основание. Повреждения корпуса приводят к снижению его прочностных характеристик, при запуске такого двигателя корпус может громко разрушиться. Повреждение (растрескивание) топливного заряда приводит к резкому увеличению поверхности горения, а значит и давления внутри, на которое прочность корпуса не рассчитана, что опять же приводит к его разрушению.

2. Беречь двигатели от воздействия воды и повышенной температуры. Многие топлива с водой не дружат, при увлажнении заряда и последующем высыхании возможно растрескивание заряда. Последствия — см. п.1.
При повышении начальной температуры возможно ускоренное химическое разложение топлива, изменяющее его характеристики, а также повышается вероятность самопроизвольного запуска. Так что не стоит оставлять двигатели летом на солнце под лобовым стеклом автомобиля. И уж тем более сушить подмокший двигатель на батарее.

3. Не перекрывать сопла двигателя при установке воспламенителя, МРД не рассчитаны на работу с жёсткой сопловой заглушкой. Самое надежное — пользоваться штатными воспламенителями и штатными их фиксаторами, при отсутствии последних пользуемся мягкими материалами, классический вариант — вата, бинт, кусочек туалетной бумаги (есть недостаток — эти материалы могут тлеть после запуска, так что в этом случае внимательно относимся к выбору места старта).

4. Запрещается вносить изменения в конструкцию двигателя. В инструкции так и пишут — запрещается. Рассверливать или удлинять канал в заряде топлива, высверливать замедлитель и т.д. Двигателей сейчас достаточно и разных, всегда можно найти подходящий по характеристикам. А ковырять готовый — бессмысленно и небезопасно.

5. При отказе на старте подходить к двигателю не ранее, чем через 1 минуту.

6. Модель ракеты должна отвечать требованиям прочности конструкции и устойчивости в полёте. Двигатель должен быть надёжно закреплён на модели, отделение его в полёте от модели в большинстве случаев не допускается. Полёт неустойчивой модели непредсказуем, а значит небезопасен для вас и ваших зрителей, вольных или невольных.

7. Пусковая установка должна быть прочной, устойчивой и обеспечивать надёжный старт модели с углами возвышения 60-90 градусов. Запускать модели ракет по настильной траектории спортивными правилами запрещается. Кроме перечисленного в задачи ПУ входит отвод газовой струи из сопла МРД для защиты модели, места старта и самой ПУ от её воздействия.


Литература по теме.

1. Эльштейн П. Конструктору моделей ракет.
2. Кротов И.В. Модели ракет.
3. Канаев В.И. Ключ — на старт!
4. Рожков В.С. Авиамодельный кружок.
5. Букш Е.Л. Основы ракетного моделизма.
5. Минаков В.И. Спортивные модели-копии ракет.

Полезную для себя информацию можно почерпнуть и на сайте Федерации ракетомодельного спорта России.

Благодарю за внимание!
Успехов в творчестве!

Незаметные сложности ракетной техники. Часть 2: Твердотопливные двигатели / Хабр


В комментариях к первой статье мне справедливо указали, что я совсем не рассказал о твердотопливных двигателях, которые применяются в космонавтике. Действительно, в одну статью даже простой ликбез не влез. Поэтому приглашаю желающих почитать продолжение.

Предания старины глубокой


Черный (дымный) порох изобрели китайцы в девятом веке. И уже в одиннадцатом веке появляются документальные свидетельства о создании боевых ракет на черном порохе («Уцзин цзунъяо» 1044 год ):


Обратите внимание на дизайн ракеты по центру. Эта компоновка боевых ракет оставалась неизменной восемьсот с лишним лет, до начала двадцатого века, а фейерверки с ней производятся до сих пор!

Человеческая мысль не стояла на месте. Уже в 1409 году в Корее додумались до системы залпового огня (Хвачха):


Также есть легенда о китайском чиновнике Ван Ху, который приблизительно в шестнадцатом веке собрал аппарат из кресла, двух змеев (не во всех вариантах легенды) и сорока семи ракет (очевидно, от снарядов типа Хвачхи):


Увы, тогдашние изобретатели были бесстрашны от незнания, про методику лётно-конструкторских испытаний не думали, и страдали излишним оптимизмом. Поэтому первое испытание оказалось последним. Когда стих рёв двигателей, и рассеялся дым, ни Ван Ху, ни его аппарата не нашли.

Ракеты вместе с завоевателями с Востока (монголы, османы) пришли в Европу. Само слово «ракета» — от итальянского «маленькое веретено». С различной интенсивностью ракеты применялись по всей Европе и Азии.

Следующим заметным этапом была четвертая англо-майсурская война (1798—1799). Ракеты Майсура впервые в мире имели стальную оболочку, различное назначение (зажигательные, противопехотные с режущими кромками) и массированно использовались. Корпус ракетчиков Типу Султана насчитывал пять тысяч человек.


Впечатленные англичане, к тому же захватившие в Серингапатаме в качестве трофеев сотни ракет, решили воспроизвести технологию. Так родились ракеты Конгрива, которые широко использовались в наполеоновских войнах и последующих конфликтах, и даже просочились в гимн США.


Начиная с середины девятнадцатого века нарезная артиллерия начала выигрывать у ракет и по дальности и по точности, а залповое применение по типу Хвачхи было забыто. Поэтому боевые ракеты постепенно сходили со сцены, однако, даже в Первой мировой войне они ещё использовались. На фотографии французский «Ньюпор-16» с ракетами «Le Prieur» для борьбы с дирижаблями и воздушными шарами. Несмотря на электрозапал и установку на самолёте, это старые добрые пороховые ракеты такой же компоновки, что и у китайцев одиннадцатого века.

Выезжала на берег «Катюша»


Ракеты на черном порохе не стали сложней и мощней из-за ограничений самого пороха. Нельзя было сделать пороховую шашку с устойчивыми параметрами в партии, большого калибра, и горящую хотя бы пару секунд. Для развития твердотопливных ракет требовался новый материал. В конце девятнадцатого века был изобретен бездымный порох. Однако на артиллерийском бездымном порохе ракету сделать не получалось. Начались поиски бездымных ракетных порохов.

Наибольшего успеха в этом деле добилась Газодинамическая лаборатория Тихомирова и Артемьева в СССР. Они создали т.н. баллиститный порох, из которого уже можно было сделать достаточно большие шашки и поставить их в реактивные снаряды. К тому же вовремя вспомнили про идею залпового огня. Так родились «Катюши» — снаряды РС-82 и РС-132 для авиации, М-8 и М-13 для наземных установок. Более подробно про пороха, их виды и производство можно почитать здесь.


Успехи технологии привели к тому, что во время Второй мировой войны СССР активнее других стран использовал боевые ракеты на твердом топливе. Оружие оказалось очень эффективным, применялось с воздушных, наземных, корабельных носителей, были разработаны новые модификации большей дальности или калибра.

Стойкий смесевой сержант


Баллиститный порох имел свои физические ограничения. Максимальный диаметр шашки измерялся в сантиметрах, а время горения — в секундах. Даже если бы фон Браун хотел, он не смог бы сделать Фау-2 на баллиститном порохе. Нужен был новый вид твердого топлива. Им стало т.н. смесевое топливо («rubber fuel»). В 1942 году Джон Парсонс создал первые экземпляры двигателей на смесевом топливе, используя асфальт. А эксперименты с компонентами обнаружили, что наиболее эффективным топливом является смесь перхлората аммония (окислитель), алюминия и полиуретана (горючее) и полибутадиена для улучшения параметров горения, формования и хранения двигательной шашки. Первой ракетой с двигателем на смесевом топливе стала MGM-29 «Сержант» (первый полёт — 1956 г), двигатель которой имел диаметр 0,7 метра и работал 34 секунды. Это был качественный прорыв — ракета массой 4,5 т. и длиной 10 м. могла забросить боеголовку весом 0,8 т на 135 км, и не требовала колонны автомашин с компонентами топлива и десятки минут на заправку.


После ракет средней дальности была разработана МБР «Минитмен» на смесевом топливе. Её преимущества можно увидеть, сравнивая с похожими советскими проектами. Дело в том, что в СССР Королёв попытался создать баллистическую ракету на баллиститном порохе (РТ-1) и на смесевом топливе советской рецептуры с худшими характеристиками (РТ-2). Сравнение характеристик очень наглядно:


Обратите внимание на то, что в ракете РТ-1 пришлось делать фактически сборку из четырех отдельных двигателей из-за ограничений на диаметр шашки баллиститного пороха. У РТ-2 и «Минитмена» шашка одна, большая, но на первой ступени 4 сопла.

Особенности твердотопливных двигателей

Возможность создать двигатель очень большой тяги


Самым мощным ракетным двигателем в истории был твердотопливный ускоритель «Спейс Шаттла». Его начальная тяга составляет 1250 тонн, а пиковое значение достигает 1400 тонн, что приблизительно в 1,8 раз больше тяги самых мощных ЖРД (F-1 и РД-170). Самый мощный из эксплуатируемых двигателей тоже твердотопливный — это боковые ускорители «Ариан-5», их тяга составляет 630 тонн.

Профиль тяги задается при конструировании


ЖРД можно дросселировать — менять величину тяги, иногда в весьма большом диапазоне. Твердотопливный двигатель горит неуправляемо, и величину тяги можно регулировать только с помощью внутреннего канала специального профиля. Разные профили канала позволяют иметь разные профили тяги во времени:

Невозможность аварийного выключения


После того, как РДТТ включился, выключить его нельзя. На боковые ускорители «Спейс Шаттла» ставили заряды взрывчатки, чтобы в случае катастрофического отказа они не летели в произвольном направлении. Все полёты шаттлов проходили с людьми, и знание того, что в бункере сидит специальный человек (RSO), который взорвёт ускорители в случае аварии, добавляло нервозности. Боковые ускорители «Челленджера» в катастрофе 1986 года не были повреждены взрывом центрального бака и были подорваны несколько секунд спустя.

Невозможность повторного запуска


Вытекает из предыдущего пункта. На каждое включение надо иметь отдельную ступень с двигателем. Это важно для разгонных блоков, которые должны включаться уже в космосе несколько раз.

Отсечка тяги


При необходимости выключить досрочно нормально работающий РДТТ (например, при разгоне до нужной скорости при стрельбе на неполную дальность), единственное, что можно сделать — это т.н. отсечка тяги. Специальные заряды вскрывают верхнюю часть камеры сгорания, обнуляя тягу. Двигатель ещё работает некоторое время, но пламя вырывается с обеих сторон, что, фактически, не добавляет скорости.

Меньший удельный импульс


Удельный импульс (мера эффективности топлива) РДТТ ниже, чем у ЖРД. Это приводит к тому, что в боевых МБР обычно на одну ступень больше. Жидкостные УР-100 и Р-36 имеют две ступени, что оптимально по баллистике, а на твердотопливные «Тополя» приходится ставить три ступени. Поэтому массовое совершенство РДТТ хуже.

Простота изготовления и эксплуатации


После заливки топлива в камеру сгорания оно становится похожим на резину по консистенции и не требует дополнительных операций. В отличие от разгонных блоков на ЖРД, которые надо заправлять и проверять на космодроме, разгонные блоки с РДТТ приходят готовые от производителя. Боевые ракеты с РДТТ также приходят от производителя готовыми и стоят на дежурстве десятилетиями, не требуя дополнительных операций с топливом со стороны персонала. Справедливости ради необходимо отметить, что боевые МБР с ЖРД также приходят от производителя «ампулизованные», не требуя заправки в шахте.

Сложность механизмов управления


В ЖРД можно отбирать компоненты после ТНА и использовать их в гидравлических рулевых машинах для отклонения сопла. В РДТТ такой возможности нет, поэтому приходится ставить мощные аккумуляторы или генераторы для рулевых машин. Например, на твердотопливном ускорителе «Спейс Шаттла» стояли специальные газогенераторы, сжигавшие гидразин из отдельных баков и питавшие гидравлические рулевые машины, которые отклоняли сопло для управления полётом. На ТТУ РН «Титан-4» стояли баки с тетраксидом азота, который несимметрично впрыскивался в сопло через управляемые форсунки, создавая асимметрию тяги.

На разгонных блоках приходится ставить отдельные двигатели ориентации на жидком топливе, а на время работы двигателя обеспечивать стабилизацию раскруткой.

Невозможность регенеративного охлаждения


Стенки камеры сгорания изолированы ещё не сгоревшим топливом, это безусловный плюс РДТТ, но с соплом ситуация обратная. Дело осложняется тем, что температура горения твердого топлива выше, а продукты сгорания обладают гораздо большим, нежели в ЖРД, эрозионным эффектом. Сопло разъедается продуктами сгорания, что ещё ухудшает параметры двигателя из-за нарушения геометрических параметров сопла. Без потока компонентов, которыми можно охлаждать сопло, приходится придумывать другие методы. Их два — охлаждение излучением и испарением (абляцией). Критическое сечение (самая узкая часть сопла, там наибольшие нагрузки) выполняется из очень твердых и жаропрочных материалов (специально обработанный графит), менее нагруженные части — из теплостойких материалов. Более подробно можно почитать здесь.

Но эти решения имеют свою цену — сопло РДТТ тяжелее, чем у ЖРД. Очень хорошо это видно на фотографиях из этого хабрапоста:

Слева ЖРД, справа РДТТ

Заключение


В современной ракетной технике РДТТ нашли четыре основные ниши:

  1. Военные ракеты. РДТТ обеспечивают высокую боеготовность, простоту и надежность двигателей межконтинентальных и прочих ракет.
  2. Стартовые ускорители. Возможность создать очень мощный и дешевый двигатель используется, когда необходимо оторвать от земли более эффективный, но менее мощный ЖРД.
  3. Разгонные блоки. Распространенность, простота, надежность, освоенность промышленностью, легкость хранения привели к широкому использованию РДТТ в качестве разгонных блоков в США. Удельный импульс РДТТ всего на ~10% меньше, чем у пары гептил/амил (масса РБ IUS даже меньше «Бриза-М» из-за меньшей широты космодрома), а в полтора раза более эффективные водород/кислородные блоки не использовались в «Спейс Шаттлах», которые не так давно выводили большое количество спутников.
  4. Фейерверки и ракетомоделизм. Простота изготовления маленького РДТТ привела к тому, что ракеты используются в фейерверках (там почти наверняка черный порох) и в ракетомоделизме. Простые составы домашнего производства или покупные (есть стандартные в магазинах) позволяют делать небольшие ракеты для развлечения и обучения.

P.S. Ещё будет третья часть. Про виды жидкого топлива, размеры ступеней, стартовые сооружения и деньги. Не очень скоро — через одну статью.

Техническая публикация 6 — Micro Rocket Motors: Apogee Rockets, Model Rocketry Волнение начинается здесь

Многоступенчатая ракета — это транспортное средство, имеющее два или более ракетных двигателя, каждый из которых запускается после того, как предыдущий израсходовал свое топливо. Это сделано для того, чтобы верхняя часть ракеты могла летать на большие высоты.

Постановка

с использованием ракетных двигателей Apogee High Performance Model немного отличается от методов, используемых другими производителями двигателей. Методы, описанные в этой публикации, действительны только для ракетных двигателей на черном порохе производства Apogee Components. Композитные двигатели и ракетные двигатели других производителей в этом отчете не рассматриваются.

Рисунок 1

В традиционной многоступенчатой ​​ракете при сгорании топлива в разгонной ступени двигателя горячие газы вырываются из двигателя вперед и направляются в сопло двигателя разгонной ступени. Надеюсь, произойдет воспламенение верхней ступени.

 

 

 

Рисунок 2
Этот метод ненадежен для высокопроизводительных двигателей Apogee Components по двум причинам. Во-первых, сопло двигателей очень маленькое, что резко снижает вероятность попадания горячих газов в сопло. Во-вторых, ракетные двигатели Apogee работают при значительно более высоком давлении во внутренней камере, чем другие ракетные двигатели. Таким образом, когда в бустерном двигателе происходит прогорание, возникает большее внутреннее давление, пытающееся разделить два двигателя. Из-за этого время разделения сокращается, что сокращает время, необходимое горячим газам для воспламенения верхней ступени. При сепарации горячие газы быстро охлаждаются, смешиваясь с окружающим воздухом. Если горячие газы не попадают в сопло разгонного блока, успешного воспламенения разгонного блока не произойдет.

Для решения этих проблем в патрубок двигателя разгонного блока необходимо вставить специальный стартер. Этот стартер значительно увеличивает шансы на успешное зажигание верхней ступени, потому что горячие газы от ускорительной ступени могут легко воспламенить ту часть стартера, которая выступает из задней части сопла. После зажигания стартер сгорает в сопле верхней ступени, воспламеняя топливо внутри двигателя.

 

 

 

 

Рисунок 3
Другая специальная модификация заключается в том, чтобы сбросить часть давления над бустерным двигателем, чтобы разделение происходило немного медленнее, чтобы дать горячим газам некоторое время для воспламенения специального ступенчатого стартера. На рис. 3 показано, что двигатели должны быть разнесены на небольшое расстояние, чтобы оставалось место для вентиляционного отверстия.

Подготовка двигателя является ключом к успешной постановке. Специальный ступенчатый стартер должен быть полностью вставлен в сопло, чтобы он касался топлива двигателя. Он прочно удерживается на месте коротким отрезком зубочистки (см. рис. 2). Не бойтесь сильно вдавливать держатель — специальный стартер не должен перегибаться, но он очень прочный и способен выдержать процедуру установки. Установив стартер, осторожно согните выступающую часть стартера так, чтобы она стояла в стороне от деревянного держателя. Это увеличит вероятность того, что горячие газы коснутся открытой части стартера и воспламенят пирогенный материал.

Рис. 4
Затем двигатель можно вставить в трубу крепления двигателя для подготовки к полету. На этой странице показаны два метода крепления бустерных двигателей. Оба метода показывают вентиляционные отверстия, которые необходимы для снижения внутреннего давления. На рис. 3 показано, что двигатели, расположенные близко друг к другу, должны находиться на расстоянии не менее 5 мм друг от друга, чтобы оставалось место для вентиляционного отверстия. Если вентиляционного отверстия нет, верхняя ступень будет оттолкнута, и не будет достаточно времени, чтобы зажечь специальный стартер ступени.

Когда два двигателя разнесены на некоторое расстояние (до 15 см), трубка, соединяющая два двигателя, должна иметь несколько отверстий рядом с соплом верхней ступени. Эти отверстия не только снижают давление внутри переходной трубы, но и позволяют вытеснять более холодный воздух перед двигателем бустерной ступени из трубы горячими выхлопными газами. Отверстия должны иметь диаметр не менее 6,3 мм (1/4 дюйма) или аналогичную площадь (см. рис. 4). Если ваша модель имеет передаточную трубку внутри большей трубы корпуса, вы должны иметь отверстия и в большей трубе, чтобы воздух мог полностью выходить из ракеты.

Вы можете заметить небольшое колебание после выгорания бустера перед воспламенением верхней ступени. Это связано с коротким временем выгорания пирогенного материала внутри сопла верхней ступени. Эта задержка составляет менее 1/2 секунды.

Характеристики охлаждения хранимого топлива для микроракетного двигателя

Автор(ы)

Джоппин, Кэрол, 1979-

СкачатьПолная версия для печати (22. 60Mb)

Другие участники

Массачусетский технологический институт. Кафедра аэронавтики и космонавтики.

Советник

Алан Х. Эпштейн.

Условия использования

M.I.T. диссертации защищены авторским правом. Их можно просматривать из этого источника для любых целей, но воспроизведение или распространение в любом формате запрещено без письменного разрешения. См. предоставленный URL-адрес для запросов о разрешении.
http://dspace.mit.edu/handle/1721.1/7582

Метаданные

Показать полную запись элемента

Abstract

В данной диссертации изучается выбор топлива для микроракетного двигателя с жидкостным регенеративным охлаждением с акцентом на характеристики его охлаждающей способности. Пропелленты будут находиться под высоким давлением и под высокими тепловыми потоками в охлаждающих каналах и будут сверхкритическими. Представлено краткое изложение процесса выбора комбинации топлив и краткая оценка потенциальных топлив. Серия испытаний теплопередачи в микротрубках из нержавеющей стали с электрическим нагревом 9Внутренний диаметр 5 микрон был проведен с двумя углеводородами JP7 и JP10 в докритических, критических и сверхкритических условиях и при высоких тепловых потоках. JP7 и JP10 были оценены на основе их способности теплопередачи, их стабильности и образования отложений в микроканалах. JP7 обладает высокой теплоемкостью. Увеличение коэффициента теплопередачи на конце трубы в сочетании с увеличением числа Стэнтона, по-видимому, указывает на то, что JP7 подвергается эндотермическому разложению, что приводит к значительному повышению способности теплопередачи. JP10 предлагает более низкие коэффициенты теплопередачи. Оба углеводорода демонстрируют хорошую стабильность, и никаких признаков отложений обнаружено не было. Предыдущие результаты для сверхкритического этанола сравнивали с результатами для JP7 и JP10. JP7, по-видимому, обеспечивает самые высокие коэффициенты теплопередачи при высоких давлениях и кажется наиболее перспективным хладагентом для ракетного двигателя с регенеративным охлаждением.